core.py 99.8 KB
Newer Older
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1
2
3
4
5
6
7
8
#!/usr/bin/env
# encoding: utf-8
"""
Author:     Daniel Boeckenhoff
Mail:       daniel.boeckenhoff@ipp.mpg.de

core of tfields library
contains numpy ndarray derived bases of the tfields package
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
9
10

Notes:
dboe's avatar
dboe committed
11
12
13
    It could be worthwhile concidering `np.li.mixins.NDArrayOperatorsMixin ...
    <https://docs.scipy.org/doc/numpy-1.15.1/reference/generated/...
    ... numpy.lib.mixins.NDArrayOperatorsMixin.html>`_
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
14
"""
dboe's avatar
dboe committed
15
# builtin
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
16
17
18
19
20
21
import warnings
import pathlib
from six import string_types
from contextlib import contextmanager
from collections import Counter

dboe's avatar
dboe committed
22
# 3rd party
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
23
24
25
import numpy as np
import sympy
import scipy as sp
dboe's avatar
dboe committed
26
import sortedcontainers
27
import rna
dboe's avatar
dboe committed
28

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
29
import tfields.bases
dboe's avatar
dboe committed
30
31

np.seterr(all="warn", over="raise")
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
32
33
34
35
36
37


def rank(tensor):
    """
    Tensor rank
    """
dboe's avatar
dboe committed
38
    tensor = np.asarray(tensor)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
39
40
41
42
43
44
45
    return len(tensor.shape) - 1


def dim(tensor):
    """
    Manifold dimension
    """
dboe's avatar
dboe committed
46
    tensor = np.asarray(tensor)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
47
48
49
50
51
    if rank(tensor) == 0:
        return 1
    return tensor.shape[1]


dboe's avatar
dboe committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
class AbstractObject(object):
    def save(self, path, *args, **kwargs):
        """
        Saving by redirecting to the correct save method depending on path

        Args:
            path (str or buffer)
            *args:
                forwarded to extension specific method
            **kwargs:
                extension (str): only needed if path is buffer
                ... remaining:forwarded to extension specific method
        """
        # get the extension
        if isinstance(path, (string_types, pathlib.Path)):
            extension = pathlib.Path(path).suffix.lstrip(".")
        else:
            raise ValueError("Wrong path type {0}".format(type(path)))
        path = str(path)

        # get the save method
        try:
            save_method = getattr(self, "_save_{extension}".format(**locals()))
        except:
            raise NotImplementedError(
                "Can not find save method for extension: "
                "{extension}.".format(**locals())
            )

        path = rna.path.resolve(path)
        return save_method(path, **kwargs)

    @classmethod
    def load(cls, path, *args, **kwargs):
        """
        load a file as a tensors object.

        Args:
            path (str or buffer)
            *args:
                forwarded to extension specific method
            **kwargs:
                extension (str): only needed if path is buffer
                ... remaining:forwarded to extension specific method
        """
        if isinstance(path, (string_types, pathlib.Path)):
            extension = pathlib.Path(path).suffix.lstrip(".")
            path = str(path)
            path = rna.path.resolve(path)
        else:
            extension = kwargs.pop("extension", "npz")

        try:
            load_method = getattr(cls, "_load_{e}".format(e=extension))
        except:
            raise NotImplementedError(
                "Can not find load method for extension: "
                "{extension}.".format(**locals())
            )
        return load_method(path, *args, **kwargs)

    def _save_npz(self, path, **kwargs):
        """
        Args:
            path (open file or str/unicode): destination to save file to.

        Examples:
            Build some dummies:
            >>> import tfields
            >>> from tempfile import NamedTemporaryFile
            >>> out_file = NamedTemporaryFile(suffix='.npz')
            >>> p = tfields.Points3D([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]],
            ...                      name='my_points')
            >>> scalars = tfields.Tensors([0, 1, 2], name=42)
            >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
            >>> maps = [tfields.TensorFields([[0, 1, 2], [0, 1, 2]], [42, 21]),
            ...         tfields.TensorFields([[1], [2]], [-42, -21])]
            >>> m = tfields.TensorMaps(vectors, scalars,
            ...                        maps=maps)

            Simply give the file name to save
            >>> p.save(out_file.name)
            >>> _ = out_file.seek(0)  # this is only necessary in the test
            >>> p1 = tfields.Points3D.load(out_file.name)
            >>> assert p.equal(p1)
            >>> assert p.coord_sys == p1.coord_sys

            The fully nested structure of a TensorMaps object is reconstructed
            >>> out_file_maps = NamedTemporaryFile(suffix='.npz')
            >>> m.save(out_file_maps.name)
            >>> _ = out_file_maps.seek(0)
            >>> m1 = tfields.TensorMaps.load(out_file_maps.name,
            ...                              allow_pickle=True)
            >>> assert m.equal(m1)
            >>> assert m.maps[0].dtype == m1.maps[0].dtype

            Names are preserved
            >>> assert p.name == 'my_points'
            >>> m.names
            [42]

        """
        content_dict = self._as_dict()
        np.savez(path, **content_dict)

    @classmethod
    def _load_npz(cls, path, **load_kwargs):
        """
        Factory method
        Given a path to a npz file, construct the object
        """
        # TODO: think about allow_pickle, wheter it really should be True or
        # wheter we could avoid pickling (potential security issue)
        load_kwargs.setdefault('allow_pickle', True)
        np_file = np.load(path, **load_kwargs)
        return cls._from_dict(**np_file)

    def _args(self) -> tuple:
        return tuple()

    def _kwargs(self) -> dict:
        return dict()

    _HIERARCHY_SEPARATOR = '::'

    def _as_new_dict(self):
        d = {}

        # type
        d["type"] = type(self).__name__

        # args and kwargs
        for base_attr, iterable in [
                ('args', ((str(i), arg)
                          for i, arg in enumerate(self._args()))),
                ('kwargs', self._kwargs().items())]:
            for attr, value in iterable:
                attr = base_attr + self._HIERARCHY_SEPARATOR + attr
                if hasattr(value, '_as_new_dict'):
                    part_dict = value._as_new_dict()
                    for part_attr, part_value in part_dict.items():
                        d[
                            attr + self._HIERARCHY_SEPARATOR + part_attr
                        ] = part_value
                else:
                    d[attr] = value
        return d

