core.py 74.6 KB
Newer Older
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1
2
3
4
5
6
7
8
#!/usr/bin/env
# encoding: utf-8
"""
Author:     Daniel Boeckenhoff
Mail:       daniel.boeckenhoff@ipp.mpg.de

core of tfields library
contains numpy ndarray derived bases of the tfields package
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
9
10
11
12
13

Notes:
    It could be worthwhile concidering np.li.mixins.NDArrayOperatorsMixin
    ... see https://docs.scipy.org/doc/numpy-1.15.1/reference
            /generated/numpy.lib.mixins.NDArrayOperatorsMixin.html
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
"""
import warnings
import os
import pathlib
from six import string_types
from contextlib import contextmanager
from collections import Counter

import numpy as np
import sympy
import scipy as sp
import tfields.bases
np.seterr(all='warn', over='raise')


def rank(tensor):
    """
    Tensor rank
    """
    return len(tensor.shape) - 1


def dim(tensor):
    """
    Manifold dimension
    """
    if rank(tensor) == 0:
        return 1
    return tensor.shape[1]


class AbstractNdarray(np.ndarray):
    """
    All tensors and subclasses should derive from AbstractNdarray.
    AbstractNdarray implements all the inheritance specifics for np.ndarray
    Whene inheriting, three attributes are of interest:
        __slots__ (list of str): If you want to add attributes to
            your AbstractNdarray subclass, add the attribute name to __slots__
        __slot_defaults__ (list): if __slot_defaults__ is None, the
            defaults for the attributes in __slots__ will be None
            other values will be treaded as defaults to the corresponding
            arg at the same position in the __slots__ list.
        __slotDtype__ (list of types): for the conversion of the
            args in __slots__ to numpy arrays. None values mean no
            conversion.

    Args:
        array (array-like): input array
        **kwargs: arguments corresponding to __slots__
    TODO:
        equality check
    """
    __slots__ = []
    __slot_defaults__ = []
    __slotDtypes__ = []
    __slot_setters__ = []

    def __new__(cls, array, **kwargs):  # pragma: no cover
        raise NotImplementedError("{clsType} type must implement '__new__'"
                                  .format(clsType=type(cls)))

    def __array_finalize__(self, obj):
        if obj is None:
            return
        for attr in self._iter_slots():
            setattr(self, attr, getattr(obj, attr, None))

    def __array_wrap__(self, out_arr, context=None):
        return np.ndarray.__array_wrap__(self, out_arr, context)

    @classmethod
    def _iter_slots(cls):
        return [att for att in cls.__slots__ if att != '_cache']

    @classmethod
    def _update_slot_kwargs(cls, kwargs):
        """
        set the defaults in kwargs according to __slot_defaults__
        and convert the kwargs according to __slotDtypes__
        """
        slotDefaults = cls.__slot_defaults__ + \
            [None] * (len(cls.__slots__) - len(cls.__slot_defaults__))
        slotDtypes = cls.__slotDtypes__ + \
            [None] * (len(cls.__slots__) - len(cls.__slotDtypes__))
        for attr, default, dtype in zip(cls.__slots__, slotDefaults, slotDtypes):
            if attr == '_cache':
                continue
            if attr not in kwargs:
                kwargs[attr] = default
            if dtype is not None:
                try:
                    kwargs[attr] = np.array(kwargs[attr], dtype=dtype)
                except Exception as err:
                    raise ValueError(str(attr) + str(dtype) + str(kwargs[attr]) + str(err))

    def __setattr__(self, name, value):
        if name in self.__slots__:
            index = self.__slots__.index(name)
            try:
                setter = self.__slot_setters__[index]
            except IndexError:
                setter = None
            if setter is not None:
                value = setter(value)
        super(AbstractNdarray, self).__setattr__(name, value)

    def __reduce__(self):
        """
        important for pickling
123
124
        see https://stackoverflow.com/questions/26598109/
            preserve-custom-attributes-when-pickling-subclass-of-numpy-array
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
125
126
127
128
129
130
131
132
133
        Examples:
            >>> from tempfile import NamedTemporaryFile
            >>> import pickle
            >>> import tfields

            Build a dummy scalar field
            >>> from tfields import Tensors, TensorFields
            >>> scalars = Tensors([0, 1, 2])
            >>> vectors = Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
134
            >>> scalar_field = TensorFields(vectors, scalars, coord_sys='cylinder')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
135
136

            Save it and restore it
137
            >>> out_file = NamedTemporaryFile(suffix='.pickle')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
138

139
            >>> pickle.dump(scalar_field,
140
141
            ...             out_file)
            >>> _ = out_file.seek(0)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
142

