core.py 93.2 KB
Newer Older
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1
2
3
4
5
6
7
8
#!/usr/bin/env
# encoding: utf-8
"""
Author:     Daniel Boeckenhoff
Mail:       daniel.boeckenhoff@ipp.mpg.de

core of tfields library
contains numpy ndarray derived bases of the tfields package
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
9
10

Notes:
dboe's avatar
dboe committed
11
12
13
    It could be worthwhile concidering `np.li.mixins.NDArrayOperatorsMixin ...
    <https://docs.scipy.org/doc/numpy-1.15.1/reference/generated/...
    ... numpy.lib.mixins.NDArrayOperatorsMixin.html>`_
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
14
15
16
17
18
19
20
21
22
23
"""
import warnings
import pathlib
from six import string_types
from contextlib import contextmanager
from collections import Counter

import numpy as np
import sympy
import scipy as sp
24
import rna
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
25
import tfields.bases
dboe's avatar
dboe committed
26
27

np.seterr(all="warn", over="raise")
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50


def rank(tensor):
    """
    Tensor rank
    """
    return len(tensor.shape) - 1


def dim(tensor):
    """
    Manifold dimension
    """
    if rank(tensor) == 0:
        return 1
    return tensor.shape[1]


class AbstractNdarray(np.ndarray):
    """
    All tensors and subclasses should derive from AbstractNdarray.
    AbstractNdarray implements all the inheritance specifics for np.ndarray
    Whene inheriting, three attributes are of interest:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
51
52

    Attributes:
53
        __slots__ (List(str)): If you want to add attributes to
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
54
55
56
57
58
            your AbstractNdarray subclass, add the attribute name to __slots__
        __slot_defaults__ (list): if __slot_defaults__ is None, the
            defaults for the attributes in __slots__ will be None
            other values will be treaded as defaults to the corresponding
            arg at the same position in the __slots__ list.
59
        __slot_dtype__ (List(dtypes)): for the conversion of the
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
60
61
            args in __slots__ to numpy arrays. None values mean no
            conversion.
62
63
64
        __slot_setters__ (List(callable)): Because __slots__ and properties are
            mutually exclusive this is a possibility to take care of proper
            attribute handling. None will be passed for 'not set'.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
65
66
67
68

    Args:
        array (array-like): input array
        **kwargs: arguments corresponding to __slots__
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
69

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
70
71
    TODO:
        equality check
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
72

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
73
    """
dboe's avatar
dboe committed
74

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
75
76
    __slots__ = []
    __slot_defaults__ = []
77
    __slot_dtypes__ = []
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
78
79
80
    __slot_setters__ = []

    def __new__(cls, array, **kwargs):  # pragma: no cover
dboe's avatar
dboe committed
81
82
83
        raise NotImplementedError(
            "{clsType} type must implement '__new__'".format(clsType=type(cls))
        )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
84
85
86
87
88
89
90
91
92
93
94
95

    def __array_finalize__(self, obj):
        if obj is None:
            return
        for attr in self._iter_slots():
            setattr(self, attr, getattr(obj, attr, None))

    def __array_wrap__(self, out_arr, context=None):
        return np.ndarray.__array_wrap__(self, out_arr, context)

    @classmethod
    def _iter_slots(cls):
dboe's avatar
dboe committed
96
        return [att for att in cls.__slots__ if att != "_cache"]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
97
98
99
100
101

    @classmethod
    def _update_slot_kwargs(cls, kwargs):
        """
        set the defaults in kwargs according to __slot_defaults__
102
        and convert the kwargs according to __slot_dtypes__
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
103
        """
104
        slot_defaults = cls.__slot_defaults__ + [None] * (
dboe's avatar
dboe committed
105
106
            len(cls.__slots__) - len(cls.__slot_defaults__)
        )
107
108
        slot_dtypes = cls.__slot_dtypes__ + [None] * (
            len(cls.__slots__) - len(cls.__slot_dtypes__)
dboe's avatar
dboe committed
109
110
        )
        for attr, default, dtype in zip(
111
            cls.__slots__, slot_defaults, slot_dtypes
dboe's avatar
dboe committed
112
113
        ):
            if attr == "_cache":
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
114
115
116
117
118
119
120
                continue
            if attr not in kwargs:
                kwargs[attr] = default
            if dtype is not None:
                try:
                    kwargs[attr] = np.array(kwargs[attr], dtype=dtype)
                except Exception as err:
dboe's avatar
dboe committed
121
122
123
                    raise ValueError(
                        str(attr) + str(dtype) + str(kwargs[attr]) + str(err)
                    )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137