    @classmethod
    def _from_new_dict(cls, d: dict):
        d.pop('type')

        here = {}
        for string in d:  # TOO no sortelist
            value = d[string]

            attr, _, end = string.partition(cls._HIERARCHY_SEPARATOR)
            key, _, end = end.partition(cls._HIERARCHY_SEPARATOR)
            if attr not in here:
                here[attr] = {}
            if key not in here[attr]:
                here[attr][key] = {}
            here[attr][key][end] = value

        """
        Do the recursion
        """
        for attr in here:
            for key in here[attr]:
                if len(here[attr][key]) == 1:
                    attr_value = here[attr][key].pop('')
                else:
                    obj_type = here[attr][key].get("type")
                    # obj_type = bulk_type.tolist() was necessary before. no clue
                    if isinstance(obj_type, bytes):
                        # asthonishingly, this is not necessary under linux.
                        # Found under nt. ???
                        obj_type = obj_type.decode("UTF-8")
                    obj_type = getattr(tfields, obj_type)
                    attr_value = obj_type._from_new_dict(here[attr][key])
                here[attr][key] = attr_value

        '''
        Build the generic way
        '''
        args = here.pop('args', tuple())
        args = tuple(args[key] for key in sorted(args))
        kwargs = here.pop('kwargs', {})
        assert len(here) == 0
        obj = cls(*args, **kwargs)
        return obj

    def _as_dict(self):
        """
        Recursively walk trough all __slots__ and describe all elements
        """
        d = {}
        d["bulk"] = self.bulk
        d["bulk_type"] = self.__class__.__name__
        for attr in self._iter_slots():
            value = getattr(self, attr)

            if hasattr(value, '_as_dict'):
                value = value._as_dict()
            elif isinstance(value, (list)):  # is_iterable
                if len(value) == 0:
                    d[attr] = None
                elif hasattr(value[0], '_as_dict'):
                    for i, part in enumerate(value):
                        part_dict = part._as_dict()
                        for part_attr, part_value in part_dict.items():
                            d[
                                "{attr}::{i}::{part_attr}".format(**locals())
                            ] = part_value
                    continue
            d[attr] = value
        return d

    @classmethod
    def _from_dict(cls, **d):
        """
        legacy method - Opposite of old _as_dict method which is removed in
        favour of nested object saving under 'data'
        """
        list_dict = {}
        kwargs = {}
        """
        De-Flatten the first layer of lists
        """
        for key in sorted(list(d)):
            if "::" in key:
                splits = key.split("::")
                attr, _, end = key.partition("::")
                if attr not in list_dict:
                    list_dict[attr] = {}

                index, _, end = end.partition("::")
                if not index.isdigit():
                    raise ValueError("None digit index given")
                index = int(index)
                if index not in list_dict[attr]:
                    list_dict[attr][index] = {}
                list_dict[attr][index][end] = d[key]
            else:
                kwargs[key] = d[key]

        """
        Build the lists (recursively)
        """
        for key in list(list_dict):
            sub_dict = list_dict[key]
            list_dict[key] = []
            for index in sorted(list(sub_dict)):
                bulk_type = sub_dict[index].get("bulk_type")
                # bulk_type = bulk_type.tolist() was necessary before. no clue
                if isinstance(bulk_type, bytes):
                    # asthonishingly, this is not necessary under linux.
                    # Found under nt. ???
                    bulk_type = bulk_type.decode("UTF-8")
                bulk_type = getattr(tfields, bulk_type)
                list_dict[key].append(bulk_type._from_dict(**sub_dict[index]))

        with cls._bypass_setters('fields', demand_existence=False):
            '''
            Build the normal way
            '''
            bulk = kwargs.pop('bulk')
            bulk_type = kwargs.pop('bulk_type')
            obj = cls.__new__(cls, bulk, **kwargs)

            '''
            Set list attributes
            '''
            for attr, list_value in list_dict.items():
                setattr(obj, attr, list_value)
        return obj


class AbstractNdarray(np.ndarray, AbstractObject):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
331
332
333
334
    """
    All tensors and subclasses should derive from AbstractNdarray.
    AbstractNdarray implements all the inheritance specifics for np.ndarray
    Whene inheriting, three attributes are of interest:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
335
336

    Attributes:
337
        __slots__ (List(str)): If you want to add attributes to
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
338
339
340
341
342
            your AbstractNdarray subclass, add the attribute name to __slots__
        __slot_defaults__ (list): if __slot_defaults__ is None, the
            defaults for the attributes in __slots__ will be None
            other values will be treaded as defaults to the corresponding
            arg at the same position in the __slots__ list.
343
        __slot_dtype__ (List(dtypes)): for the conversion of the
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
344
345
            args in __slots__ to numpy arrays. None values mean no
            conversion.
346
347
348
        __slot_setters__ (List(callable)): Because __slots__ and properties are
            mutually exclusive this is a possibility to take care of proper
            attribute handling. None will be passed for 'not set'.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
349
350
351
352

    Args:
        array (array-like): input array
        **kwargs: arguments corresponding to __slots__
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
353

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
354
355
    TODO:
        equality check
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
356

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
357
    """
dboe's avatar
dboe committed
358

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
359
360
    __slots__ = []
    __slot_defaults__ = []
361
    __slot_dtypes__ = []
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
362
363
364
    __slot_setters__ = []

    def __new__(cls, array, **kwargs):  # pragma: no cover
dboe's avatar
dboe committed
365
366
367
        raise NotImplementedError(
            "{clsType} type must implement '__new__'".format(clsType=type(cls))
        )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
368
369
370
371
372
373
374
375
376
377
378
379

    def __array_finalize__(self, obj):
        if obj is None:
            return
        for attr in self._iter_slots():
            setattr(self, attr, getattr(obj, attr, None))

    def __array_wrap__(self, out_arr, context=None):
        return np.ndarray.__array_wrap__(self, out_arr, context)

    @classmethod
    def _iter_slots(cls):
dboe's avatar
dboe committed
380
        return [att for att in cls.__slots__ if att != "_cache"]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
381
382
383
384
385

