core.py 79.2 KB
Newer Older
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1
2
3
4
5
6
7
8
#!/usr/bin/env
# encoding: utf-8
"""
Author:     Daniel Boeckenhoff
Mail:       daniel.boeckenhoff@ipp.mpg.de

core of tfields library
contains numpy ndarray derived bases of the tfields package
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
9
10

Notes:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
11
    It could be worthwhile concidering `np.li.mixins.NDArrayOperatorsMixin <https://docs.scipy.org/doc/numpy-1.15.1/reference/generated/numpy.lib.mixins.NDArrayOperatorsMixin.html>`_
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
12
13
14
15
16
17
18
19
20
21
22
"""
import warnings
import os
import pathlib
from six import string_types
from contextlib import contextmanager
from collections import Counter

import numpy as np
import sympy
import scipy as sp
23
import rna
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
24
import tfields.bases
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
25
from nltk.misc.chomsky import objects
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
np.seterr(all='warn', over='raise')


def rank(tensor):
    """
    Tensor rank
    """
    return len(tensor.shape) - 1


def dim(tensor):
    """
    Manifold dimension
    """
    if rank(tensor) == 0:
        return 1
    return tensor.shape[1]


class AbstractNdarray(np.ndarray):
    """
    All tensors and subclasses should derive from AbstractNdarray.
    AbstractNdarray implements all the inheritance specifics for np.ndarray
    Whene inheriting, three attributes are of interest:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
50
51

    Attributes:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
52
53
54
55
56
57
58
59
60
61
62
63
64
        __slots__ (list of str): If you want to add attributes to
            your AbstractNdarray subclass, add the attribute name to __slots__
        __slot_defaults__ (list): if __slot_defaults__ is None, the
            defaults for the attributes in __slots__ will be None
            other values will be treaded as defaults to the corresponding
            arg at the same position in the __slots__ list.
        __slotDtype__ (list of types): for the conversion of the
            args in __slots__ to numpy arrays. None values mean no
            conversion.

    Args:
        array (array-like): input array
        **kwargs: arguments corresponding to __slots__
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
65

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
66
67
    TODO:
        equality check
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
68

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
    """
    __slots__ = []
    __slot_defaults__ = []
    __slotDtypes__ = []
    __slot_setters__ = []

    def __new__(cls, array, **kwargs):  # pragma: no cover
        raise NotImplementedError("{clsType} type must implement '__new__'"
                                  .format(clsType=type(cls)))

    def __array_finalize__(self, obj):
        if obj is None:
            return
        for attr in self._iter_slots():
            setattr(self, attr, getattr(obj, attr, None))

    def __array_wrap__(self, out_arr, context=None):
        return np.ndarray.__array_wrap__(self, out_arr, context)

    @classmethod
    def _iter_slots(cls):
        return [att for att in cls.__slots__ if att != '_cache']

    @classmethod
    def _update_slot_kwargs(cls, kwargs):
        """
        set the defaults in kwargs according to __slot_defaults__
        and convert the kwargs according to __slotDtypes__
        """
        slotDefaults = cls.__slot_defaults__ + \
            [None] * (len(cls.__slots__) - len(cls.__slot_defaults__))
        slotDtypes = cls.__slotDtypes__ + \
            [None] * (len(cls.__slots__) - len(cls.__slotDtypes__))
        for attr, default, dtype in zip(cls.__slots__, slotDefaults, slotDtypes):
            if attr == '_cache':
                continue
            if attr not in kwargs:
                kwargs[attr] = default
            if dtype is not None:
                try:
                    kwargs[attr] = np.array(kwargs[attr], dtype=dtype)
                except Exception as err:
                    raise ValueError(str(attr) + str(dtype) + str(kwargs[attr]) + str(err))

    def __setattr__(self, name, value):
        if name in self.__slots__:
            index = self.__slots__.index(name)
            try:
                setter = self.__slot_setters__[index]
            except IndexError:
                setter = None
            if setter is not None:
                value = setter(value)
        super(AbstractNdarray, self).__setattr__(name, value)

    def __reduce__(self):
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
126
127
        important for pickling (see `here <https://stackoverflow.com/questions/26598109/preserve-custom-attributes-when-pickling-subclass-of-numpy-array>`_)

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
128
129
130
131
132
133
        Examples:
            >>> from tempfile import NamedTemporaryFile
            >>> import pickle
            >>> import tfields

            Build a dummy scalar field
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
134

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
135
136
137
            >>> from tfields import Tensors, TensorFields
            >>> scalars = Tensors([0, 1, 2])
            >>> vectors = Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
138
            >>> scalar_field = TensorFields(vectors, scalars, coord_sys='cylinder')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
139
140

            Save it and restore it
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
141

142
            >>> out_file = NamedTemporaryFile(suffix='.pickle')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
143

144
            >>> pickle.dump(scalar_field,
145
146
            ...             out_file)
            >>> _ = out_file.seek(0)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
147

148
            >>> sf = pickle.load(out_file)
149
            >>> sf.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
            True
            >>> sf.fields[0][2] == 2.
            True

        """
        # Get the parent's __reduce__ tuple
        pickled_state = super(AbstractNdarray, self).__reduce__()

        # Create our own tuple to pass to __setstate__
        new_state = pickled_state[2] + tuple([getattr(self, slot) for slot in
                                              self._iter_slots()])

        # Return a tuple that replaces the parent's __setstate__ tuple with our own
        return (pickled_state[0], pickled_state[1], new_state)

    def __setstate__(self, state):
        """
167
        Counterpart to __reduce__. Important for unpickling.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
168
169
        """
        # Call the parent's __setstate__ with the other tuple elements.
170
171
        # numpy ndarray state has 5 entries
        super(AbstractNdarray, self).__setstate__(state[:5])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
172
173

        # set the __slot__ attributes
174
175
176
177
178
179
180
181
182
183
184
        valid_slot_attrs = list(self._iter_slots())
        added_slot_attrs = ['name']  # attributes that have been added later
                                     # have not been pickled with the full
                                     # information and thus need to be
                                     # excluded from the __setstate__
                                     # need to be in the same order as they have
                                     # been added to __slots__
        n_old = len(valid_slot_attrs) - len(state[5:])
        if n_old > 0:
            for latest_index in range(n_old):
                new_slot = added_slot_attrs[-latest_index]
185
                warnings.warn("Slots with names '{new_slot}' appears to have been "
186
187
188
189
190
191
192
193
194
                              "added after the creation of the reduced state. "
                              "No corresponding state found in __setstate__."
                              .format(**locals()))
                valid_slot_attrs.pop(valid_slot_attrs.index(new_slot))
                setattr(self, new_slot, None)

        for slot_index, slot in enumerate(valid_slot_attrs):
            state_index = 5 + slot_index
            setattr(self, slot, state[state_index])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
195