    def __setattr__(self, name, value):
        if name in self.__slots__:
            index = self.__slots__.index(name)
            try:
                setter = self.__slot_setters__[index]
            except IndexError:
                setter = None
            if setter is not None:
                value = setter(value)
        super(AbstractNdarray, self).__setattr__(name, value)

    def __reduce__(self):
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
138
139
        important for pickling (see `here <https://stackoverflow.com/questions/26598109/preserve-custom-attributes-when-pickling-subclass-of-numpy-array>`_)

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
140
141
142
143
144
145
        Examples:
            >>> from tempfile import NamedTemporaryFile
            >>> import pickle
            >>> import tfields

            Build a dummy scalar field
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
146

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
147
148
149
            >>> from tfields import Tensors, TensorFields
            >>> scalars = Tensors([0, 1, 2])
            >>> vectors = Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
dboe's avatar
dboe committed
150
151
152
            >>> scalar_field = TensorFields(vectors,
            ...                             scalars,
            ...                             coord_sys='cylinder')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
153
154

            Save it and restore it
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
155

156
            >>> out_file = NamedTemporaryFile(suffix='.pickle')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
157

158
            >>> pickle.dump(scalar_field,
159
160
            ...             out_file)
            >>> _ = out_file.seek(0)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
161

162
            >>> sf = pickle.load(out_file)
163
            >>> sf.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
164
165
166
167
168
169
170
171
172
            True
            >>> sf.fields[0][2] == 2.
            True

        """
        # Get the parent's __reduce__ tuple
        pickled_state = super(AbstractNdarray, self).__reduce__()

        # Create our own tuple to pass to __setstate__
dboe's avatar
dboe committed
173
174
175
        new_state = pickled_state[2] + tuple(
            [getattr(self, slot) for slot in self._iter_slots()]
        )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
176

dboe's avatar
dboe committed
177
178
        # Return a tuple that replaces the parent's __setstate__
        # tuple with our own
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
179
180
181
182
        return (pickled_state[0], pickled_state[1], new_state)

    def __setstate__(self, state):
        """
183
        Counterpart to __reduce__. Important for unpickling.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
184
185
        """
        # Call the parent's __setstate__ with the other tuple elements.
dboe's avatar
dboe committed
186
187
188
        super(AbstractNdarray, self).__setstate__(
            state[0 : -len(self._iter_slots())]
        )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
189
190

        # set the __slot__ attributes
191
192
193
194
195
196
197
198
199
200
201
        valid_slot_attrs = list(self._iter_slots())
        added_slot_attrs = ['name']  # attributes that have been added later
                                     # have not been pickled with the full
                                     # information and thus need to be
                                     # excluded from the __setstate__
                                     # need to be in the same order as they have
                                     # been added to __slots__
        n_old = len(valid_slot_attrs) - len(state[5:])
        if n_old > 0:
            for latest_index in range(n_old):
                new_slot = added_slot_attrs[-latest_index]
202
                warnings.warn("Slots with names '{new_slot}' appears to have been "
203
204
205
206
207
208
209
210
211
                              "added after the creation of the reduced state. "
                              "No corresponding state found in __setstate__."
                              .format(**locals()))
                valid_slot_attrs.pop(valid_slot_attrs.index(new_slot))
                setattr(self, new_slot, None)

        for slot_index, slot in enumerate(valid_slot_attrs):
            state_index = 5 + slot_index
            setattr(self, slot, state[state_index])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
212

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
213
214
215
216
217
218
219
220
    @property
    def bulk(self):
        """
        The pure ndarray version of the actual state
            -> nothing attached
        """
        return np.array(self)

221
222
    @classmethod
    @contextmanager
dboe's avatar
dboe committed
223
224
225
    def _bypass_setters(cls, *slots,
                        empty_means_all=True,
                        demand_existence=False):
226
227
228
        """
        Temporarily remove the setter in __slot_setters__ corresponding to slot
        position in __slot__. You should know what you do, when using this.
229
230
231
232
233