    @classmethod
    def _update_slot_kwargs(cls, kwargs):
        """
        set the defaults in kwargs according to __slot_defaults__
386
        and convert the kwargs according to __slot_dtypes__
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
387
        """
388
        slot_defaults = cls.__slot_defaults__ + [None] * (
dboe's avatar
dboe committed
389
390
            len(cls.__slots__) - len(cls.__slot_defaults__)
        )
391
392
        slot_dtypes = cls.__slot_dtypes__ + [None] * (
            len(cls.__slots__) - len(cls.__slot_dtypes__)
dboe's avatar
dboe committed
393
394
        )
        for attr, default, dtype in zip(
395
            cls.__slots__, slot_defaults, slot_dtypes
dboe's avatar
dboe committed
396
397
        ):
            if attr == "_cache":
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
398
399
400
401
402
403
404
                continue
            if attr not in kwargs:
                kwargs[attr] = default
            if dtype is not None:
                try:
                    kwargs[attr] = np.array(kwargs[attr], dtype=dtype)
                except Exception as err:
dboe's avatar
dboe committed
405
406
407
                    raise ValueError(
                        str(attr) + str(dtype) + str(kwargs[attr]) + str(err)
                    )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
408
409
410
411
412
413
414
415
416
417
418
419

    def __setattr__(self, name, value):
        if name in self.__slots__:
            index = self.__slots__.index(name)
            try:
                setter = self.__slot_setters__[index]
            except IndexError:
                setter = None
            if setter is not None:
                value = setter(value)
        super(AbstractNdarray, self).__setattr__(name, value)

dboe's avatar
dboe committed
420
421
422
423
424
425
    def _args(self):
        return (np.array(self),)

    def _kwargs(self):
        return dict((attr, getattr(self, attr)) for attr in self._iter_slots())

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
426
427
    def __reduce__(self):
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
428
429
        important for pickling (see `here <https://stackoverflow.com/questions/26598109/preserve-custom-attributes-when-pickling-subclass-of-numpy-array>`_)

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
430
431
432
433
434
435
        Examples:
            >>> from tempfile import NamedTemporaryFile
            >>> import pickle
            >>> import tfields

            Build a dummy scalar field
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
436

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
437
438
439
            >>> from tfields import Tensors, TensorFields
            >>> scalars = Tensors([0, 1, 2])
            >>> vectors = Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
dboe's avatar
dboe committed
440
441
442
            >>> scalar_field = TensorFields(vectors,
            ...                             scalars,
            ...                             coord_sys='cylinder')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
443
444

            Save it and restore it
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
445

446
            >>> out_file = NamedTemporaryFile(suffix='.pickle')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
447

448
            >>> pickle.dump(scalar_field,
449
450
            ...             out_file)
            >>> _ = out_file.seek(0)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
451

452
            >>> sf = pickle.load(out_file)
453
            >>> sf.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
454
455
456
457
458
459
460
461
462
            True
            >>> sf.fields[0][2] == 2.
            True

        """
        # Get the parent's __reduce__ tuple
        pickled_state = super(AbstractNdarray, self).__reduce__()

        # Create our own tuple to pass to __setstate__
dboe's avatar
dboe committed
463
464
465
        new_state = pickled_state[2] + tuple(
            [getattr(self, slot) for slot in self._iter_slots()]
        )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
466

dboe's avatar
dboe committed
467
468
        # Return a tuple that replaces the parent's __setstate__
        # tuple with our own
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
469
470
471
472
        return (pickled_state[0], pickled_state[1], new_state)

    def __setstate__(self, state):
        """
473
        Counterpart to __reduce__. Important for unpickling.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
474
475
        """
        # Call the parent's __setstate__ with the other tuple elements.
dboe's avatar
dboe committed
476
477
478
        super(AbstractNdarray, self).__setstate__(
            state[0 : -len(self._iter_slots())]
        )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
479
480

        # set the __slot__ attributes
481
482
483
484
485
486
487
488
489
490
491
        valid_slot_attrs = list(self._iter_slots())
        added_slot_attrs = ['name']  # attributes that have been added later
                                     # have not been pickled with the full
                                     # information and thus need to be
                                     # excluded from the __setstate__
                                     # need to be in the same order as they have
                                     # been added to __slots__
        n_old = len(valid_slot_attrs) - len(state[5:])
        if n_old > 0:
            for latest_index in range(n_old):
                new_slot = added_slot_attrs[-latest_index]
492
                warnings.warn("Slots with names '{new_slot}' appears to have been "
493
494
495
496
497
498
499
500
501
                              "added after the creation of the reduced state. "
                              "No corresponding state found in __setstate__."
                              .format(**locals()))
                valid_slot_attrs.pop(valid_slot_attrs.index(new_slot))
                setattr(self, new_slot, None)

        for slot_index, slot in enumerate(valid_slot_attrs):
            state_index = 5 + slot_index
            setattr(self, slot, state[state_index])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
502

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
503
504
505
506
507
508
509
510
    @property
    def bulk(self):
        """
        The pure ndarray version of the actual state
            -> nothing attached
        """
        return np.array(self)

511
512
    @classmethod
    @contextmanager
dboe's avatar
dboe committed
513
514
515
    def _bypass_setters(cls, *slots,
                        empty_means_all=True,
                        demand_existence=False):
516
517
518
        """
        Temporarily remove the setter in __slot_setters__ corresponding to slot
        position in __slot__. You should know what you do, when using this.
519
520
521
522
523

        Args:
            *slots (str): attribute names in __slots__
            empty_means_all (bool): defines behaviour when slots is empty.
                When True: if slots is empty mute all slots in __slots__
dboe's avatar
dboe committed
524
525
            demand_existence (bool): if false do not check the existence of the
                slot in __slots__ - do nothing for that slot. Handle with care!
526
527
528
529
530
531
        """
        if not slots and empty_means_all:
            slots = cls.__slots__
        slot_indices = []
        setters = []
        for slot in slots:
dboe's avatar
dboe committed
532
533
534
535
536
537
538
539
            slot_index = cls.__slots__.index(slot)\
                if slot in cls.__slots__ else None
            if slot_index is None:
                # slot not in cls.__slots__.
                if demand_existence:
                    raise ValueError(
                        "Slot {slot} not existing".format(**locals()))
                continue
540
541
542
543
544
545
546
            if len(cls.__slot_setters__) < slot_index + 1:
                # no setter to be found
                continue
            slot_indices.append(slot_index)
            setter = cls.__slot_setters__[slot_index]
            setters.append(setter)
            cls.__slot_setters__[slot_index] = None
547
        yield
548
549
        for slot_index, setter in zip(slot_indices, setters):
            cls.__slot_setters__[slot_index] = setter
550

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
551
552
553
    def copy(self, *args, **kwargs):
        """
        The standard ndarray copy does not copy slots. Correct for this.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
554