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
196
197
198
199
200
201
202
203
    @property
    def bulk(self):
        """
        The pure ndarray version of the actual state
            -> nothing attached
        """
        return np.array(self)

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
    @classmethod
    @contextmanager
    def _bypass_setter(cls, slot, demand_existence=False):
        """
        Temporarily remove the setter in __slot_setters__ corresponding to slot
        position in __slot__. You should know what you do, when using this.
        """
        slot_index = cls.__slots__.index(slot) if slot in cls.__slots__ else None
        if slot_index is None:
            if demand_existence:
                raise ValueError("Slot {slot} not existing".format(**locals()))
            else:
                yield
                return
        setter = cls.__slot_setters__[slot_index]
        cls.__slot_setters__[slot_index] = None
        yield
        cls.__slot_setters__[slot_index] = setter

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
223
224
225
    def copy(self, *args, **kwargs):
        """
        The standard ndarray copy does not copy slots. Correct for this.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
226

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
227
228
229
230
231
232
233
234
235
236
237
        Examples:
            >>> import tfields
            >>> m = tfields.TensorMaps([[1,2,3], [3,3,3], [0,0,0], [5,6,7]],
            ...                        maps=[tfields.TensorFields([[0, 1, 2], [1, 2, 3]],
            ...                                                   [1, 2])])
            >>> mc = m.copy()
            >>> mc is m
            False
            >>> mc.maps[0].fields[0] is m.maps[0].fields[0]
            False

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
238
239
        TODO:
            This function implementation could be more general or maybe redirect to deepcopy?
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
240
241
242
243
        """
        inst = super(AbstractNdarray, self).copy(*args, **kwargs)
        for attr in self._iter_slots():
            value = getattr(self, attr)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
244
            if hasattr(value, 'copy') and not isinstance(value, list):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
                setattr(inst, attr, value.copy(*args, **kwargs))
            elif isinstance(value, list):
                list_copy = []
                for item in value:
                    if hasattr(item, 'copy'):
                        list_copy.append(item.copy(*args, **kwargs))
                    else:
                        list_copy.append(item)
                setattr(inst, attr, list_copy)

        return inst

    def save(self, path, *args, **kwargs):
        """
        Saving a tensors object by redirecting to the correct save method depending on path
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
260

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
261
262
263
264
265
266
267
268
269
        Args:
            path (str or buffer)
            *args:
                forwarded to extension specific method
            **kwargs:
                extension (str): only needed if path is buffer
                ... remaining:forwarded to extension specific method
        """
        # get the extension
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
270
        if isinstance(path, (string_types, pathlib.Path)):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
271
            extension = pathlib.Path(path).suffix.lstrip('.')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
272
273
274
        else:
            raise ValueError("Wrong path type {0}".format(type(path)))
        path = str(path)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
275
276
277
278
279
280
281
282
283

        # get the save method
        try:
            save_method = getattr(self,
                                  '_save_{extension}'.format(**locals()))
        except:
            raise NotImplementedError("Can not find save method for extension: "
                                      "{extension}.".format(**locals()))

284
        path = rna.path.resolve(path)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
285
286
287
288
289
290
        return save_method(path, **kwargs)

    @classmethod
    def load(cls, path, *args, **kwargs):
        """
        load a file as a tensors object.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
291

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
292
293
294
295
296
297
298
299
        Args:
            path (str or buffer)
            *args:
                forwarded to extension specific method
            **kwargs:
                extension (str): only needed if path is buffer
                ... remaining:forwarded to extension specific method
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
300
        if isinstance(path, (string_types, pathlib.Path)):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
301
            extension = pathlib.Path(path).suffix.lstrip('.')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
302
            path = str(path)
303
            path = rna.path.resolve(path)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
304
305
        else:
            extension = kwargs.pop('extension', 'npz')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
306
307
308
309
310
311
312
313
314
315
316
317

        try:
            load_method = getattr(cls, '_load_{e}'.format(e=extension))
        except:
            raise NotImplementedError("Can not find load method for extension: "
                                      "{extension}.".format(**locals()))
        return load_method(path, *args, **kwargs)

    def _save_npz(self, path, **kwargs):
        """
        Args:
            path (open file or str/unicode): destination to save file to.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
318

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
319
        Examples:
320
            Build some dummies:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
321
322
            >>> import tfields
            >>> from tempfile import NamedTemporaryFile
323
            >>> out_file = NamedTemporaryFile(suffix='.npz')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
324
325
326
            >>> p = tfields.Points3D([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]],
            ...                      name='my_points')
            >>> scalars = tfields.Tensors([0, 1, 2], name=42)
327
328
329
330
331
332
333
334
335
336
            >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
            >>> maps = [tfields.TensorFields([[0, 1, 2], [0, 1, 2]], [42, 21]),
            ...         tfields.TensorFields([[1], [2]], [-42, -21])]
            >>> m = tfields.TensorMaps(vectors, scalars,
            ...                        maps=maps)

            Simply give the file name to save
            >>> p.save(out_file.name)
            >>> _ = out_file.seek(0)
            >>> p1 = tfields.Points3D.load(out_file.name)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
337
338
            >>> assert p.equal(p1)

339
340
341
342
343
344
            The fully nested structure of a TensorMaps object is reconstructed
            >>> out_file_maps = NamedTemporaryFile(suffix='.npz')
            >>> m.save(out_file_maps.name)
            >>> _ = out_file_maps.seek(0)
            >>> m1 = tfields.TensorMaps.load(out_file_maps.name)
            >>> assert m.equal(m1)
345
            >>> assert m.maps[0].dtype == m1.maps[0].dtype
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
346

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
347
348
349
350
351
            Names are preserved
            >>> assert p.name == 'my_points'
            >>> m.names
            [42]

352
        """
353
354
        content_dict = self._as_dict()
        np.savez(path, **content_dict)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
355
356
357
358
359
360
361
362

    @classmethod
    def _load_npz(cls, path, **load_kwargs):
        """
        Factory method
        Given a path to a npz file, construct the object
        """
        np_file = np.load(path, **load_kwargs)
363
364
365
366
367
368
369
        return cls._from_dict(**np_file)

    def _as_dict(self):
        """
        Recursively walk trough all __slots__ and describe all elements
        """
        d = {}
370
        d['bulk'] = self.bulk
371
372
373
374
375
376
377
378
379
380
381
        d['bulk_type'] = self.__class__.__name__
        for attr in self._iter_slots():
            value = getattr(self, attr)
            if isinstance(value, list):
                if len(value) == 0:
                    d[attr] = None
                if all([isinstance(part, AbstractNdarray) for part in value]):
                    for i, part in enumerate(value):
                        part_dict = part._as_dict()
                        for part_attr, part_value in part_dict.items():
                            d["{attr}::{i}::{part_attr}".format(**locals())] = part_value
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
382
                    continue
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
            if isinstance(value, AbstractNdarray):
                value = value._as_dict()
            d[attr] = value
        return d