143
            >>> sf = pickle.load(out_file)
144
            >>> sf.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
            True
            >>> sf.fields[0][2] == 2.
            True

        """
        # Get the parent's __reduce__ tuple
        pickled_state = super(AbstractNdarray, self).__reduce__()

        # Create our own tuple to pass to __setstate__
        new_state = pickled_state[2] + tuple([getattr(self, slot) for slot in
                                              self._iter_slots()])

        # Return a tuple that replaces the parent's __setstate__ tuple with our own
        return (pickled_state[0], pickled_state[1], new_state)

    def __setstate__(self, state):
        """
162
        Counterpart to __reduce__. Important for unpickling.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
163
164
165
166
167
168
169
170
171
        """
        # Call the parent's __setstate__ with the other tuple elements.
        super(AbstractNdarray, self).__setstate__(state[0:-len(self._iter_slots())])

        # set the __slot__ attributes
        for i, slot in enumerate(reversed(self._iter_slots())):
            index = -(i + 1)
            setattr(self, slot, state[index])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
172
173
174
175
176
177
178
179
    @property
    def bulk(self):
        """
        The pure ndarray version of the actual state
            -> nothing attached
        """
        return np.array(self)

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
    def copy(self, *args, **kwargs):
        """
        The standard ndarray copy does not copy slots. Correct for this.
        Examples:
            >>> import tfields
            >>> m = tfields.TensorMaps([[1,2,3], [3,3,3], [0,0,0], [5,6,7]],
            ...                        maps=[tfields.TensorFields([[0, 1, 2], [1, 2, 3]],
            ...                                                   [1, 2])])
            >>> mc = m.copy()
            >>> mc is m
            False
            >>> mc.maps[0].fields[0] is m.maps[0].fields[0]
            False

        TODO: This function implementation could be more general or maybe redirect to deepcopy?
        """
        inst = super(AbstractNdarray, self).copy(*args, **kwargs)
        for attr in self._iter_slots():
            value = getattr(self, attr)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
199
            if hasattr(value, 'copy') and not isinstance(value, list):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
                setattr(inst, attr, value.copy(*args, **kwargs))
            elif isinstance(value, list):
                list_copy = []
                for item in value:
                    if hasattr(item, 'copy'):
                        list_copy.append(item.copy(*args, **kwargs))
                    else:
                        list_copy.append(item)
                setattr(inst, attr, list_copy)

        return inst

    def save(self, path, *args, **kwargs):
        """
        Saving a tensors object by redirecting to the correct save method depending on path
        Args:
            path (str or buffer)
            *args:
                forwarded to extension specific method
            **kwargs:
                extension (str): only needed if path is buffer
                ... remaining:forwarded to extension specific method
        """
        # get the extension
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
224
        if isinstance(path, (string_types, pathlib.Path)):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
225
            extension = pathlib.Path(path).suffix.lstrip('.')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
226
227
228
        else:
            raise ValueError("Wrong path type {0}".format(type(path)))
        path = str(path)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
229
230
231
232
233
234
235
236
237

        # get the save method
        try:
            save_method = getattr(self,
                                  '_save_{extension}'.format(**locals()))
        except:
            raise NotImplementedError("Can not find save method for extension: "
                                      "{extension}.".format(**locals()))

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
238
        path = tfields.lib.in_out.resolve(path)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
239
240
241
242
243
244
245
246
247
248
249
250
251
252
        return save_method(path, **kwargs)

    @classmethod
    def load(cls, path, *args, **kwargs):
        """
        load a file as a tensors object.
        Args:
            path (str or buffer)
            *args:
                forwarded to extension specific method
            **kwargs:
                extension (str): only needed if path is buffer
                ... remaining:forwarded to extension specific method
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
253
        if isinstance(path, (string_types, pathlib.Path)):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
254
            extension = pathlib.Path(path).suffix.lstrip('.')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
255
256
257
258
            path = str(path)
            path = tfields.lib.in_out.resolve(path)
        else:
            extension = kwargs.pop('extension', 'npz')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
259
260
261
262
263
264
265
266
267
268
269
270
271

        try:
            load_method = getattr(cls, '_load_{e}'.format(e=extension))
        except:
            raise NotImplementedError("Can not find load method for extension: "
                                      "{extension}.".format(**locals()))
        return load_method(path, *args, **kwargs)

    def _save_npz(self, path, **kwargs):
        """
        Args:
            path (open file or str/unicode): destination to save file to.
        Examples:
272
            Build some dummies:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
273
274
            >>> import tfields
            >>> from tempfile import NamedTemporaryFile
275
            >>> out_file = NamedTemporaryFile(suffix='.npz')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
276
            >>> p = tfields.Points3D([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]])
277
278
279
280
281
282
283
284
285
286
287
288