        Args:
            *slots (str): attribute names in __slots__
            empty_means_all (bool): defines behaviour when slots is empty.
                When True: if slots is empty mute all slots in __slots__
dboe's avatar
dboe committed
234
235
            demand_existence (bool): if false do not check the existence of the
                slot in __slots__ - do nothing for that slot. Handle with care!
236
237
238
239
240
241
        """
        if not slots and empty_means_all:
            slots = cls.__slots__
        slot_indices = []
        setters = []
        for slot in slots:
dboe's avatar
dboe committed
242
243
244
245
246
247
248
249
            slot_index = cls.__slots__.index(slot)\
                if slot in cls.__slots__ else None
            if slot_index is None:
                # slot not in cls.__slots__.
                if demand_existence:
                    raise ValueError(
                        "Slot {slot} not existing".format(**locals()))
                continue
250
251
252
253
254
255
256
            if len(cls.__slot_setters__) < slot_index + 1:
                # no setter to be found
                continue
            slot_indices.append(slot_index)
            setter = cls.__slot_setters__[slot_index]
            setters.append(setter)
            cls.__slot_setters__[slot_index] = None
257
        yield
258
259
        for slot_index, setter in zip(slot_indices, setters):
            cls.__slot_setters__[slot_index] = setter
260

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
261
262
263
    def copy(self, *args, **kwargs):
        """
        The standard ndarray copy does not copy slots. Correct for this.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
264

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
265
266
        Examples:
            >>> import tfields
dboe's avatar
dboe committed
267
268
269
270
            >>> m = tfields.TensorMaps(
            ...     [[1,2,3], [3,3,3], [0,0,0], [5,6,7]],
            ...     maps=[tfields.TensorFields([[0, 1, 2], [1, 2, 3]],
            ...                                 [1, 2])])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
271
272
273
274
275
276
            >>> mc = m.copy()
            >>> mc is m
            False
            >>> mc.maps[0].fields[0] is m.maps[0].fields[0]
            False

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
277
        TODO:
dboe's avatar
dboe committed
278
279
            This function implementation could be more general or maybe
            redirect to deepcopy?
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
280
281
282
283
        """
        inst = super(AbstractNdarray, self).copy(*args, **kwargs)
        for attr in self._iter_slots():
            value = getattr(self, attr)
dboe's avatar
dboe committed
284
            if hasattr(value, "copy") and not isinstance(value, list):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
285
286
287
288
                setattr(inst, attr, value.copy(*args, **kwargs))
            elif isinstance(value, list):
                list_copy = []
                for item in value:
dboe's avatar
dboe committed
289
                    if hasattr(item, "copy"):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
290
291
292
293
294
295
296
297
298
299
                        list_copy.append(item.copy(*args, **kwargs))
                    else:
                        list_copy.append(item)
                setattr(inst, attr, list_copy)

        return inst

    def save(self, path, *args, **kwargs):
        """
        Saving a tensors object by redirecting to the correct save method depending on path
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
300

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
301
302
303
304
305
306
307
308
309
        Args:
            path (str or buffer)
            *args:
                forwarded to extension specific method
            **kwargs:
                extension (str): only needed if path is buffer
                ... remaining:forwarded to extension specific method
        """
        # get the extension
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
310
        if isinstance(path, (string_types, pathlib.Path)):
dboe's avatar
dboe committed
311
            extension = pathlib.Path(path).suffix.lstrip(".")
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
312
313
314
        else:
            raise ValueError("Wrong path type {0}".format(type(path)))
        path = str(path)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
315
316
317

        # get the save method
        try:
dboe's avatar
dboe committed
318
            save_method = getattr(self, "_save_{extension}".format(**locals()))
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
319
        except:
dboe's avatar
dboe committed
320
321
322
323
            raise NotImplementedError(
                "Can not find save method for extension: "
                "{extension}.".format(**locals())
            )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
324

325
        path = rna.path.resolve(path)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
326
327
328
329
330
331
        return save_method(path, **kwargs)

    @classmethod
    def load(cls, path, *args, **kwargs):
        """
        load a file as a tensors object.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
332