    @classmethod
    def _from_dict(cls, **d):
        """
        Opposite of _as_dict
        """
        list_dict = {}
        kwargs = {}
        '''
        De-Flatten the first layer of lists
        '''
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
398
        for key in sorted(list(d)):
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
            if '::' in key:
                splits = key.split('::')
                attr, _, end = key.partition('::')
                if attr not in list_dict:
                    list_dict[attr] = {}

                index, _, end = end.partition('::')
                if not index.isdigit():
                    raise ValueError("None digit index given")
                index = int(index)
                if index not in list_dict[attr]:
                    list_dict[attr][index] = {}
                list_dict[attr][index][end] = d[key]
            else:
                kwargs[key] = d[key]

        '''
        Build the lists (recursively)
        '''
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
418
        for key in list(list_dict):
419
420
            sub_dict = list_dict[key]
            list_dict[key] = []
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
421
            for index in sorted(list(sub_dict)):
Priyanjana Sinha's avatar
Priyanjana Sinha committed
422
423
424
425
426
                bulk_type = sub_dict[index].get('bulk_type').tolist()
                if isinstance(bulk_type, bytes):
                    # asthonishingly, this is not necessary under linux. Found under nt. ???
                    bulk_type = bulk_type.decode('UTF-8')
                bulk_type = getattr(tfields, bulk_type)
427
428
                list_dict[key].append(bulk_type._from_dict(**sub_dict[index]))

429
430
431
432
433
434
435
436
437
438
439
440
441
        with cls._bypass_setter('fields'):
            '''
            Build the normal way
            '''
            bulk = kwargs.pop('bulk')
            bulk_type = kwargs.pop('bulk_type')
            obj = cls.__new__(cls, bulk, **kwargs)

            '''
            Set list attributes
            '''
            for attr, list_value in list_dict.items():
                setattr(obj, attr, list_value)
442
        return obj
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
443
444
445
446
447


class Tensors(AbstractNdarray):
    """
    Set of tensors with the same basis.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
448

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
449
450
    TODO:
        all slot args should be protected -> _base
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
451

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
452
453
    Args:
        tensors: np.ndarray or AbstractNdarray subclass
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
454

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
455
456
    Examples:
        >>> import numpy as np
457
        >>> import tfields
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
458
459

        Initialize a scalar range
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
460

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
461
462
463
464
465
        >>> scalars = tfields.Tensors([0, 1, 2])
        >>> scalars.rank == 0
        True

        Initialize vectors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
466

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
467
468
469
470
471
        >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
        >>> vectors.rank == 1
        True
        >>> vectors.dim == 3
        True
472
        >>> assert vectors.coord_sys == 'cartesian'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
473
474

        Initialize the Levi-Zivita Tensor
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
475

476
477
478
479
        >>> matrices = tfields.Tensors(
        ...                     [[[0, 0, 0], [0, 0, 1], [0, -1, 0]],
        ...                      [[0, 0, -1], [0, 0, 0], [1, 0, 0]],
        ...                      [[0, 1, 0], [-1, 0, 0], [0, 0, 0]]])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
480
481
482
483
484
485
486
487
        >>> matrices.shape == (3, 3, 3)
        True
        >>> matrices.rank == 2
        True
        >>> matrices.dim == 3
        True

        Initializing in different start coordinate system
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
488

489
490
        >>> cyl = tfields.Tensors([[5, np.arctan(4. / 3.), 42]], coord_sys='cylinder')
        >>> assert cyl.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
491
        >>> cyl.transform('cartesian')
492
        >>> assert cyl.coord_sys == 'cartesian'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
493
494
495
496
497
498
        >>> cart = cyl
        >>> assert round(cart[0, 0], 10) == 3.
        >>> assert round(cart[0, 1], 10) == 4.
        >>> assert cart[0, 2] == 42

        Initialize with copy constructor keeps the coordinate system
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
499

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
500
501
        >>> with vectors.tmp_transform('cylinder'):
        ...     vect_cyl = tfields.Tensors(vectors)
502
503
        ...     assert vect_cyl.coord_sys == vectors.coord_sys
        >>> assert vect_cyl.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
504
505

        You can demand a special dimension.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
506

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
507
508
509
510
511
512
513
514
        >>> _ = tfields.Tensors([[1, 2, 3]], dim=3)
        >>> _ = tfields.Tensors([[1, 2, 3]], dim=2)  # doctest: +ELLIPSIS
        Traceback (most recent call last):
            ...
        ValueError: Incorrect dimension: 3 given, 2 demanded.

        The dimension argument (dim) becomes necessary if you want to initialize
        an empty array
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
515

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
516
517
518
519
520
521
522
523
        >>> _ = tfields.Tensors([])  # doctest: +ELLIPSIS
        Traceback (most recent call last):
            ...
        ValueError: Empty tensors need dimension parameter 'dim'.
        >>> tfields.Tensors([], dim=7)
        Tensors([], shape=(0, 7), dtype=float64)

    """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
524
    __slots__ = ['coord_sys', 'name']
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
525
526
527
528
529
530
531
532
533
534
535
536
    __slot_defaults__ = ['cartesian']
    __slot_setters__ = [tfields.bases.get_coord_system_name]

    def __new__(cls, tensors, **kwargs):
        dtype = kwargs.pop('dtype', None)
        order = kwargs.pop('order', None)
        dim = kwargs.pop('dim', None)

        ''' copy constructor extracts the kwargs from tensors'''
        if issubclass(type(tensors), Tensors):
            if dim is not None:
                dim = tensors.dim
537
            coord_sys = kwargs.pop('coord_sys', tensors.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
538
            tensors = tensors.copy()
539
540
            tensors.transform(coord_sys)
            kwargs['coord_sys'] = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
541
            kwargs['name'] = kwargs.pop('name', tensors.name)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
542
543
544
545
            if dtype is None:
                dtype = tensors.dtype
        else:
            if dtype is None:
546
547
548
549
                if hasattr(tensors, 'dtype'):
                    dtype = tensors.dtype
                else:
                    dtype = np.float64
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578

        ''' demand iterable structure '''
        try:
            len(tensors)
        except TypeError as err:
            raise TypeError("Iterable structure necessary."
                            " Got {tensors}"
                            .format(**locals()))

        ''' process empty inputs '''
        if len(tensors) == 0:
            if issubclass(type(tensors), tfields.Tensors):
                tensors = np.empty(tensors.shape, dtype=tensors.dtype)
            elif dim is not None:
                tensors = np.empty((0, dim))
            if issubclass(type(tensors), np.ndarray):
                # np.empty
                pass
            else:
                raise ValueError("Empty tensors need dimension "
                                 "parameter 'dim'.")