            >>> scalars = tfields.Tensors([0, 1, 2])
            >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
            >>> maps = [tfields.TensorFields([[0, 1, 2], [0, 1, 2]], [42, 21]),
            ...         tfields.TensorFields([[1], [2]], [-42, -21])]
            >>> m = tfields.TensorMaps(vectors, scalars,
            ...                        maps=maps)

            Simply give the file name to save
            >>> p.save(out_file.name)
            >>> _ = out_file.seek(0)
            >>> p1 = tfields.Points3D.load(out_file.name)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
289
290
            >>> assert p.equal(p1)

291
292
293
294
295
296
            The fully nested structure of a TensorMaps object is reconstructed
            >>> out_file_maps = NamedTemporaryFile(suffix='.npz')
            >>> m.save(out_file_maps.name)
            >>> _ = out_file_maps.seek(0)
            >>> m1 = tfields.TensorMaps.load(out_file_maps.name)
            >>> assert m.equal(m1)
297
            >>> assert m.maps[0].dtype == m1.maps[0].dtype
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
298

299
        """
300
301
        content_dict = self._as_dict()
        np.savez(path, **content_dict)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
302
303
304
305
306
307
308
309

    @classmethod
    def _load_npz(cls, path, **load_kwargs):
        """
        Factory method
        Given a path to a npz file, construct the object
        """
        np_file = np.load(path, **load_kwargs)
310
311
312
313
314
315
316
        return cls._from_dict(**np_file)

    def _as_dict(self):
        """
        Recursively walk trough all __slots__ and describe all elements
        """
        d = {}
317
        d['bulk'] = self.bulk
318
319
320
321
322
323
324
325
326
327
328
        d['bulk_type'] = self.__class__.__name__
        for attr in self._iter_slots():
            value = getattr(self, attr)
            if isinstance(value, list):
                if len(value) == 0:
                    d[attr] = None
                if all([isinstance(part, AbstractNdarray) for part in value]):
                    for i, part in enumerate(value):
                        part_dict = part._as_dict()
                        for part_attr, part_value in part_dict.items():
                            d["{attr}::{i}::{part_attr}".format(**locals())] = part_value
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
329
                    continue
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
            if isinstance(value, AbstractNdarray):
                value = value._as_dict()
            d[attr] = value
        return d

    @classmethod
    def _from_dict(cls, **d):
        """
        Opposite of _as_dict
        """
        list_dict = {}
        kwargs = {}
        '''
        De-Flatten the first layer of lists
        '''
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
345
        for key in sorted(list(d)):
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
            if '::' in key:
                splits = key.split('::')
                attr, _, end = key.partition('::')
                if attr not in list_dict:
                    list_dict[attr] = {}

                index, _, end = end.partition('::')
                if not index.isdigit():
                    raise ValueError("None digit index given")
                index = int(index)
                if index not in list_dict[attr]:
                    list_dict[attr][index] = {}
                list_dict[attr][index][end] = d[key]
            else:
                kwargs[key] = d[key]

        '''
        Build the lists (recursively)
        '''
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
365
        for key in list(list_dict):
366
367
            sub_dict = list_dict[key]
            list_dict[key] = []
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
368
            for index in sorted(list(sub_dict)):
Priyanjana Sinha's avatar
Priyanjana Sinha committed
369
370
371
372
373
                bulk_type = sub_dict[index].get('bulk_type').tolist()
                if isinstance(bulk_type, bytes):
                    # asthonishingly, this is not necessary under linux. Found under nt. ???
                    bulk_type = bulk_type.decode('UTF-8')
                bulk_type = getattr(tfields, bulk_type)
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
                list_dict[key].append(bulk_type._from_dict(**sub_dict[index]))

        '''
        Build the normal way
        '''
        bulk = kwargs.pop('bulk')
        bulk_type = kwargs.pop('bulk_type')
        obj = cls.__new__(cls, bulk, **kwargs)

        '''
        Set list attributes
        '''
        for attr, list_value in list_dict.items():
            setattr(obj, attr, list_value)
        return obj
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
389
390
391
392
393
394
395
396
397
398
399


class Tensors(AbstractNdarray):
    """
    Set of tensors with the same basis.
    TODO:
        all slot args should be protected -> _base
    Args:
        tensors: np.ndarray or AbstractNdarray subclass
    Examples:
        >>> import numpy as np
400
        >>> import tfields
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
401
402
403
404
405
406
407
408
409
410
411
412

        Initialize a scalar range
        >>> scalars = tfields.Tensors([0, 1, 2])
        >>> scalars.rank == 0
        True