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
333
334
335
336
337
338
339
340
        Args:
            path (str or buffer)
            *args:
                forwarded to extension specific method
            **kwargs:
                extension (str): only needed if path is buffer
                ... remaining:forwarded to extension specific method
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
341
        if isinstance(path, (string_types, pathlib.Path)):
dboe's avatar
dboe committed
342
            extension = pathlib.Path(path).suffix.lstrip(".")
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
343
            path = str(path)
344
            path = rna.path.resolve(path)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
345
        else:
dboe's avatar
dboe committed
346
            extension = kwargs.pop("extension", "npz")
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
347
348

        try:
dboe's avatar
dboe committed
349
            load_method = getattr(cls, "_load_{e}".format(e=extension))
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
350
        except:
dboe's avatar
dboe committed
351
352
353
354
            raise NotImplementedError(
                "Can not find load method for extension: "
                "{extension}.".format(**locals())
            )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
355
356
357
358
359
360
        return load_method(path, *args, **kwargs)

    def _save_npz(self, path, **kwargs):
        """
        Args:
            path (open file or str/unicode): destination to save file to.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
361

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
362
        Examples:
363
            Build some dummies:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
364
365
            >>> import tfields
            >>> from tempfile import NamedTemporaryFile
366
            >>> out_file = NamedTemporaryFile(suffix='.npz')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
367
368
369
            >>> p = tfields.Points3D([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]],
            ...                      name='my_points')
            >>> scalars = tfields.Tensors([0, 1, 2], name=42)
370
371
372
373
374
375
376
377
            >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
            >>> maps = [tfields.TensorFields([[0, 1, 2], [0, 1, 2]], [42, 21]),
            ...         tfields.TensorFields([[1], [2]], [-42, -21])]
            >>> m = tfields.TensorMaps(vectors, scalars,
            ...                        maps=maps)

            Simply give the file name to save
            >>> p.save(out_file.name)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
378
            >>> _ = out_file.seek(0)  # this is only necessary in the test
379
            >>> p1 = tfields.Points3D.load(out_file.name)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
380
            >>> assert p.equal(p1)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
381
            >>> assert p.coord_sys == p1.coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
382

383
384
385
386
            The fully nested structure of a TensorMaps object is reconstructed
            >>> out_file_maps = NamedTemporaryFile(suffix='.npz')
            >>> m.save(out_file_maps.name)
            >>> _ = out_file_maps.seek(0)
dboe's avatar
dboe committed
387
388
            >>> m1 = tfields.TensorMaps.load(out_file_maps.name,
            ...                              allow_pickle=True)
389
            >>> assert m.equal(m1)
390
            >>> assert m.maps[0].dtype == m1.maps[0].dtype
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
391

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
392
393
394
395
396
            Names are preserved
            >>> assert p.name == 'my_points'
            >>> m.names
            [42]

397
        """
398
399
        content_dict = self._as_dict()
        np.savez(path, **content_dict)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
400
401
402
403
404
405
406

    @classmethod
    def _load_npz(cls, path, **load_kwargs):
        """
        Factory method
        Given a path to a npz file, construct the object
        """
dboe's avatar
dboe committed
407
408
409
        # TODO: think about allow_pickle, wheter it really should be True or
        # wheter we could avoid pickling (potential security issue)
        load_kwargs.setdefault('allow_pickle', True)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
410
        np_file = np.load(path, **load_kwargs)
411
412
413
414
415
416
417
        return cls._from_dict(**np_file)

    def _as_dict(self):
        """
        Recursively walk trough all __slots__ and describe all elements
        """
        d = {}
dboe's avatar
dboe committed
418
419
        d["bulk"] = self.bulk
        d["bulk_type"] = self.__class__.__name__
420
421
422
423
424
425
426
427
428
        for attr in self._iter_slots():
            value = getattr(self, attr)
            if isinstance(value, list):
                if len(value) == 0:
                    d[attr] = None
                if all([isinstance(part, AbstractNdarray) for part in value]):
                    for i, part in enumerate(value):
                        part_dict = part._as_dict()
                        for part_attr, part_value in part_dict.items():
dboe's avatar
dboe committed
429
430
431
                            d[
                                "{attr}::{i}::{part_attr}".format(**locals())
                            ] = part_value
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
432
                    continue
433
            elif isinstance(value, AbstractNdarray):
434
435
436
437
438
439
440
441
442
443
444
                value = value._as_dict()
            d[attr] = value
        return d