        tensors = np.asarray(tensors, dtype=dtype, order=order)
        obj = tensors.view(cls)

        ''' check dimension(s) '''
        for d in obj.shape[1:]:
            if not d == obj.dim:
                raise ValueError("Dimensions are inconstistent. "
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
579
                                 "Manifold dimension is {obj.dim}. "
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
                                 "Found dimensions {found} in {obj}."
                                 .format(found=obj.shape[1:], **locals()))
        if dim is not None:
            if dim != obj.dim:
                raise ValueError("Incorrect dimension: {obj.dim} given,"
                                 " {dim} demanded."
                                 .format(**locals()))

        ''' update kwargs with defaults from slots '''
        cls._update_slot_kwargs(kwargs)

        ''' set kwargs to slots attributes '''
        for attr in kwargs:
            if attr not in cls._iter_slots():
                raise AttributeError("Keyword argument {attr} not accepted "
                                     "for class {cls}".format(**locals()))
            setattr(obj, attr, kwargs[attr])

        return obj

600
601
602
603
    def __iter__(self):
        """
        Forwarding iterations to the bulk array. Otherwise __getitem__ would
        kick in and slow down imensely.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
604

605
606
607
608
609
610
611
612
613
614
615
        Examples:
            >>> import tfields
            >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
            >>> scalar_field = tfields.TensorFields(vectors, [42, 21, 10.5], [1, 2, 3])
            >>> [(point.rank, point.dim) for point in scalar_field]
            [(0, 1), (0, 1), (0, 1)]

        """
        for index in range(len(self)):
            yield super(Tensors, self).__getitem__(index).view(Tensors)

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
616
617
618
619
620
621
622
623
624
625
626
627
    @classmethod
    def merged(cls, *objects, **kwargs):
        """
        Factory method
        Merges all tensor inputs to one tensor

        Examples:
            >>> import numpy as np
            >>> import tfields
            >>> import tfields.bases

            Use of most frequent coordinate system
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
628

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
629
            >>> vec_a = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
630
631
            >>> vec_b = tfields.Tensors([[5, 4, 1]], coord_sys=tfields.bases.cylinder)
            >>> vec_c = tfields.Tensors([[4, 2, 3]], coord_sys=tfields.bases.cylinder)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
632
            >>> merge = tfields.Tensors.merged(vec_a, vec_b, vec_c, [[2, 0, 1]])
633
            >>> assert merge.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
634
635
636
637
638
639
640
641
            >>> assert merge.equal([[0, 0, 0],
            ...                     [0, 0, 1],
            ...                     [1, -np.pi / 2, 0],
            ...                     [5, 4, 1],
            ...                     [4, 2, 3],
            ...                     [2, 0, 1]])

            Merge also shifts the maps to still refer to the same tensors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
642

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
643
644
            >>> tm_a = tfields.TensorMaps(merge, maps=[[[0, 1, 2]]])
            >>> tm_b = tm_a.copy()
645
            >>> assert tm_a.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
646
            >>> tm_merge = tfields.TensorMaps.merged(tm_a, tm_b)
647
            >>> assert tm_merge.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
648
649
650
651
652
            >>> assert tm_merge.maps[0].equal([[0, 1, 2],
            ...                               list(range(len(merge),
            ...                                          len(merge) + 3,
            ...                                          1))])
            
653
            >>> obj_list = [tfields.Tensors([[1, 2, 3]], coord_sys=tfields.bases.CYLINDER),
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
654
655
            ...             tfields.Tensors([[3] * 3]),
            ...             tfields.Tensors([[5, 1, 3]])]
656
            >>> merge2 = tfields.Tensors.merged(*obj_list, coord_sys=tfields.bases.CARTESIAN)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
657
658
            >>> assert merge2.equal([[-0.41614684, 0.90929743, 3.],
            ...                      [3, 3, 3], [5, 1, 3]], atol=1e-8)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
659

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
660
661
        """

662
663
        ''' get most frequent coord_sys or predefined coord_sys '''
        coord_sys = kwargs.get('coord_sys', None)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
664
        dimension = kwargs.get('dim', None)
665
        if coord_sys is None:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
666
667
668
            bases = []
            for t in objects:
                try:
669
                    bases.append(t.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
670
671
672
                except AttributeError:
                    pass
            if bases:
673
674
675
                # get most frequent coord_sys
                coord_sys = sorted(bases, key=Counter(bases).get, reverse=True)[0]
                kwargs['coord_sys'] = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
676
            else:
677
678
                default = cls.__slot_defaults__[cls.__slots__.index('coord_sys')]
                kwargs['coord_sys'] = default
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
679

680
        ''' transform all raw inputs to cls type with correct coord_sys. Also
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
681
682
        automatically make a copy of those instances that are of the correct
        type already.'''
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
683
        objects = [cls.__new__(cls, t, **kwargs) for t in objects]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707

        ''' check rank and dimension equality '''
        if not len(set([t.rank for t in objects])) == 1:
            raise TypeError("Tensors must have the same rank for merging.")
        if not len(set([t.dim for t in objects])) == 1:
            raise TypeError("Tensors must have the same dimension for merging.")

        ''' merge all objects '''
        remainingObjects = objects[1:] or []
        tensors = objects[0]

        for i, obj in enumerate(remainingObjects):
            tensors = np.append(tensors, obj, axis=0)

        if len(tensors) == 0 and dimension is None:
            for obj in objects:
                kwargs['dim'] = dim(obj)

        return cls.__new__(cls, tensors, **kwargs)

    @classmethod
    def grid(cls, *base_vectors, **kwargs):
        """
        Args:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
708
709
710
711
712
713
714
715
716
717
718
719
720
721
            *base_vectors (Iterable): base coordinates. The amount of base
                vectors defines the dimension

            **kwargs:
                iter_order (list): order in which the iteration will be done.
                    Frequency rises with position in list. default is [0, 1, 2]
                    iteration will be done like::
                          
                    for v0 in base_vectors[iter_order[0]]:
                        for v1 in base_vectors[iter_order[1]]:
                            for v2 in base_vectors[iter_order[2]]:
                                coords0.append(locals()['v%i' % iter_order[0]])
                                coords1.append(locals()['v%i' % iter_order[1]])
                                coords2.append(locals()['v%i' % iter_order[2]])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
722
723
724

        Examples:
            Initilaize using the mgrid notation
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
725

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
726
727
728
729
730
731
732
733
734
735
736
            >>> import tfields
            >>> mgrid = tfields.Tensors.grid((0, 1, 2j), (3, 4, 2j), (6, 7, 2j))
            >>> mgrid.equal([[0, 3, 6],
            ...              [0, 3, 7],
            ...              [0, 4, 6],
            ...              [0, 4, 7],
            ...              [1, 3, 6],
            ...              [1, 3, 7],
            ...              [1, 4, 6],
            ...              [1, 4, 7]])
            True
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
737
738
739