        Initialize vectors
        >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
        >>> vectors.rank == 1
        True
        >>> vectors.dim == 3
        True
413
        >>> assert vectors.coord_sys == 'cartesian'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
414
415

        Initialize the Levi-Zivita Tensor
416
417
418
419
        >>> matrices = tfields.Tensors(
        ...                     [[[0, 0, 0], [0, 0, 1], [0, -1, 0]],
        ...                      [[0, 0, -1], [0, 0, 0], [1, 0, 0]],
        ...                      [[0, 1, 0], [-1, 0, 0], [0, 0, 0]]])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
420
421
422
423
424
425
426
427
        >>> matrices.shape == (3, 3, 3)
        True
        >>> matrices.rank == 2
        True
        >>> matrices.dim == 3
        True

        Initializing in different start coordinate system
428
429
        >>> cyl = tfields.Tensors([[5, np.arctan(4. / 3.), 42]], coord_sys='cylinder')
        >>> assert cyl.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
430
        >>> cyl.transform('cartesian')
431
        >>> assert cyl.coord_sys == 'cartesian'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
432
433
434
435
436
437
438
439
        >>> cart = cyl
        >>> assert round(cart[0, 0], 10) == 3.
        >>> assert round(cart[0, 1], 10) == 4.
        >>> assert cart[0, 2] == 42

        Initialize with copy constructor keeps the coordinate system
        >>> with vectors.tmp_transform('cylinder'):
        ...     vect_cyl = tfields.Tensors(vectors)
440
441
        ...     assert vect_cyl.coord_sys == vectors.coord_sys
        >>> assert vect_cyl.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459

        You can demand a special dimension.
        >>> _ = tfields.Tensors([[1, 2, 3]], dim=3)
        >>> _ = tfields.Tensors([[1, 2, 3]], dim=2)  # doctest: +ELLIPSIS
        Traceback (most recent call last):
            ...
        ValueError: Incorrect dimension: 3 given, 2 demanded.

        The dimension argument (dim) becomes necessary if you want to initialize
        an empty array
        >>> _ = tfields.Tensors([])  # doctest: +ELLIPSIS
        Traceback (most recent call last):
            ...
        ValueError: Empty tensors need dimension parameter 'dim'.
        >>> tfields.Tensors([], dim=7)
        Tensors([], shape=(0, 7), dtype=float64)

    """
460
    __slots__ = ['coord_sys']
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
461
462
463
464
465
466
467
468
469
470
471
472
    __slot_defaults__ = ['cartesian']
    __slot_setters__ = [tfields.bases.get_coord_system_name]

    def __new__(cls, tensors, **kwargs):
        dtype = kwargs.pop('dtype', None)
        order = kwargs.pop('order', None)
        dim = kwargs.pop('dim', None)

        ''' copy constructor extracts the kwargs from tensors'''
        if issubclass(type(tensors), Tensors):
            if dim is not None:
                dim = tensors.dim
473
            coord_sys = kwargs.pop('coord_sys', tensors.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
474
            tensors = tensors.copy()
475
476
            tensors.transform(coord_sys)
            kwargs['coord_sys'] = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
477
478
479
480
            if dtype is None:
                dtype = tensors.dtype
        else:
            if dtype is None:
481
482
483
484
                if hasattr(tensors, 'dtype'):
                    dtype = tensors.dtype
                else:
                    dtype = np.float64
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513

        ''' demand iterable structure '''
        try:
            len(tensors)
        except TypeError as err:
            raise TypeError("Iterable structure necessary."
                            " Got {tensors}"
                            .format(**locals()))

        ''' process empty inputs '''
        if len(tensors) == 0:
            if issubclass(type(tensors), tfields.Tensors):
                tensors = np.empty(tensors.shape, dtype=tensors.dtype)
            elif dim is not None:
                tensors = np.empty((0, dim))
            if issubclass(type(tensors), np.ndarray):
                # np.empty
                pass
            else:
                raise ValueError("Empty tensors need dimension "
                                 "parameter 'dim'.")

        tensors = np.asarray(tensors, dtype=dtype, order=order)
        obj = tensors.view(cls)

        ''' check dimension(s) '''
        for d in obj.shape[1:]:
            if not d == obj.dim:
                raise ValueError("Dimensions are inconstistent. "
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
514
                                 "Manifold dimension is {obj.dim}. "
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
                                 "Found dimensions {found} in {obj}."
                                 .format(found=obj.shape[1:], **locals()))
        if dim is not None:
            if dim != obj.dim:
                raise ValueError("Incorrect dimension: {obj.dim} given,"
                                 " {dim} demanded."
                                 .format(**locals()))

        ''' update kwargs with defaults from slots '''
        cls._update_slot_kwargs(kwargs)