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
555
556
        Examples:
            >>> import tfields
dboe's avatar
dboe committed
557
558
            >>> m = tfields.TensorMaps(
            ...     [[1,2,3], [3,3,3], [0,0,0], [5,6,7]],
dboe's avatar
dboe committed
559
            ...     maps=[[[0, 1, 2], [1, 2, 3]], [1, 2])])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
560
561
562
563
564
565
            >>> mc = m.copy()
            >>> mc is m
            False
            >>> mc.maps[0].fields[0] is m.maps[0].fields[0]
            False

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
566
        TODO:
dboe's avatar
dboe committed
567
568
            This function implementation could be more general or maybe
            redirect to deepcopy?
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
569
        """
dboe's avatar
dboe committed
570
        inst = super().copy(*args, **kwargs)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
571
572
        for attr in self._iter_slots():
            value = getattr(self, attr)
dboe's avatar
dboe committed
573
            if hasattr(value, "copy") and not isinstance(value, list):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
574
575
576
577
                setattr(inst, attr, value.copy(*args, **kwargs))
            elif isinstance(value, list):
                list_copy = []
                for item in value:
dboe's avatar
dboe committed
578
                    if hasattr(item, "copy"):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
579
580
581
582
583
584
585
                        list_copy.append(item.copy(*args, **kwargs))
                    else:
                        list_copy.append(item)
                setattr(inst, attr, list_copy)

        return inst

586
587
588
    @classmethod
    def _from_dict(cls, **d):
        """
dboe's avatar
dboe committed
589
590
        legacy method
        Opposite of old _as_dict
591
592
593
        """
        list_dict = {}
        kwargs = {}
dboe's avatar
dboe committed
594
        """
595
        De-Flatten the first layer of lists
dboe's avatar
dboe committed
596
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
597
        for key in sorted(list(d)):
dboe's avatar
dboe committed
598
599
600
            if "::" in key:
                splits = key.split("::")
                attr, _, end = key.partition("::")
601
602
603
                if attr not in list_dict:
                    list_dict[attr] = {}

dboe's avatar
dboe committed
604
                index, _, end = end.partition("::")
605
606
607
608
609
610
611
612
613
                if not index.isdigit():
                    raise ValueError("None digit index given")
                index = int(index)
                if index not in list_dict[attr]:
                    list_dict[attr][index] = {}
                list_dict[attr][index][end] = d[key]
            else:
                kwargs[key] = d[key]

dboe's avatar
dboe committed
614
        """
615
        Build the lists (recursively)
dboe's avatar
dboe committed
616
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
617
        for key in list(list_dict):
618
619
            sub_dict = list_dict[key]
            list_dict[key] = []
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
620
            for index in sorted(list(sub_dict)):
dboe's avatar
dboe committed
621
                bulk_type = sub_dict[index].get("bulk_type")
dboe's avatar
dboe committed
622
                bulk_type = bulk_type.tolist()
Priyanjana Sinha's avatar
Priyanjana Sinha committed
623
                if isinstance(bulk_type, bytes):
624
625
                    # asthonishingly, this is not necessary under linux.
                    # Found under nt. ???
dboe's avatar
dboe committed
626
                    bulk_type = bulk_type.decode("UTF-8")
Priyanjana Sinha's avatar
Priyanjana Sinha committed
627
                bulk_type = getattr(tfields, bulk_type)
628
629
                list_dict[key].append(bulk_type._from_dict(**sub_dict[index]))

dboe's avatar
dboe committed
630
        with cls._bypass_setters('fields', demand_existence=False):
631
632
633
634
635
636
637
638
639
640
641
642
            '''
            Build the normal way
            '''
            bulk = kwargs.pop('bulk')
            bulk_type = kwargs.pop('bulk_type')
            obj = cls.__new__(cls, bulk, **kwargs)

            '''
            Set list attributes
            '''
            for attr, list_value in list_dict.items():
                setattr(obj, attr, list_value)
643
        return obj
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
644
645
646
647
648


class Tensors(AbstractNdarray):
    """
    Set of tensors with the same basis.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
649

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
650
651
    TODO:
        all slot args should be protected -> _base
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
652

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
653
654
    Args:
        tensors: np.ndarray or AbstractNdarray subclass
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
655
656
        **kwargs:
            name: optional - custom name, can be anything
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
657

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
658
659
    Examples:
        >>> import numpy as np
660
        >>> import tfields
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
661
662

        Initialize a scalar range
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
663

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
664
665
666
667
668
        >>> scalars = tfields.Tensors([0, 1, 2])
        >>> scalars.rank == 0
        True

        Initialize vectors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
669

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
670
671
672
673
674
        >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
        >>> vectors.rank == 1
        True
        >>> vectors.dim == 3
        True
675
        >>> assert vectors.coord_sys == 'cartesian'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
676
677

        Initialize the Levi-Zivita Tensor
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
678

679
680
681
682
        >>> matrices = tfields.Tensors(
        ...                     [[[0, 0, 0], [0, 0, 1], [0, -1, 0]],
        ...                      [[0, 0, -1], [0, 0, 0], [1, 0, 0]],
        ...                      [[0, 1, 0], [-1, 0, 0], [0, 0, 0]]])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
683
684
685
686
687
688
689
690
        >>> matrices.shape == (3, 3, 3)
        True
        >>> matrices.rank == 2
        True
        >>> matrices.dim == 3
        True

        Initializing in different start coordinate system
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
691

692
693
        >>> cyl = tfields.Tensors([[5, np.arctan(4. / 3.), 42]], coord_sys='cylinder')
        >>> assert cyl.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
694
        >>> cyl.transform('cartesian')
695
        >>> assert cyl.coord_sys == 'cartesian'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
696
697
698
699
700
701
        >>> cart = cyl
        >>> assert round(cart[0, 0], 10) == 3.
        >>> assert round(cart[0, 1], 10) == 4.
        >>> assert cart[0, 2] == 42

        Initialize with copy constructor keeps the coordinate system
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
702

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
703
704
        >>> with vectors.tmp_transform('cylinder'):
        ...     vect_cyl = tfields.Tensors(vectors)
705
706
        ...     assert vect_cyl.coord_sys == vectors.coord_sys
        >>> assert vect_cyl.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
707
708

        You can demand a special dimension.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
709

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
710
711
712
713
714
715
716
717
        >>> _ = tfields.Tensors([[1, 2, 3]], dim=3)
        >>> _ = tfields.Tensors([[1, 2, 3]], dim=2)  # doctest: +ELLIPSIS
        Traceback (most recent call last):
            ...
        ValueError: Incorrect dimension: 3 given, 2 demanded.