            Lists or arrays are accepted also.
            Furthermore, the iteration order can be changed
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
740

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
            >>> lins = tfields.Tensors.grid(np.linspace(3, 4, 2), np.linspace(0, 1, 2),
            ...                             np.linspace(6, 7, 2), iter_order=[1, 0, 2])
            >>> lins.equal([[3, 0, 6],
            ...             [3, 0, 7],
            ...             [4, 0, 6],
            ...             [4, 0, 7],
            ...             [3, 1, 6],
            ...             [3, 1, 7],
            ...             [4, 1, 6],
            ...             [4, 1, 7]])
            True
            >>> lins2 = tfields.Tensors.grid(np.linspace(0, 1, 2),
            ...                              np.linspace(3, 4, 2),
            ...                              np.linspace(6, 7, 2),
            ...                              iter_order=[2, 0, 1])
            >>> lins2.equal([[0, 3, 6],
            ...              [0, 4, 6],
            ...              [1, 3, 6],
            ...              [1, 4, 6],
            ...              [0, 3, 7],
            ...              [0, 4, 7],
            ...              [1, 3, 7],
            ...              [1, 4, 7]])
            True

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
766
767
            When given the coord_sys argument, the grid is performed in the
            given coorinate system:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
768

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
769
770
771
772
773
774
775
776
777
            >>> lins3 = tfields.Tensors.grid(np.linspace(4, 9, 2),
            ...                              np.linspace(np.pi/2, np.pi/2, 1),
            ...                              np.linspace(4, 4, 1),
            ...                              iter_order=[2, 0, 1],
            ...                              coord_sys=tfields.bases.CYLINDER)
            >>> assert lins3.coord_sys == 'cylinder'
            >>> lins3.transform('cartesian')
            >>> assert np.array_equal(lins3[:, 1], [4, 9])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
778
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
779
        cls_kwargs = {attr: kwargs.pop(attr) for attr in list(kwargs) if attr in cls.__slots__}
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
780
781
782
        inst = cls.__new__(cls,
                           tfields.lib.grid.igrid(*base_vectors, **kwargs),
                           **cls_kwargs)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
        return inst

    @property
    def rank(self):
        """
        Tensor rank
        """
        return rank(self)

    @property
    def dim(self):
        """
        Manifold dimension
        """
        return dim(self)

799
    def transform(self, coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
800
801
        """
        Args:
802
            coord_sys (str)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
803
804
805
806
807
808
809
810
811
812

        Examples:
            >>> import numpy as np
            >>> import tfields

            CARTESIAN to SPHERICAL
            >>> t = tfields.Tensors([[1, 2, 2], [1, 0, 0], [0, 0, -1], [0, 0, 1], [0, 0, 0]])
            >>> t.transform('spherical')

            r
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
813

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
814
815
816
            >>> assert t[0, 0] == 3

            phi
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
817

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
818
819
820
821
            >>> assert t[1, 1] == 0.
            >>> assert t[2, 1] == 0.

            theta is 0 at (0, 0, 1) and pi / 2 at (0, 0, -1)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
822

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
823
824
825
826
827
            >>> assert round(t[1, 2], 10) == round(0, 10)
            >>> assert t[2, 2] == -np.pi / 2
            >>> assert t[3, 2] == np.pi / 2

            theta is defined 0 for R == 0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
828

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
829
830
831
832
833
            >>> assert t[4, 0] == 0.
            >>> assert t[4, 2] == 0.


            CARTESIAN to CYLINDER
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
834

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
835
836
837
            >>> tCart = tfields.Tensors([[3, 4, 42], [1, 0, 0], [0, 1, -1], [-1, 0, 1], [0, 0, 0]])
            >>> t_cyl = tCart.copy()
            >>> t_cyl.transform('cylinder')
838
            >>> assert t_cyl.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
839
840

            R
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
841

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
842
843
844
845
846
847
            >>> assert t_cyl[0, 0] == 5
            >>> assert t_cyl[1, 0] == 1
            >>> assert t_cyl[2, 0] == 1
            >>> assert t_cyl[4, 0] == 0

            Phi
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
848
            
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
849
850
851
852
853
854
            >>> assert round(t_cyl[0, 1], 10) == round(np.arctan(4. / 3), 10)
            >>> assert t_cyl[1, 1] == 0
            >>> assert round(t_cyl[2, 1], 10) == round(np.pi / 2, 10)
            >>> assert t_cyl[1, 1] == 0

            Z
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
855
            
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
856
857
858
859
            >>> assert t_cyl[0, 2] == 42
            >>> assert t_cyl[2, 2] == -1

            >>> t_cyl.transform('cartesian')
860
            >>> assert t_cyl.coord_sys == 'cartesian'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
861
862
863
864
            >>> assert t_cyl[0, 0] == 3

        """
        #           scalars                 empty             already there
865
866
        if self.rank == 0 or self.shape[0] == 0 or self.coord_sys == coord_sys:
            self.coord_sys = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
867
868
            return

869
870
871
        tfields.bases.transform(self, self.coord_sys, coord_sys)
        # self[:] = tfields.bases.transform(self, self.coord_sys, coord_sys)
        self.coord_sys = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
872
873

    @contextmanager
874
    def tmp_transform(self, coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
875
        """
876
        Temporarily change the coord_sys to another coord_sys and change it back at exit
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
877
878
        This method is for cleaner code only.
        No speed improvements go with this.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
879

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
880
881
        Args:
            see transform
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
882

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
883
884
        Examples:
            >>> import tfields
885
            >>> p = tfields.Tensors([[1,2,3]], coord_sys=tfields.bases.SPHERICAL)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
886
            >>> with p.tmp_transform(tfields.bases.CYLINDER):
887
888
            ...     assert p.coord_sys == tfields.bases.CYLINDER
            >>> assert p.coord_sys == tfields.bases.SPHERICAL
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
889
890

        """
891
892
        baseBefore = self.coord_sys
        if baseBefore == coord_sys:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
893
894
            yield
        else:
895
            self.transform(coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
896
897
898
899
900
901
902
903

            yield

            self.transform(baseBefore)

    def mirror(self, coordinate, condition=None):
        """
        Reflect/Mirror the entries meeting <condition> at <coordinate> = 0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
904

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
905
906
        Args:
            coordinate (int): coordinate index
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
907

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
908
909
910
911
912
913
        Examples:
            >>> import tfields
            >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]])
            >>> p.mirror(1)
            >>> assert p.equal([[1, -2, 3], [4, -5,  6], [1, -2, -6]])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
914
915
            multiple coordinates can be mirrored at the same time
            i.e. a point mirrorion would be
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
916

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
917
918
919
920
921
922
            >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]])
            >>> p.mirror([0,2])
            >>> assert p.equal([[-1, 2, -3], [-4, 5, -6], [-1, 2., 6.]])