        ''' set kwargs to slots attributes '''
        for attr in kwargs:
            if attr not in cls._iter_slots():
                raise AttributeError("Keyword argument {attr} not accepted "
                                     "for class {cls}".format(**locals()))
            setattr(obj, attr, kwargs[attr])

        return obj

535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
    def __iter__(self):
        """
        Forwarding iterations to the bulk array. Otherwise __getitem__ would
        kick in and slow down imensely.
        Examples:
            >>> import tfields
            >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
            >>> scalar_field = tfields.TensorFields(vectors, [42, 21, 10.5], [1, 2, 3])
            >>> [(point.rank, point.dim) for point in scalar_field]
            [(0, 1), (0, 1), (0, 1)]

        """
        for index in range(len(self)):
            yield super(Tensors, self).__getitem__(index).view(Tensors)

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
550
551
552
553
554
555
556
557
558
559
560
561
562
    @classmethod
    def merged(cls, *objects, **kwargs):
        """
        Factory method
        Merges all tensor inputs to one tensor

        Examples:
            >>> import numpy as np
            >>> import tfields
            >>> import tfields.bases

            Use of most frequent coordinate system
            >>> vec_a = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
563
564
            >>> vec_b = tfields.Tensors([[5, 4, 1]], coord_sys=tfields.bases.cylinder)
            >>> vec_c = tfields.Tensors([[4, 2, 3]], coord_sys=tfields.bases.cylinder)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
565
            >>> merge = tfields.Tensors.merged(vec_a, vec_b, vec_c, [[2, 0, 1]])
566
            >>> assert merge.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
567
568
569
570
571
572
573
574
575
576
            >>> assert merge.equal([[0, 0, 0],
            ...                     [0, 0, 1],
            ...                     [1, -np.pi / 2, 0],
            ...                     [5, 4, 1],
            ...                     [4, 2, 3],
            ...                     [2, 0, 1]])

            Merge also shifts the maps to still refer to the same tensors
            >>> tm_a = tfields.TensorMaps(merge, maps=[[[0, 1, 2]]])
            >>> tm_b = tm_a.copy()
577
            >>> assert tm_a.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
578
            >>> tm_merge = tfields.TensorMaps.merged(tm_a, tm_b)
579
            >>> assert tm_merge.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
580
581
582
583
584
            >>> assert tm_merge.maps[0].equal([[0, 1, 2],
            ...                               list(range(len(merge),
            ...                                          len(merge) + 3,
            ...                                          1))])
            
585
            >>> obj_list = [tfields.Tensors([[1, 2, 3]], coord_sys=tfields.bases.CYLINDER),
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
586
587
            ...             tfields.Tensors([[3] * 3]),
            ...             tfields.Tensors([[5, 1, 3]])]
588
            >>> merge2 = tfields.Tensors.merged(*obj_list, coord_sys=tfields.bases.CARTESIAN)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
589
590
            >>> assert merge2.equal([[-0.41614684, 0.90929743, 3.],
            ...                      [3, 3, 3], [5, 1, 3]], atol=1e-8)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
591

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
592
593
        """

594
595
        ''' get most frequent coord_sys or predefined coord_sys '''
        coord_sys = kwargs.get('coord_sys', None)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
596
        dimension = kwargs.get('dim', None)
597
        if coord_sys is None:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
598
599
600
            bases = []
            for t in objects:
                try:
601
                    bases.append(t.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
602
603
604
                except AttributeError:
                    pass
            if bases:
605
606
607
                # get most frequent coord_sys
                coord_sys = sorted(bases, key=Counter(bases).get, reverse=True)[0]
                kwargs['coord_sys'] = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
608
            else:
609
610
                default = cls.__slot_defaults__[cls.__slots__.index('coord_sys')]
                kwargs['coord_sys'] = default
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
611

612
        ''' transform all raw inputs to cls type with correct coord_sys. Also
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
613
614
        automatically make a copy of those instances that are of the correct
        type already.'''
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
615
        objects = [cls.__new__(cls, t, **kwargs) for t in objects]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667

        ''' check rank and dimension equality '''
        if not len(set([t.rank for t in objects])) == 1:
            raise TypeError("Tensors must have the same rank for merging.")
        if not len(set([t.dim for t in objects])) == 1:
            raise TypeError("Tensors must have the same dimension for merging.")