        The dimension argument (dim) becomes necessary if you want to initialize
        an empty array
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
718

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
719
720
721
722
723
724
725
726
        >>> _ = tfields.Tensors([])  # doctest: +ELLIPSIS
        Traceback (most recent call last):
            ...
        ValueError: Empty tensors need dimension parameter 'dim'.
        >>> tfields.Tensors([], dim=7)
        Tensors([], shape=(0, 7), dtype=float64)

    """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
727
    __slots__ = ['coord_sys', 'name']
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
728
729
730
731
    __slot_defaults__ = ['cartesian']
    __slot_setters__ = [tfields.bases.get_coord_system_name]

    def __new__(cls, tensors, **kwargs):
dboe's avatar
dboe committed
732
733
734
        dtype = kwargs.pop("dtype", None)
        order = kwargs.pop("order", None)
        dim = kwargs.pop("dim", None)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
735

dboe's avatar
dboe committed
736
        """ copy constructor extracts the kwargs from tensors"""
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
737
738
739
        if issubclass(type(tensors), Tensors):
            if dim is not None:
                dim = tensors.dim
dboe's avatar
dboe committed
740
            coord_sys = kwargs.pop("coord_sys", tensors.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
741
            tensors = tensors.copy()
742
743
            tensors.transform(coord_sys)
            kwargs['coord_sys'] = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
744
            kwargs['name'] = kwargs.pop('name', tensors.name)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
745
746
747
748
            if dtype is None:
                dtype = tensors.dtype
        else:
            if dtype is None:
dboe's avatar
dboe committed
749
                if hasattr(tensors, "dtype"):
750
751
752
                    dtype = tensors.dtype
                else:
                    dtype = np.float64
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
753

dboe's avatar
dboe committed
754
        """ demand iterable structure """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
755
756
757
        try:
            len(tensors)
        except TypeError as err:
dboe's avatar
dboe committed
758
759
760
761
            raise TypeError(
                "Iterable structure necessary."
                " Got {tensors}".format(**locals())
            )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
762

dboe's avatar
dboe committed
763
        """ process empty inputs """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
764
765
766
767
768
769
770
771
772
        if len(tensors) == 0:
            if issubclass(type(tensors), tfields.Tensors):
                tensors = np.empty(tensors.shape, dtype=tensors.dtype)
            elif dim is not None:
                tensors = np.empty((0, dim))
            if issubclass(type(tensors), np.ndarray):
                # np.empty
                pass
            else:
dboe's avatar
dboe committed
773
774
775
                raise ValueError(
                    "Empty tensors need dimension " "parameter 'dim'."
                )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
776
777
778
779

        tensors = np.asarray(tensors, dtype=dtype, order=order)
        obj = tensors.view(cls)

dboe's avatar
dboe committed
780
        """ check dimension(s) """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
781
782
        for d in obj.shape[1:]:
            if not d == obj.dim:
dboe's avatar
dboe committed
783
784
785
786
787
788
789
                raise ValueError(
                    "Dimensions are inconstistent. "
                    "Manifold dimension is {obj.dim}. "
                    "Found dimensions {found} in {obj}.".format(
                        found=obj.shape[1:], **locals()
                    )
                )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
790
791
        if dim is not None:
            if dim != obj.dim:
dboe's avatar
dboe committed
792
793
794
795
                raise ValueError(
                    "Incorrect dimension: {obj.dim} given,"
                    " {dim} demanded.".format(**locals())
                )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
796

dboe's avatar
dboe committed
797
        """ update kwargs with defaults from slots """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
798
799
        cls._update_slot_kwargs(kwargs)

dboe's avatar
dboe committed
800
        """ set kwargs to slots attributes """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
801
802
        for attr in kwargs:
            if attr not in cls._iter_slots():
dboe's avatar
dboe committed
803
804
805
806
                raise AttributeError(
                    "Keyword argument {attr} not accepted "
                    "for class {cls}".format(**locals())
                )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
807
808
809
810
            setattr(obj, attr, kwargs[attr])

        return obj

811
812
813
814
    def __iter__(self):
        """
        Forwarding iterations to the bulk array. Otherwise __getitem__ would
        kick in and slow down imensely.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
815

816
817
818
819
820
821
822
823
824
825
826
        Examples:
            >>> import tfields
            >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
            >>> scalar_field = tfields.TensorFields(vectors, [42, 21, 10.5], [1, 2, 3])
            >>> [(point.rank, point.dim) for point in scalar_field]
            [(0, 1), (0, 1), (0, 1)]

        """
        for index in range(len(self)):
            yield super(Tensors, self).__getitem__(index).view(Tensors)

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
827
828
829
830
831
832
    @classmethod
    def merged(cls, *objects, **kwargs):
        """
        Factory method
        Merges all tensor inputs to one tensor

833
834
835
836
837
838
        Args:
            **kwargs: passed to cls
            dim (int):
            return_templates (bool): return the templates which can be used
                together with cut to retrieve the original objects

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
839
840
841
842
843
        Examples:
            >>> import numpy as np
            >>> import tfields
            >>> import tfields.bases

844
845
            The new object with turn out in the most frequent coordinate
            system if not specified explicitly
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
846

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
847
            >>> vec_a = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
848
849
            >>> vec_b = tfields.Tensors([[5, 4, 1]], coord_sys=tfields.bases.cylinder)
            >>> vec_c = tfields.Tensors([[4, 2, 3]], coord_sys=tfields.bases.cylinder)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
850
            >>> merge = tfields.Tensors.merged(vec_a, vec_b, vec_c, [[2, 0, 1]])
851
            >>> assert merge.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
852
853
854
855
856
857
858
859
            >>> assert merge.equal([[0, 0, 0],
            ...                     [0, 0, 1],
            ...                     [1, -np.pi / 2, 0],
            ...                     [5, 4, 1],
            ...                     [4, 2, 3],
            ...                     [2, 0, 1]])

            Merge also shifts the maps to still refer to the same tensors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
860

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
861
862
            >>> tm_a = tfields.TensorMaps(merge, maps=[[[0, 1, 2]]])
            >>> tm_b = tm_a.copy()
863
            >>> assert tm_a.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
864
            >>> tm_merge = tfields.TensorMaps.merged(tm_a, tm_b)
865
            >>> assert tm_merge.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
866
867
868
869
            >>> assert tm_merge.maps[0].equal([[0, 1, 2],
            ...                               list(range(len(merge),
            ...                                          len(merge) + 3,
            ...                                          1))])
dboe's avatar
dboe committed
870

871
872
            >>> obj_list = [tfields.Tensors([[1, 2, 3]],
            ...             coord_sys=tfields.bases.CYLINDER),
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
873
874
            ...             tfields.Tensors([[3] * 3]),
            ...             tfields.Tensors([[5, 1, 3]])]
875
876
            >>> merge2 = tfields.Tensors.merged(
            ...     *obj_list, coord_sys=tfields.bases.CARTESIAN)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
877
878
            >>> assert merge2.equal([[-0.41614684, 0.90929743, 3.],
            ...                      [3, 3, 3], [5, 1, 3]], atol=1e-8)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
879

880
881
882
883
884
885
886
887
888
            The return_templates argument allows to retrieve a template which
            can be used with the cut method.