    @classmethod
    def _from_dict(cls, **d):
        """
        Opposite of _as_dict
        """
        list_dict = {}
        kwargs = {}
dboe's avatar
dboe committed
445
        """
446
        De-Flatten the first layer of lists
dboe's avatar
dboe committed
447
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
448
        for key in sorted(list(d)):
dboe's avatar
dboe committed
449
450
451
            if "::" in key:
                splits = key.split("::")
                attr, _, end = key.partition("::")
452
453
454
                if attr not in list_dict:
                    list_dict[attr] = {}

dboe's avatar
dboe committed
455
                index, _, end = end.partition("::")
456
457
458
459
460
461
462
463
464
                if not index.isdigit():
                    raise ValueError("None digit index given")
                index = int(index)
                if index not in list_dict[attr]:
                    list_dict[attr][index] = {}
                list_dict[attr][index][end] = d[key]
            else:
                kwargs[key] = d[key]

dboe's avatar
dboe committed
465
        """
466
        Build the lists (recursively)
dboe's avatar
dboe committed
467
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
468
        for key in list(list_dict):
469
470
            sub_dict = list_dict[key]
            list_dict[key] = []
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
471
            for index in sorted(list(sub_dict)):
dboe's avatar
dboe committed
472
473
                bulk_type = sub_dict[index].get("bulk_type")
                # bulk_type = bulk_type.tolist() was necessary before. no clue
Priyanjana Sinha's avatar
Priyanjana Sinha committed
474
                if isinstance(bulk_type, bytes):
475
476
                    # asthonishingly, this is not necessary under linux.
                    # Found under nt. ???
dboe's avatar
dboe committed
477
                    bulk_type = bulk_type.decode("UTF-8")
Priyanjana Sinha's avatar
Priyanjana Sinha committed
478
                bulk_type = getattr(tfields, bulk_type)
479
480
                list_dict[key].append(bulk_type._from_dict(**sub_dict[index]))

dboe's avatar
dboe committed
481
        with cls._bypass_setters('fields', demand_existence=False):
482
483
484
485
486
            '''
            Build the normal way
            '''
            bulk = kwargs.pop('bulk')
            bulk_type = kwargs.pop('bulk_type')
dboe's avatar
dboe committed
487
488
            print("-"*100)
            print(bulk, bulk_type, kwargs)
489
490
491
492
493
494
495
            obj = cls.__new__(cls, bulk, **kwargs)

            '''
            Set list attributes
            '''
            for attr, list_value in list_dict.items():
                setattr(obj, attr, list_value)
496
        return obj
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
497
498
499
500
501


class Tensors(AbstractNdarray):
    """
    Set of tensors with the same basis.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
502

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
503
504
    TODO:
        all slot args should be protected -> _base
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
505

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
506
507
    Args:
        tensors: np.ndarray or AbstractNdarray subclass
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
508
509
        **kwargs:
            name: optional - custom name, can be anything
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
510

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
511
512
    Examples:
        >>> import numpy as np
513
        >>> import tfields
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
514
515

        Initialize a scalar range
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
516

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
517
518
519
520
521
        >>> scalars = tfields.Tensors([0, 1, 2])
        >>> scalars.rank == 0
        True

        Initialize vectors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
522

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
523
524
525
526
527
        >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
        >>> vectors.rank == 1
        True
        >>> vectors.dim == 3
        True
528
        >>> assert vectors.coord_sys == 'cartesian'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
529
530

        Initialize the Levi-Zivita Tensor
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
531

532
533
534
535
        >>> matrices = tfields.Tensors(
        ...                     [[[0, 0, 0], [0, 0, 1], [0, -1, 0]],
        ...                      [[0, 0, -1], [0, 0, 0], [1, 0, 0]],
        ...                      [[0, 1, 0], [-1, 0, 0], [0, 0, 0]]])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
536
537
538
539
540
541
542
543
        >>> matrices.shape == (3, 3, 3)
        True
        >>> matrices.rank == 2
        True
        >>> matrices.dim == 3
        True

        Initializing in different start coordinate system
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
544

545
546
        >>> cyl = tfields.Tensors([[5, np.arctan(4. / 3.), 42]], coord_sys='cylinder')
        >>> assert cyl.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
547
        >>> cyl.transform('cartesian')
548
        >>> assert cyl.coord_sys == 'cartesian'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
549
550
551
552
553
554
        >>> cart = cyl
        >>> assert round(cart[0, 0], 10) == 3.
        >>> assert round(cart[0, 1], 10) == 4.
        >>> assert cart[0, 2] == 42