        ''' merge all objects '''
        remainingObjects = objects[1:] or []
        tensors = objects[0]

        for i, obj in enumerate(remainingObjects):
            tensors = np.append(tensors, obj, axis=0)

        if len(tensors) == 0 and dimension is None:
            for obj in objects:
                kwargs['dim'] = dim(obj)

        return cls.__new__(cls, tensors, **kwargs)

    @classmethod
    def grid(cls, *base_vectors, **kwargs):
        """
        Args:
            baseVector 0 (list/np.array of base coordinates)
            baseVector 1 (list/np.array of base coordinates)
            baseVector 2 (list/np.array of base coordinates)
        Kwargs:
            iter_order (list): order in which the iteration will be done.
                Frequency rises with position in list. default is [0, 1, 2]
                iteration will be done like::
                      
                for v0 in base_vectors[iter_order[0]]:
                    for v1 in base_vectors[iter_order[1]]:
                        for v2 in base_vectors[iter_order[2]]:
                            coords0.append(locals()['v%i' % iter_order[0]])
                            coords1.append(locals()['v%i' % iter_order[1]])
                            coords2.append(locals()['v%i' % iter_order[2]])

        Examples:
            Initilaize using the mgrid notation
            >>> import tfields
            >>> mgrid = tfields.Tensors.grid((0, 1, 2j), (3, 4, 2j), (6, 7, 2j))
            >>> mgrid.equal([[0, 3, 6],
            ...              [0, 3, 7],
            ...              [0, 4, 6],
            ...              [0, 4, 7],
            ...              [1, 3, 6],
            ...              [1, 3, 7],
            ...              [1, 4, 6],
            ...              [1, 4, 7]])
            True
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
668
669
670

            Lists or arrays are accepted also.
            Furthermore, the iteration order can be changed
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
            >>> lins = tfields.Tensors.grid(np.linspace(3, 4, 2), np.linspace(0, 1, 2),
            ...                             np.linspace(6, 7, 2), iter_order=[1, 0, 2])
            >>> lins.equal([[3, 0, 6],
            ...             [3, 0, 7],
            ...             [4, 0, 6],
            ...             [4, 0, 7],
            ...             [3, 1, 6],
            ...             [3, 1, 7],
            ...             [4, 1, 6],
            ...             [4, 1, 7]])
            True
            >>> lins2 = tfields.Tensors.grid(np.linspace(0, 1, 2),
            ...                              np.linspace(3, 4, 2),
            ...                              np.linspace(6, 7, 2),
            ...                              iter_order=[2, 0, 1])
            >>> lins2.equal([[0, 3, 6],
            ...              [0, 4, 6],
            ...              [1, 3, 6],
            ...              [1, 4, 6],
            ...              [0, 3, 7],
            ...              [0, 4, 7],
            ...              [1, 3, 7],
            ...              [1, 4, 7]])
            True

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
696
697
698
699
700
701
702
703
704
705
706
            When given the coord_sys argument, the grid is performed in the
            given coorinate system:
            >>> lins3 = tfields.Tensors.grid(np.linspace(4, 9, 2),
            ...                              np.linspace(np.pi/2, np.pi/2, 1),
            ...                              np.linspace(4, 4, 1),
            ...                              iter_order=[2, 0, 1],
            ...                              coord_sys=tfields.bases.CYLINDER)
            >>> assert lins3.coord_sys == 'cylinder'
            >>> lins3.transform('cartesian')
            >>> assert np.array_equal(lins3[:, 1], [4, 9])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
707
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
708
        cls_kwargs = {attr: kwargs.pop(attr) for attr in list(kwargs) if attr in cls.__slots__}
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
709
710
711
        inst = cls.__new__(cls,
                           tfields.lib.grid.igrid(*base_vectors, **kwargs),
                           **cls_kwargs)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
        return inst

    @property
    def rank(self):
        """
        Tensor rank
        """
        return rank(self)

    @property
    def dim(self):
        """
        Manifold dimension
        """
        return dim(self)

728
    def transform(self, coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
729
730
        """
        Args:
731
            coord_sys (str)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761

        Examples:
            >>> import numpy as np
            >>> import tfields

            CARTESIAN to SPHERICAL
            >>> t = tfields.Tensors([[1, 2, 2], [1, 0, 0], [0, 0, -1], [0, 0, 1], [0, 0, 0]])
            >>> t.transform('spherical')

            r
            >>> assert t[0, 0] == 3

            phi
            >>> assert t[1, 1] == 0.
            >>> assert t[2, 1] == 0.

            theta is 0 at (0, 0, 1) and pi / 2 at (0, 0, -1)
            >>> assert round(t[1, 2], 10) == round(0, 10)
            >>> assert t[2, 2] == -np.pi / 2
            >>> assert t[3, 2] == np.pi / 2

            theta is defined 0 for R == 0
            >>> assert t[4, 0] == 0.
            >>> assert t[4, 2] == 0.