            >>> merge, templates = tfields.Tensors.merged(
            ...     vec_a, vec_b, vec_c, return_templates=True)
            >>> assert merge.cut(templates[0]).equal(vec_a)
            >>> assert merge.cut(templates[1]).equal(vec_b)
            >>> assert merge.cut(templates[2]).equal(vec_c)

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
889
890
        """

dboe's avatar
dboe committed
891
892
        """ get most frequent coord_sys or predefined coord_sys """
        coord_sys = kwargs.get("coord_sys", None)
893
        return_templates = kwargs.pop("return_templates", False)
894
        if coord_sys is None:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
895
896
897
            bases = []
            for t in objects:
                try:
898
                    bases.append(t.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
899
900
901
                except AttributeError:
                    pass
            if bases:
902
                # get most frequent coord_sys
dboe's avatar
dboe committed
903
904
905
906
                coord_sys = sorted(bases, key=Counter(bases).get, reverse=True)[
                    0
                ]
                kwargs["coord_sys"] = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
907
            else:
dboe's avatar
dboe committed
908
909
910
911
                default = cls.__slot_defaults__[
                    cls.__slots__.index("coord_sys")
                ]
                kwargs["coord_sys"] = default
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
912

dboe's avatar
dboe committed
913
        """ transform all raw inputs to cls type with correct coord_sys. Also
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
914
        automatically make a copy of those instances that are of the correct
dboe's avatar
dboe committed
915
        type already."""
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
916
        objects = [cls.__new__(cls, t, **kwargs) for t in objects]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
917

dboe's avatar
dboe committed
918
        """ check rank and dimension equality """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
919
920
921
922
923
        if not len(set([t.rank for t in objects])) == 1:
            raise TypeError("Tensors must have the same rank for merging.")
        if not len(set([t.dim for t in objects])) == 1:
            raise TypeError("Tensors must have the same dimension for merging.")

dboe's avatar
dboe committed
924
        """ merge all objects """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
925
926
927
928
929
930
        remainingObjects = objects[1:] or []
        tensors = objects[0]

        for i, obj in enumerate(remainingObjects):
            tensors = np.append(tensors, obj, axis=0)

dboe's avatar
dboe committed
931
        if len(tensors) == 0 and 'dim' not in kwargs:
932
933
            # if you can not determine the tensor dimension, search for the
            # first object with some entries
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
934
            for obj in objects:
935
936
937
                if len(obj) != 0:
                    kwargs['dim'] = dim(obj)
                    break
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
938

939
940
941
942
943
944
945
946
947
948
949
950
        if not return_templates:
            return cls.__new__(cls, tensors, **kwargs)
        else:
            tensor_lengths = [len(o) for o in objects]
            cum_tensor_lengths = [sum(tensor_lengths[:i])
                                  for i in range(len(objects))]
            templates = [
                tfields.TensorFields(
                    obj,
                    np.arange(tensor_lengths[i]) + cum_tensor_lengths[i])
                for i, obj in enumerate(objects)]
            return cls.__new__(cls, tensors, **kwargs), templates
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
951
952
953
954
955

    @classmethod
    def grid(cls, *base_vectors, **kwargs):
        """
        Args:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
956
957
958
959
960
961
962
            *base_vectors (Iterable): base coordinates. The amount of base
                vectors defines the dimension

            **kwargs:
                iter_order (list): order in which the iteration will be done.
                    Frequency rises with position in list. default is [0, 1, 2]
                    iteration will be done like::
dboe's avatar
dboe committed
963

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
964
965
966
967
968
969
                    for v0 in base_vectors[iter_order[0]]:
                        for v1 in base_vectors[iter_order[1]]:
                            for v2 in base_vectors[iter_order[2]]:
                                coords0.append(locals()['v%i' % iter_order[0]])
                                coords1.append(locals()['v%i' % iter_order[1]])
                                coords2.append(locals()['v%i' % iter_order[2]])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
970
971
972

        Examples:
            Initilaize using the mgrid notation
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
973

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
974
975
976
977
978
979
980
981
982
983
984
            >>> import tfields
            >>> mgrid = tfields.Tensors.grid((0, 1, 2j), (3, 4, 2j), (6, 7, 2j))
            >>> mgrid.equal([[0, 3, 6],
            ...              [0, 3, 7],
            ...              [0, 4, 6],
            ...              [0, 4, 7],
            ...              [1, 3, 6],
            ...              [1, 3, 7],
            ...              [1, 4, 6],
            ...              [1, 4, 7]])
            True
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
985
986
987

            Lists or arrays are accepted also.
            Furthermore, the iteration order can be changed
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
988

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
            >>> lins = tfields.Tensors.grid(np.linspace(3, 4, 2), np.linspace(0, 1, 2),
            ...                             np.linspace(6, 7, 2), iter_order=[1, 0, 2])
            >>> lins.equal([[3, 0, 6],
            ...             [3, 0, 7],
            ...             [4, 0, 6],
            ...             [4, 0, 7],
            ...             [3, 1, 6],
            ...             [3, 1, 7],
            ...             [4, 1, 6],
            ...             [4, 1, 7]])
            True
            >>> lins2 = tfields.Tensors.grid(np.linspace(0, 1, 2),
            ...                              np.linspace(3, 4, 2),
            ...                              np.linspace(6, 7, 2),
            ...                              iter_order=[2, 0, 1])
            >>> lins2.equal([[0, 3, 6],
            ...              [0, 4, 6],
            ...              [1, 3, 6],
            ...              [1, 4, 6],
            ...              [0, 3, 7],
            ...              [0, 4, 7],
            ...              [1, 3, 7],
            ...              [1, 4, 7]])
            True