            You can give a condition as mask or as str.
            The mirroring will only be applied to the points meeting the condition.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
923

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
924
925
            >>> import sympy
            >>> x, y, z = sympy.symbols('x y z')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
926
            >>> p.mirror([0, 2], y > 3)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
927
928
929
930
931
932
933
934
935
936
            >>> p.equal([[-1, 2, -3], [4, 5, 6], [-1, 2, 6]])
            True

        """
        if condition is None:
            condition = np.array([True for i in range(len(self))])
        elif isinstance(condition, sympy.Basic):
            condition = self.evalf(condition)
        if isinstance(coordinate, list) or isinstance(coordinate, tuple):
            for c in coordinate:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
937
                self.mirror(c, condition=condition)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
938
939
940
941
942
943
        elif isinstance(coordinate, int):
            self[:, coordinate][condition] *= -1
        else:
            raise TypeError()

    def to_segment(self, segment, num_segments, coordinate,
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
944
                   periodicity=2 * np.pi, offset=0.,
945
                   coord_sys=None):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
946
947
948
949
950
        """
        For circular (close into themself after
        <periodicity>) coordinates at index <coordinate> assume
        <num_segments> segments and transform all values to
        segment number <segment>
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
951

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
952
953
954
955
956
957
        Args:
            segment (int): segment index (starting at 0)
            num_segments (int): number of segments
            coordinate (int): coordinate index
            periodicity (float): after what lenght, the coordiante repeats
            offset (float): offset in the mapping
958
            coord_sys (str or sympy.CoordinateSystem): in which coord sys the
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
959
                transformation should be done
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
960

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
961
962
963
964
965
        Examples:
            >>> import tfields
            >>> import numpy as np
            >>> pStart = tfields.Points3D([[6, 2 * np.pi, 1],
            ...                            [6, 2 * np.pi / 5 * 3, 1]],
966
            ...                           coord_sys='cylinder')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
967
968
969
970
971
972
973
974
975
976
977
978
            >>> p = tfields.Points3D(pStart)
            >>> p.to_segment(0, 5, 1, offset=-2 * np.pi / 10)
            >>> assert np.array_equal(p[:, 1], [0, 0])

            >>> p2 = tfields.Points3D(pStart)
            >>> p2.to_segment(1, 5, 1, offset=-2 * np.pi / 10)
            >>> assert np.array_equal(np.round(p2[:, 1], 4), [1.2566] * 2)

        """
        if segment > num_segments - 1:
            raise ValueError("Segment {0} not existent.".format(segment))

979
980
981
        if coord_sys is None:
            coord_sys = self.coord_sys
        with self.tmp_transform(coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
982
983
984
985
986
987
988
989
990
991
            # map all values to first segment
            self[:, coordinate] = \
                (self[:, coordinate] - offset) % (periodicity / num_segments) + \
                offset + segment * periodicity / num_segments

    def equal(self, other,
              rtol=None, atol=None, equal_nan=False,
              return_bool=True):
        """
        Evaluate, whether the instance has the same content as other.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
992

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
993
994
995
996
997
998
999
        Args:
            optional:
                rtol (float)
                atol (float)
                equal_nan (bool)
            see numpy.isclose
        """
1000
        if issubclass(type(other), Tensors) and self.coord_sys != other.coord_sys:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1001
            other = other.copy()
1002
            other.transform(self.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
        x, y = np.asarray(self), np.asarray(other)
        if rtol is None and atol is None:
            mask = (x == y)
            if equal_nan:
                both_nan = np.isnan(x) & np.isnan(y)
                mask[both_nan] = both_nan[both_nan]
        else:
            if rtol is None:
                rtol = 0.
            if atol is None:
                atol = 0.
            mask = np.isclose(x, y, rtol=rtol, atol=atol, equal_nan=equal_nan)
        if return_bool:
            return bool(np.all(mask))
        return mask

    def contains(self, other, **kwargs):
        """
        Inspired by a speed argument @
        stackoverflow.com/questions/14766194/testing-whether-a-numpy-array-contains-a-given-row
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1023

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1024
1025
1026
1027
1028
1029
1030
1031
1032
        Examples:
            >>> import tfields
            >>> p = tfields.Tensors([[1,2,3], [4,5,6], [6,7,8]])
            >>> p.contains([4,5,6])
            True

        """
        return any(self.equal(other, return_bool=False).all(1))

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1033
    def indices(self, tensor, rtol=None, atol=None):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1034
1035
1036
        """
        Returns:
            list of int: indices of tensor occuring
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1037

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1038
        Examples:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1039
            Rank 1 Tensors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1040

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1041
1042
1043
1044
1045
1046
1047
1048
            >>> import tfields
            >>> p = tfields.Tensors([[1,2,3], [4,5,6], [6,7,8], [4,5,6],
            ...                      [4.1, 5, 6]])
            >>> p.indices([4,5,6])
            array([1, 3])
            >>> p.indices([4,5,6.1], rtol=1e-5, atol=1e-1)
            array([1, 3, 4])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1049
            Rank 0 Tensors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1050

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1051
1052
1053
1054
1055
1056
            >>> p = tfields.Tensors([2, 3, 6, 3.01])
            >>> p.indices(3)
            array([1])
            >>> p.indices(3, rtol=1e-5, atol=1e-1)
            array([1, 3])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1057
        """
1058
1059
        x, y = np.asarray(self), np.asarray(tensor)
        if rtol is None and atol is None:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1060
            equal_method = np.equal
1061
1062
        else:
            equal_method = lambda a, b: np.isclose(a, b, rtol=rtol, atol=atol)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1063
1064

        # inspired by https://stackoverflow.com/questions/19228295/find-ordered-vector-in-numpy-array
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1065
1066
1067
1068
1069
1070
        if self.rank == 0:
            indices = np.where(equal_method((x-y), 0))[0]
        elif self.rank == 1:
            indices = np.where(np.all(equal_method((x-y), 0), axis=1))[0]
        else:
            raise NotImplementedError()
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1071
1072
        return indices

1073
    def index(self, tensor, **kwargs):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1074
1075
1076
        """
        Args:
            tensor
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1077

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1078
1079
1080
        Returns:
            int: index of tensor occuring
        """
1081
        indices = self.indices(tensor, **kwargs)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1082
1083
1084
1085
1086
1087
1088
        if not indices:
            return None
        if len(indices) == 1:
            return indices[0]
        raise ValueError("Multiple occurences of value {}"
                         .format(tensor))

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1089
    def moment(self, moment, weights=None):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1090
1091
1092
        """
        Returns:
            Moments of the distribution.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1093

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1094
1095
        Args:
            moment (int): n-th moment
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1096