            CARTESIAN to CYLINDER
            >>> tCart = tfields.Tensors([[3, 4, 42], [1, 0, 0], [0, 1, -1], [-1, 0, 1], [0, 0, 0]])
            >>> t_cyl = tCart.copy()
            >>> t_cyl.transform('cylinder')
762
            >>> assert t_cyl.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780

            R
            >>> assert t_cyl[0, 0] == 5
            >>> assert t_cyl[1, 0] == 1
            >>> assert t_cyl[2, 0] == 1
            >>> assert t_cyl[4, 0] == 0

            Phi
            >>> assert round(t_cyl[0, 1], 10) == round(np.arctan(4. / 3), 10)
            >>> assert t_cyl[1, 1] == 0
            >>> assert round(t_cyl[2, 1], 10) == round(np.pi / 2, 10)
            >>> assert t_cyl[1, 1] == 0

            Z
            >>> assert t_cyl[0, 2] == 42
            >>> assert t_cyl[2, 2] == -1

            >>> t_cyl.transform('cartesian')
781
            >>> assert t_cyl.coord_sys == 'cartesian'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
782
783
784
785
            >>> assert t_cyl[0, 0] == 3

        """
        #           scalars                 empty             already there
786
787
        if self.rank == 0 or self.shape[0] == 0 or self.coord_sys == coord_sys:
            self.coord_sys = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
788
789
            return

790
791
792
        tfields.bases.transform(self, self.coord_sys, coord_sys)
        # self[:] = tfields.bases.transform(self, self.coord_sys, coord_sys)
        self.coord_sys = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
793
794

    @contextmanager
795
    def tmp_transform(self, coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
796
        """
797
        Temporarily change the coord_sys to another coord_sys and change it back at exit
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
798
799
800
801
802
803
        This method is for cleaner code only.
        No speed improvements go with this.
        Args:
            see transform
        Examples:
            >>> import tfields
804
            >>> p = tfields.Tensors([[1,2,3]], coord_sys=tfields.bases.SPHERICAL)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
805
            >>> with p.tmp_transform(tfields.bases.CYLINDER):
806
807
            ...     assert p.coord_sys == tfields.bases.CYLINDER
            >>> assert p.coord_sys == tfields.bases.SPHERICAL
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
808
809

        """
810
811
        baseBefore = self.coord_sys
        if baseBefore == coord_sys:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
812
813
            yield
        else:
814
            self.transform(coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830

            yield

            self.transform(baseBefore)

    def mirror(self, coordinate, condition=None):
        """
        Reflect/Mirror the entries meeting <condition> at <coordinate> = 0
        Args:
            coordinate (int): coordinate index
        Examples:
            >>> import tfields
            >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]])
            >>> p.mirror(1)
            >>> assert p.equal([[1, -2, 3], [4, -5,  6], [1, -2, -6]])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
831
832
            multiple coordinates can be mirrored at the same time
            i.e. a point mirrorion would be
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
833
834
835
836
837
838
839
840
            >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]])
            >>> p.mirror([0,2])
            >>> assert p.equal([[-1, 2, -3], [-4, 5, -6], [-1, 2., 6.]])

            You can give a condition as mask or as str.
            The mirroring will only be applied to the points meeting the condition.
            >>> import sympy
            >>> x, y, z = sympy.symbols('x y z')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
841
            >>> p.mirror([0, 2], y > 3)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
842
843
844
845
846
847
848
849
850
851
            >>> p.equal([[-1, 2, -3], [4, 5, 6], [-1, 2, 6]])
            True

        """
        if condition is None:
            condition = np.array([True for i in range(len(self))])
        elif isinstance(condition, sympy.Basic):
            condition = self.evalf(condition)
        if isinstance(coordinate, list) or isinstance(coordinate, tuple):
            for c in coordinate:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
852
                self.mirror(c, condition=condition)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
853
854
855
856
857
858
        elif isinstance(coordinate, int):
            self[:, coordinate][condition] *= -1
        else:
            raise TypeError()

    def to_segment(self, segment, num_segments, coordinate,
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
859
                   periodicity=2 * np.pi, offset=0.,
860
                   coord_sys=None):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
861
862
863
864
865
        """
        For circular (close into themself after
        <periodicity>) coordinates at index <coordinate> assume
        <num_segments> segments and transform all values to
        segment number <segment>
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
866
867
868
869
870
871
        Args:
            segment (int): segment index (starting at 0)
            num_segments (int): number of segments
            coordinate (int): coordinate index
            periodicity (float): after what lenght, the coordiante repeats
            offset (float): offset in the mapping
872
            coord_sys (str or sympy.CoordinateSystem): in which coord sys the
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
873
                transformation should be done
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
874
875
876
877
878
        Examples:
            >>> import tfields
            >>> import numpy as np
            >>> pStart = tfields.Points3D([[6, 2 * np.pi, 1],
            ...                            [6, 2 * np.pi / 5 * 3, 1]],
879
            ...                           coord_sys='cylinder')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
880
881
882
883
884
885
886
887
888
889
890
891
            >>> p = tfields.Points3D(pStart)
            >>> p.to_segment(0, 5, 1, offset=-2 * np.pi / 10)
            >>> assert np.array_equal(p[:, 1], [0, 0])