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1014
1015
            When given the coord_sys argument, the grid is performed in the
            given coorinate system:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1016

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1017
1018
1019
1020
1021
1022
1023
1024
1025
            >>> lins3 = tfields.Tensors.grid(np.linspace(4, 9, 2),
            ...                              np.linspace(np.pi/2, np.pi/2, 1),
            ...                              np.linspace(4, 4, 1),
            ...                              iter_order=[2, 0, 1],
            ...                              coord_sys=tfields.bases.CYLINDER)
            >>> assert lins3.coord_sys == 'cylinder'
            >>> lins3.transform('cartesian')
            >>> assert np.array_equal(lins3[:, 1], [4, 9])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1026
        """
dboe's avatar
dboe committed
1027
1028
1029
1030
1031
1032
1033
1034
        cls_kwargs = {
            attr: kwargs.pop(attr)
            for attr in list(kwargs)
            if attr in cls.__slots__
        }
        inst = cls.__new__(
            cls, tfields.lib.grid.igrid(*base_vectors, **kwargs), **cls_kwargs
        )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
        return inst

    @property
    def rank(self):
        """
        Tensor rank
        """
        return rank(self)

    @property
    def dim(self):
        """
        Manifold dimension
        """
        return dim(self)

1051
    def transform(self, coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1052
1053
        """
        Args:
1054
            coord_sys (str)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064

        Examples:
            >>> import numpy as np
            >>> import tfields

            CARTESIAN to SPHERICAL
            >>> t = tfields.Tensors([[1, 2, 2], [1, 0, 0], [0, 0, -1], [0, 0, 1], [0, 0, 0]])
            >>> t.transform('spherical')

            r
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1065

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1066
1067
1068
            >>> assert t[0, 0] == 3

            phi
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1069

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1070
1071
1072
1073
            >>> assert t[1, 1] == 0.
            >>> assert t[2, 1] == 0.

            theta is 0 at (0, 0, 1) and pi / 2 at (0, 0, -1)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1074

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1075
1076
1077
1078
1079
            >>> assert round(t[1, 2], 10) == round(0, 10)
            >>> assert t[2, 2] == -np.pi / 2
            >>> assert t[3, 2] == np.pi / 2

            theta is defined 0 for R == 0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1080

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1081
1082
1083
1084
1085
            >>> assert t[4, 0] == 0.
            >>> assert t[4, 2] == 0.


            CARTESIAN to CYLINDER
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1086

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1087
1088
1089
            >>> tCart = tfields.Tensors([[3, 4, 42], [1, 0, 0], [0, 1, -1], [-1, 0, 1], [0, 0, 0]])
            >>> t_cyl = tCart.copy()
            >>> t_cyl.transform('cylinder')
1090
            >>> assert t_cyl.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1091
1092

            R
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1093

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1094
1095
1096
1097
1098
1099
            >>> assert t_cyl[0, 0] == 5
            >>> assert t_cyl[1, 0] == 1
            >>> assert t_cyl[2, 0] == 1
            >>> assert t_cyl[4, 0] == 0

            Phi
dboe's avatar
dboe committed
1100

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1101
1102
1103
1104
1105
1106
            >>> assert round(t_cyl[0, 1], 10) == round(np.arctan(4. / 3), 10)
            >>> assert t_cyl[1, 1] == 0
            >>> assert round(t_cyl[2, 1], 10) == round(np.pi / 2, 10)
            >>> assert t_cyl[1, 1] == 0

            Z
dboe's avatar
dboe committed
1107

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1108
1109
1110
1111
            >>> assert t_cyl[0, 2] == 42
            >>> assert t_cyl[2, 2] == -1

            >>> t_cyl.transform('cartesian')
1112
            >>> assert t_cyl.coord_sys == 'cartesian'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1113
1114
1115
1116
            >>> assert t_cyl[0, 0] == 3

        """
        #           scalars                 empty             already there
1117
1118
        if self.rank == 0 or self.shape[0] == 0 or self.coord_sys == coord_sys:
            self.coord_sys = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1119
1120
            return

1121
1122
1123
        tfields.bases.transform(self, self.coord_sys, coord_sys)
        # self[:] = tfields.bases.transform(self, self.coord_sys, coord_sys)
        self.coord_sys = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1124
1125

    @contextmanager
1126
    def tmp_transform(self, coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1127
        """
1128
        Temporarily change the coord_sys to another coord_sys and change it back at exit
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1129
1130
        This method is for cleaner code only.
        No speed improvements go with this.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1131

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1132
1133
        Args:
            see transform
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1134

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1135
1136
        Examples:
            >>> import tfields
1137
            >>> p = tfields.Tensors([[1,2,3]], coord_sys=tfields.bases.SPHERICAL)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1138
            >>> with p.tmp_transform(tfields.bases.CYLINDER):
1139
1140
            ...     assert p.coord_sys == tfields.bases.CYLINDER
            >>> assert p.coord_sys == tfields.bases.SPHERICAL
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1141
1142

        """
1143
1144
        baseBefore = self.coord_sys
        if baseBefore == coord_sys:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1145
1146
            yield
        else:
1147
            self.transform(coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1148
1149
1150
1151
1152
1153
1154
1155

            yield

            self.transform(baseBefore)

    def mirror(self, coordinate, condition=None):
        """
        Reflect/Mirror the entries meeting <condition> at <coordinate> = 0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1156

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1157
1158
        Args:
            coordinate (int): coordinate index
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1159

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1160
1161
1162
1163
1164
1165
        Examples:
            >>> import tfields
            >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]])
            >>> p.mirror(1)
            >>> assert p.equal([[1, -2, 3], [4, -5,  6], [1, -2, -6]])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1166
1167
            multiple coordinates can be mirrored at the same time
            i.e. a point mirrorion would be
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1168

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1169
1170
1171
1172
1173
1174
            >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]])
            >>> p.mirror([0,2])
            >>> assert p.equal([[-1, 2, -3], [-4, 5, -6], [-1, 2., 6.]])