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1097
1098
        Examples:
            >>> import tfields
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1099
            >>> import numpy as np
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1100
1101

            Skalars
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1102

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1103
            >>> t = tfields.Tensors(range(1, 6))
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1104
            >>> assert t.moment(1) == 0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1105
1106
1107
1108
            >>> assert t.moment(1, weights=[-2, -1, 20, 1, 2]) == 0.5
            >>> assert t.moment(2, weights=[0.25, 1, 17.5, 1, 0.25]) == 0.2

            Vectors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1109

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1110
            >>> t = tfields.Tensors(list(zip(range(1, 6), range(1, 6))))
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1111
1112
1113
1114
            >>> assert Tensors([0.5, 0.5]).equal(t.moment(1, weights=[-2, -1, 20, 1, 2]))
            >>> assert Tensors([1. , 0.5]).equal(
            ...     t.moment(1, weights=list(zip([-2, -1, 10, 1, 2],
            ...                                  [-2, -1, 20, 1, 2]))))
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1115

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1116
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1117
1118
1119
1120
        array = tfields.lib.stats.moment(self, moment, weights=weights)
        if self.rank == 0:  # scalar
            array = [array]
        return Tensors(array, coord_sys=self.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1121
1122
1123
1124
1125
1126

    def closest(self, other, **kwargs):
        """
        Args:
            other (Tensors): closest points to what? -> other
            **kwargs: forwarded to scipy.spatial.cKDTree.query
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1127

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1128
1129
        Returns:
            array shape(len(self)): Indices of other points that are closest to own points
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1130

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1131
1132
1133
1134
1135
1136
1137
1138
1139
        Examples:
            >>> import tfields
            >>> m = tfields.Tensors([[1,0,0], [0,1,0], [1,1,0], [0,0,1],
            ...                      [1,0,1]])
            >>> p = tfields.Tensors([[1.1,1,0], [0,0.1,1], [1,0,1.1]])
            >>> p.closest(m)
            array([2, 3, 4])

        """
1140
        with other.tmp_transform(self.coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1141
1142
1143
1144
1145
1146
1147
1148
            # balanced_tree option gives huge speedup!
            kd_tree = sp.spatial.cKDTree(other, 1000,
                                         balanced_tree=False)
            res = kd_tree.query(self, **kwargs)
            array = res[1]

        return array

1149
    def evalf(self, expression=None, coord_sys=None):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1150
1151
1152
        """
        Args:
            expression (sympy logical expression)
1153
            coord_sys (str): coord_sys to evalfuate the expression in.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1154

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1155
1156
1157
        Returns:
            np.ndarray: mask of dtype bool with lenght of number of points in self.
                 This array is True, where expression evalfuates True.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1158

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
        Examples:
            >>> import tfields
            >>> import numpy
            >>> import sympy
            >>> x, y, z = sympy.symbols('x y z')
            >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6],
            ...                      [-5, -5, -5], [1,0,-1], [0,1,-1]])
            >>> np.array_equal(p.evalf(x > 0),
            ...                [True, True, True, False, True, False])
            True
            >>> np.array_equal(p.evalf(x >= 0),
            ...                [True, True, True, False, True, True])
            True

            And combination
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1174

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1175
1176
1177
1178
1179
            >>> np.array_equal(p.evalf((x > 0) & (y < 3)),
            ...                [True, False, True, False, True, False])
            True

            Or combination
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1180

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1181
1182
1183
1184
1185
1186
            >>> np.array_equal(p.evalf((x > 0) | (y > 3)),
            ...                [True, True, True, False, True, False])
            True

        """
        coords = sympy.symbols('x y z')
1187
        with self.tmp_transform(coord_sys or self.coord_sys):
1188
            mask = tfields.evalf(np.array(self), expression, coords=coords)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1189
1190
        return mask

1191
    def cut(self, expression, coord_sys=None):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1192
1193
        """
        Default cut method for Points3D. Works on a copy.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1194

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1195
1196
1197
        Args:
            expression (sympy logical expression): logical expression which will be evalfuated.
                             use symbols x, y and z
1198
            coord_sys (str): coord_sys to evalfuate the expression in.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1199

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
        Examples:
            >>> import tfields
            >>> import sympy
            >>> x, y, z = sympy.symbols('x y z')
            >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6],
            ...                      [-5, -5, -5], [1,0,-1], [0,1,-1]])
            >>> p.cut(x > 0).equal([[1, 2, 3],
            ...                     [4, 5, 6],
            ...                     [1, 2, -6],
            ...                     [1, 0, -1]])
            True

            combinations of cuts
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1213

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1214
1215
1216
1217
1218
1219
1220
1221
1222
            >>> p.cut((x > 0) & (z < 0)).equal([[1, 2, -6], [1, 0, -1]])
            True

        Returns:
            copy of self with cut applied

        """
        if len(self) == 0:
            return self.copy()
1223
        mask = self.evalf(expression, coord_sys=coord_sys or self.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1224
1225
1226
1227
1228
1229
1230
        mask.astype(bool)
        inst = self[mask].copy()
        return inst

    def distances(self, other, **kwargs):
        """
        Args:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1231
            other(Iterable)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1232
1233
            **kwargs:
                ... is forwarded to sp.spatial.distance.cdist
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1234

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
        Examples:
            >>> import tfields
            >>> p = tfields.Tensors.grid((0, 2, 3j),
            ...                          (0, 2, 3j),
            ...                          (0, 0, 1j))
            >>> p[4,2] = 1
            >>> p.distances(p)[0,0]
            0.0
            >>> p.distances(p)[5,1]
            1.4142135623730951
            >>> p.distances([[0,1,2]])[-1][0] == 3
            True

        """
1249
        if issubclass(type(other), Tensors) and self.coord_sys != other.coord_sys:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1250
            other = other.copy()
1251
            other.transform(self.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
        return sp.spatial.distance.cdist(self, other, **kwargs)

    def min_dists(self, other=None, **kwargs):
        """
        Args:
            other(array | None): if None: closest distance to self
            **kwargs:
                memory_saving (bool): for very large array comparisons
                    default False
                ... rest is forwarded to sp.spatial.distance.cdist

        Returns:
            np.array: minimal distances of self to other

        Examples:
            >>> import tfields
            >>> import numpy as np
            >>> p = tfields.Tensors.grid((0, 2, 3),
            ...                          (0, 2, 3),
            ...                          (0, 0, 1))
            >>> p[4,2] = 1
            >>> dMin = p.min_dists()
            >>> expected = [1] * 9
            >>> expected[4] = np.sqrt(2)
            >>> np.array_equal(dMin, expected)
            True

            >>> dMin2 = p.min_dists(memory_saving=True)
            >>> bool((dMin2 == dMin).all())
            True