            >>> p2 = tfields.Points3D(pStart)
            >>> p2.to_segment(1, 5, 1, offset=-2 * np.pi / 10)
            >>> assert np.array_equal(np.round(p2[:, 1], 4), [1.2566] * 2)

        """
        if segment > num_segments - 1:
            raise ValueError("Segment {0} not existent.".format(segment))

892
893
894
        if coord_sys is None:
            coord_sys = self.coord_sys
        with self.tmp_transform(coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
            # map all values to first segment
            self[:, coordinate] = \
                (self[:, coordinate] - offset) % (periodicity / num_segments) + \
                offset + segment * periodicity / num_segments

    def equal(self, other,
              rtol=None, atol=None, equal_nan=False,
              return_bool=True):
        """
        Evaluate, whether the instance has the same content as other.
        Args:
            optional:
                rtol (float)
                atol (float)
                equal_nan (bool)
            see numpy.isclose
        """
912
        if issubclass(type(other), Tensors) and self.coord_sys != other.coord_sys:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
913
            other = other.copy()
914
            other.transform(self.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
        x, y = np.asarray(self), np.asarray(other)
        if rtol is None and atol is None:
            mask = (x == y)
            if equal_nan:
                both_nan = np.isnan(x) & np.isnan(y)
                mask[both_nan] = both_nan[both_nan]
        else:
            if rtol is None:
                rtol = 0.
            if atol is None:
                atol = 0.
            mask = np.isclose(x, y, rtol=rtol, atol=atol, equal_nan=equal_nan)
        if return_bool:
            return bool(np.all(mask))
        return mask

    def contains(self, other, **kwargs):
        """
        Inspired by a speed argument @
        stackoverflow.com/questions/14766194/testing-whether-a-numpy-array-contains-a-given-row
        Examples:
            >>> import tfields
            >>> p = tfields.Tensors([[1,2,3], [4,5,6], [6,7,8]])
            >>> p.contains([4,5,6])
            True

        """
        return any(self.equal(other, return_bool=False).all(1))

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
944
    def indices(self, tensor, rtol=None, atol=None):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
945
946
947
        """
        Returns:
            list of int: indices of tensor occuring
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
948
        Examples:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
949
            Rank 1 Tensors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
950
951
952
953
954
955
956
957
            >>> import tfields
            >>> p = tfields.Tensors([[1,2,3], [4,5,6], [6,7,8], [4,5,6],
            ...                      [4.1, 5, 6]])
            >>> p.indices([4,5,6])
            array([1, 3])
            >>> p.indices([4,5,6.1], rtol=1e-5, atol=1e-1)
            array([1, 3, 4])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
958
959
960
961
962
963
964
            Rank 0 Tensors
            >>> p = tfields.Tensors([2, 3, 6, 3.01])
            >>> p.indices(3)
            array([1])
            >>> p.indices(3, rtol=1e-5, atol=1e-1)
            array([1, 3])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
965
        """
966
967
        x, y = np.asarray(self), np.asarray(tensor)
        if rtol is None and atol is None:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
968
            equal_method = np.equal
969
970
        else:
            equal_method = lambda a, b: np.isclose(a, b, rtol=rtol, atol=atol)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
971
972

        # inspired by https://stackoverflow.com/questions/19228295/find-ordered-vector-in-numpy-array
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
973
974
975
976
977
978
        if self.rank == 0:
            indices = np.where(equal_method((x-y), 0))[0]
        elif self.rank == 1:
            indices = np.where(np.all(equal_method((x-y), 0), axis=1))[0]
        else:
            raise NotImplementedError()
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
979
980
        return indices

981
    def index(self, tensor, **kwargs):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
982
983
984
985
986
987
        """
        Args:
            tensor
        Returns:
            int: index of tensor occuring
        """
988
        indices = self.indices(tensor, **kwargs)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
989
990
991
992
993
994
995
        if not indices:
            return None
        if len(indices) == 1:
            return indices[0]
        raise ValueError("Multiple occurences of value {}"
                         .format(tensor))

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
996
    def moment(self, moment, weights=None):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
997
998
999
1000
        """
        Returns:
            Moments of the distribution.
        Args:
For faster browsing, not all history is shown. View entire blame