        Initialize with copy constructor keeps the coordinate system
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
555

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
556
557
        >>> with vectors.tmp_transform('cylinder'):
        ...     vect_cyl = tfields.Tensors(vectors)
558
559
        ...     assert vect_cyl.coord_sys == vectors.coord_sys
        >>> assert vect_cyl.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
560
561

        You can demand a special dimension.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
562

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
563
564
565
566
567
568
569
570
        >>> _ = tfields.Tensors([[1, 2, 3]], dim=3)
        >>> _ = tfields.Tensors([[1, 2, 3]], dim=2)  # doctest: +ELLIPSIS
        Traceback (most recent call last):
            ...
        ValueError: Incorrect dimension: 3 given, 2 demanded.

        The dimension argument (dim) becomes necessary if you want to initialize
        an empty array
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
571

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
572
573
574
575
576
577
578
579
        >>> _ = tfields.Tensors([])  # doctest: +ELLIPSIS
        Traceback (most recent call last):
            ...
        ValueError: Empty tensors need dimension parameter 'dim'.
        >>> tfields.Tensors([], dim=7)
        Tensors([], shape=(0, 7), dtype=float64)

    """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
580
    __slots__ = ['coord_sys', 'name']
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
581
582
583
584
    __slot_defaults__ = ['cartesian']
    __slot_setters__ = [tfields.bases.get_coord_system_name]

    def __new__(cls, tensors, **kwargs):
dboe's avatar
dboe committed
585
586
587
        dtype = kwargs.pop("dtype", None)
        order = kwargs.pop("order", None)
        dim = kwargs.pop("dim", None)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
588

dboe's avatar
dboe committed
589
        """ copy constructor extracts the kwargs from tensors"""
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
590
591
592
        if issubclass(type(tensors), Tensors):
            if dim is not None:
                dim = tensors.dim
dboe's avatar
dboe committed
593
            coord_sys = kwargs.pop("coord_sys", tensors.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
594
            tensors = tensors.copy()
595
596
            tensors.transform(coord_sys)
            kwargs['coord_sys'] = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
597
            kwargs['name'] = kwargs.pop('name', tensors.name)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
598
599
600
601
            if dtype is None:
                dtype = tensors.dtype
        else:
            if dtype is None:
dboe's avatar
dboe committed
602
                if hasattr(tensors, "dtype"):
603
604
605
                    dtype = tensors.dtype
                else:
                    dtype = np.float64
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
606

dboe's avatar
dboe committed
607
        """ demand iterable structure """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
608
609
610
        try:
            len(tensors)
        except TypeError as err:
dboe's avatar
dboe committed
611
612
613
614
            raise TypeError(
                "Iterable structure necessary."
                " Got {tensors}".format(**locals())
            )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
615

dboe's avatar
dboe committed
616
        """ process empty inputs """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
617
618
619
620
621
622
623
624
625
        if len(tensors) == 0:
            if issubclass(type(tensors), tfields.Tensors):
                tensors = np.empty(tensors.shape, dtype=tensors.dtype)
            elif dim is not None:
                tensors = np.empty((0, dim))
            if issubclass(type(tensors), np.ndarray):
                # np.empty
                pass
            else:
dboe's avatar
dboe committed
626
627
628
                raise ValueError(
                    "Empty tensors need dimension " "parameter 'dim'."
                )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
629
630
631
632

        tensors = np.asarray(tensors, dtype=dtype, order=order)
        obj = tensors.view(cls)

dboe's avatar
dboe committed
633
        """ check dimension(s) """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
634
635
        for d in obj.shape[1:]:
            if not d == obj.dim:
dboe's avatar
dboe committed
636
637
638
639
640
641
642
                raise ValueError(
                    "Dimensions are inconstistent. "
                    "Manifold dimension is {obj.dim}. "
                    "Found dimensions {found} in {obj}.".format(
                        found=obj.shape[1:], **locals()
                    )
                )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
643
644
        if dim is not None:
            if dim != obj.dim:
dboe's avatar
dboe committed
645
646
647
648
                raise ValueError(
                    "Incorrect dimension: {obj.dim} given,"
                    " {dim} demanded.".format(**locals())
                )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
649