        """
        memory_saving = kwargs.pop('memory_saving', False)

        if other is None:
            other = self
        else:
            raise NotImplementedError("Should be easy but make shure not to remove diagonal")

        try:
            if memory_saving:
                raise MemoryError()
            d = self.distances(other, **kwargs)
            return d[d > 0].reshape(d.shape[0], - 1).min(axis=1)
        except MemoryError:
            min_dists = np.empty(self.shape[0])
1298
            for i, point in enumerate(np.array(other)):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1299
1300
1301
1302
1303
1304
1305
1306
                d = self.distances([point], **kwargs)
                min_dists[i] = d[d > 0].reshape(-1).min()
            return min_dists

    def epsilon_neighbourhood(self, epsilon):
        """
        Returns:
            indices for those sets of points that lie within epsilon around the other
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1307

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
        Examples:
            Create mesh grid with one extra point that will have 8 neighbours
            within epsilon
            >>> import tfields
            >>> p = tfields.Tensors.grid((0, 1, 2j),
            ...                          (0, 1, 2j),
            ...                          (0, 1, 2j))
            >>> p = tfields.Tensors.merged(p, [[0.5, 0.5, 0.5]])
            >>> [len(en) for en in p.epsilon_neighbourhood(0.9)]
            [2, 2, 2, 2, 2, 2, 2, 2, 9]

        """
        indices = np.arange(self.shape[0])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1321
        dists = self.distances(self)  # this takes long
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1322
        distsInEpsilon = dists <= epsilon
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1323
1324
        indices = [indices[die] for die in distsInEpsilon]  # this takes long
        return indices
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1325
1326
1327
1328

    def _weights(self, weights, rigid=True):
        """
        transformer method for weights inputs.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1329

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1330
1331
1332
1333
1334
        Args:
            weights (np.ndarray | None):
                If weights is None, use np.ones
                Otherwise just pass the weights.
            rigid (bool): demand equal weights and tensor length
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1335

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
        Returns:
            weight array
        """
        # set weights to 1.0 if weights is None
        if weights is None:
            weights = np.ones(len(self))
        if rigid:
            if not len(weights) == len(self):
                raise ValueError("Equal number of weights as tensors demanded.")
        return weights

    def cov_eig(self, weights=None):
        """
        Calculate the covariance eigenvectors with lenghts of eigenvalues
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1350

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
        Args:
            weights (np.array | int | None): index to scalars to weight with
        """
        # weights = self.getNormedWeightedAreas(weights=weights)
        weights = self._weights(weights)
        cov = np.cov(self.T,
                     ddof=0,
                     aweights=weights)
        # calculate eigenvalues and eigenvectors of covariance
        evalfs, evecs = np.linalg.eigh(cov)
        idx = evalfs.argsort()[::-1]
        evalfs = evalfs[idx]
        evecs = evecs[:, idx]
        e = np.concatenate((evecs, evalfs.reshape(1, 3)))
        return e.T.reshape(12, )

    def main_axes(self, weights=None):
        """
        Returns:
            Main Axes eigen-vectors
        """
        # weights = self.getNormedWeightedAreas(weights=weights)
        weights = self._weights(weights)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1374
        mean = np.array(self).mean(axis=0)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1375
1376
1377
1378
1379
1380
1381
1382
        relative_coords = self - mean
        cov = np.cov(relative_coords.T,
                     ddof=0,
                     aweights=weights)
        # calculate eigenvalues and eigenvectors of covariance
        evalfs, evecs = np.linalg.eigh(cov)
        return (evecs * evalfs.T).T

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1383
1384
    def plot(self, **kwargs):
        """
1385
        Forwarding to rna.plotting.plot_array
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1386
        """
1387
        artist = rna.plotting.plot_array(self, **kwargs)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1388
1389
        return artist

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1390

1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
def as_tensors_list(tensors_list):
    """
    Setter for TensorFields.fields
    Copies input
    Examples:
        >>> import tfields
        >>> import numpy as np
        >>> scalars = tfields.Tensors([0, 1, 2])
        >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
        >>> maps = [tfields.TensorFields([[0, 1, 2], [0, 1, 2]]),
        ...         tfields.TensorFields([[1], [2]], [-42, -21])]
        >>> mesh = tfields.TensorMaps(vectors, scalars,
        ...                           maps=maps)
        >>> mesh.maps[0].fields = [[42, 21]]
        >>> assert len(mesh.maps[0].fields) == 1
        >>> assert mesh.maps[0].fields[0].equal([42, 21])
    
    """
    if tensors_list is not None:
        new_list = []
        for tensors in tensors_list:
            tensors_list = Tensors(tensors)
            new_list.append(tensors_list)
        tensors_list = new_list
    return tensors_list


Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
class TensorFields(Tensors):
    """
    Discrete Tensor Field

    Args:
        tensors (array): base tensors
        *fields (array): multiple fields assigned to one base tensor. Fields
            themself are also of type tensor
        **kwargs:
            rigid (bool): demand equal field and tensor lenght
            ... : see tfields.Tensors

    Examples:
        >>> from tfields import Tensors, TensorFields
        >>> scalars = Tensors([0, 1, 2])
        >>> vectors = Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
1434
1435
        >>> scalar_field = TensorFields(vectors, scalars)
        >>> scalar_field.rank
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1436
        1
1437
        >>> scalar_field.fields[0].rank
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
        0
        >>> vectorField = TensorFields(vectors, vectors)
        >>> vectorField.fields[0].rank
        1
        >>> vectorField.fields[0].dim
        3
        >>> multiField = TensorFields(vectors, scalars, vectors)
        >>> multiField.fields[0].dim
        1
        >>> multiField.fields[1].dim
        3

        Empty initialization
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1451

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1452
1453
1454
1455
1456
        >>> empty_field = TensorFields([], dim=3)
        >>> assert empty_field.shape == (0, 3)
        >>> assert empty_field.fields == []

        Directly initializing with lists or arrays
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1457

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1458
1459
1460
1461
1462
        >>> vec_field_raw = tfields.TensorFields([[0, 1, 2], [3, 4, 5]],
        ...                                       [1, 6], [2, 7])
        >>> assert len(vec_field_raw.fields) == 2

        Copying
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1463

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1464
1465
1466
        >>> cp = TensorFields(vectorField)
        >>> assert vectorField.equal(cp)

1467
        Copying takes care of coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1468

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1469
1470
        >>> cp.transform(tfields.bases.CYLINDER)
        >>> cp_cyl = TensorFields(cp)
1471
        >>> assert cp_cyl.coord_sys == tfields.bases.CYLINDER
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1472
1473

        Copying with changing type
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1474

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1475
1476
1477
1478
1479
1480
        >>> tcp = TensorFields(vectorField, dtype=int)
        >>> assert vectorField.equal(tcp)
        >>> assert tcp.dtype == int

    Raises:
        TypeError:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1481

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1482
1483
1484