            You can give a condition as mask or as str.
            The mirroring will only be applied to the points meeting the condition.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1175

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1176
1177
            >>> import sympy
            >>> x, y, z = sympy.symbols('x y z')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1178
            >>> p.mirror([0, 2], y > 3)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
            >>> p.equal([[-1, 2, -3], [4, 5, 6], [-1, 2, 6]])
            True

        """
        if condition is None:
            condition = np.array([True for i in range(len(self))])
        elif isinstance(condition, sympy.Basic):
            condition = self.evalf(condition)
        if isinstance(coordinate, list) or isinstance(coordinate, tuple):
            for c in coordinate:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1189
                self.mirror(c, condition=condition)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1190
1191
1192
1193
1194
        elif isinstance(coordinate, int):
            self[:, coordinate][condition] *= -1
        else:
            raise TypeError()

dboe's avatar
dboe committed
1195
1196
1197
1198
1199
1200
1201
1202
1203
    def to_segment(
        self,
        segment,
        num_segments,
        coordinate,
        periodicity=2 * np.pi,
        offset=0.0,
        coord_sys=None,
    ):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1204
1205
1206
1207
1208
        """
        For circular (close into themself after
        <periodicity>) coordinates at index <coordinate> assume
        <num_segments> segments and transform all values to
        segment number <segment>
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1209

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1210
1211
1212
1213
1214
1215
        Args:
            segment (int): segment index (starting at 0)
            num_segments (int): number of segments
            coordinate (int): coordinate index
            periodicity (float): after what lenght, the coordiante repeats
            offset (float): offset in the mapping
1216
            coord_sys (str or sympy.CoordinateSystem): in which coord sys the
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1217
                transformation should be done
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1218

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1219
1220
1221
1222
1223
        Examples:
            >>> import tfields
            >>> import numpy as np
            >>> pStart = tfields.Points3D([[6, 2 * np.pi, 1],
            ...                            [6, 2 * np.pi / 5 * 3, 1]],
1224
            ...                           coord_sys='cylinder')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
            >>> p = tfields.Points3D(pStart)
            >>> p.to_segment(0, 5, 1, offset=-2 * np.pi / 10)
            >>> assert np.array_equal(p[:, 1], [0, 0])

            >>> p2 = tfields.Points3D(pStart)
            >>> p2.to_segment(1, 5, 1, offset=-2 * np.pi / 10)
            >>> assert np.array_equal(np.round(p2[:, 1], 4), [1.2566] * 2)

        """
        if segment > num_segments - 1:
            raise ValueError("Segment {0} not existent.".format(segment))

1237
1238
1239
        if coord_sys is None:
            coord_sys = self.coord_sys
        with self.tmp_transform(coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1240
            # map all values to first segment
dboe's avatar
dboe committed
1241
1242
1243
1244
1245
            self[:, coordinate] = (
                (self[:, coordinate] - offset) % (periodicity / num_segments)
                + offset
                + segment * periodicity / num_segments
            )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1246

dboe's avatar
dboe committed
1247
1248
1249
    def equal(
        self, other, rtol=None, atol=None, equal_nan=False, return_bool=True
    ):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1250
1251
        """
        Evaluate, whether the instance has the same content as other.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1252

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1253
1254
1255
1256
1257
1258
1259
        Args:
            optional:
                rtol (float)
                atol (float)
                equal_nan (bool)
            see numpy.isclose
        """
dboe's avatar
dboe committed
1260
1261
1262
1263
        if (
            issubclass(type(other), Tensors)
            and self.coord_sys != other.coord_sys
        ):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1264
            other = other.copy()
1265
            other.transform(self.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1266
1267
        x, y = np.asarray(self), np.asarray(other)
        if rtol is None and atol is None:
dboe's avatar
dboe committed
1268
            mask = x == y
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1269
1270
1271
1272
1273
            if equal_nan:
                both_nan = np.isnan(x) & np.isnan(y)
                mask[both_nan] = both_nan[both_nan]
        else:
            if rtol is None:
dboe's avatar
dboe committed
1274
                rtol = 0.0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1275
            if atol is None:
dboe's avatar
dboe committed
1276
                atol = 0.0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1277
1278
1279
1280
1281
1282
1283
1284
1285
            mask = np.isclose(x, y, rtol=rtol, atol=atol, equal_nan=equal_nan)
        if return_bool:
            return bool(np.all(mask))
        return mask

    def contains(self, other, **kwargs):
        """
        Inspired by a speed argument @
        stackoverflow.com/questions/14766194/testing-whether-a-numpy-array-contains-a-given-row
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1286

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1287
1288
1289
1290
1291
1292
1293
1294
1295
        Examples:
            >>> import tfields
            >>> p = tfields.Tensors([[1,2,3], [4,5,6], [6,7,8]])
            >>> p.contains([4,5,6])
            True

        """
        return any(self.equal(other, return_bool=False).all(1))

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1296
    def indices(self, tensor, rtol=None, atol=None):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1297
1298
1299
        """
        Returns:
            list of int: indices of tensor occuring
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1300

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1301
        Examples:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1302
            Rank 1 Tensors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1303

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1304
1305
1306
1307
1308
1309
1310
1311
            >>> import tfields
            >>> p = tfields.Tensors([[1,2,3], [4,5,6], [6,7,8], [4,5,6],
            ...                      [4.1, 5, 6]])
            >>> p.indices([4,5,6])
            array([1, 3])
            >>> p.indices([4,5,6.1], rtol=1e-5, atol=1e-1)
            array([1, 3, 4])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1312
            Rank 0 Tensors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1313

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1314
1315
1316
1317
1318
1319
            >>> p = tfields.Tensors([2, 3, 6, 3.01])
            >>> p.indices(3)
            array([1])
            >>> p.indices(3, rtol=1e-5, atol=1e-1)
            array([1, 3])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1320
        """
1321
1322
        x, y = np.asarray(self), np.asarray(tensor)
        if rtol is None and atol is None:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1323
            equal_method = np.equal
1324
1325
        else:
            equal_method = lambda a, b: np.isclose(a, b, rtol=rtol, atol=atol)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1326
1327

        # inspired by https://stackoverflow.com/questions/19228295/find-ordered-vector-in-numpy-array
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1328
        if self.rank == 0:
dboe's avatar
dboe committed
1329
            indices = np.where(equal_method((x - y), 0))[0]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1330
        elif self.rank == 1:
dboe's avatar
dboe committed
1331
            indices = np.where(np.all(equal_method((x - y), 0), axis=1))[0]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1332
1333
        else:
            raise NotImplementedError()
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1334
1335
        return indices

1336
    def index(self, tensor, **kwargs):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1337
1338
1339
        """
        Args:
            tensor
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1340

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1341
1342
1343
        Returns:
            int: index of tensor occuring
        """
1344
        indices = self.indices(tensor, **kwargs)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1345
1346
1347
1348
        if not indices:
            return None
        if len(indices) == 1:
            return indices[0