dboe's avatar
dboe committed
650
        """ update kwargs with defaults from slots """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
651
652
        cls._update_slot_kwargs(kwargs)

dboe's avatar
dboe committed
653
        """ set kwargs to slots attributes """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
654
655
        for attr in kwargs:
            if attr not in cls._iter_slots():
dboe's avatar
dboe committed
656
657
658
659
                raise AttributeError(
                    "Keyword argument {attr} not accepted "
                    "for class {cls}".format(**locals())
                )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
660
661
662
663
            setattr(obj, attr, kwargs[attr])

        return obj

664
665
666
667
    def __iter__(self):
        """
        Forwarding iterations to the bulk array. Otherwise __getitem__ would
        kick in and slow down imensely.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
668

669
670
671
672
673
674
675
676
677
678
679
        Examples:
            >>> import tfields
            >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
            >>> scalar_field = tfields.TensorFields(vectors, [42, 21, 10.5], [1, 2, 3])
            >>> [(point.rank, point.dim) for point in scalar_field]
            [(0, 1), (0, 1), (0, 1)]

        """
        for index in range(len(self)):
            yield super(Tensors, self).__getitem__(index).view(Tensors)

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
680
681
682
683
684
685
    @classmethod
    def merged(cls, *objects, **kwargs):
        """
        Factory method
        Merges all tensor inputs to one tensor

686
687
688
689
690
691
        Args:
            **kwargs: passed to cls
            dim (int):
            return_templates (bool): return the templates which can be used
                together with cut to retrieve the original objects

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
692
693
694
695
696
        Examples:
            >>> import numpy as np
            >>> import tfields
            >>> import tfields.bases

697
698
            The new object with turn out in the most frequent coordinate
            system if not specified explicitly
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
699

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
700
            >>> vec_a = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
701
702
            >>> vec_b = tfields.Tensors([[5, 4, 1]], coord_sys=tfields.bases.cylinder)
            >>> vec_c = tfields.Tensors([[4, 2, 3]], coord_sys=tfields.bases.cylinder)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
703
            >>> merge = tfields.Tensors.merged(vec_a, vec_b, vec_c, [[2, 0, 1]])
704
            >>> assert merge.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
705
706
707
708
709
710
711
712
            >>> assert merge.equal([[0, 0, 0],
            ...                     [0, 0, 1],
            ...                     [1, -np.pi / 2, 0],
            ...                     [5, 4, 1],
            ...                     [4, 2, 3],
            ...                     [2, 0, 1]])

            Merge also shifts the maps to still refer to the same tensors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
713

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
714
715
            >>> tm_a = tfields.TensorMaps(merge, maps=[[[0, 1, 2]]])
            >>> tm_b = tm_a.copy()
716
            >>> assert tm_a.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
717
            >>> tm_merge = tfields.TensorMaps.merged(tm_a, tm_b)
718
            >>> assert tm_merge.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
719
720
721
722
            >>> assert tm_merge.maps[0].equal([[0, 1, 2],
            ...                               list(range(len(merge),
            ...                                          len(merge) + 3,
            ...                                          1))])
dboe's avatar
dboe committed
723

724
725
            >>> obj_list = [tfields.Tensors([[1, 2, 3]],
            ...             coord_sys=tfields.bases.CYLINDER),
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
726
727
            ...             tfields.Tensors([[3] * 3]),
            ...             tfields.Tensors([[5, 1, 3]])]
728
729
            >>> merge2 = tfields.Tensors.merged(
            ...     *obj_list, coord_sys=tfields.bases.CARTESIAN)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
730
731
            >>> assert merge2.equal([[-0.41614684, 0.90929743, 3.],
            ...                      [3, 3, 3], [5, 1, 3]], atol=1e-8)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
732

733
734
735
736
737
738
739
740
741
            The return_templates argument allows to retrieve a template which
            can be used with the cut method.

            >>> merge, templates = tfields.Tensors.merged(
            ...     vec_a, vec_b, vec_c, return_templates=True)
            >>> assert merge.cut(templates[0]).equal(vec_a)
            >>> assert merge.cut(templates[1]).equal(vec_b)
            >>> assert merge.cut(templates[2]).equal(vec_c)

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
742
743
        """

dboe's avatar
dboe committed
744
745
        """ get most frequent coord_sys or predefined coord_sys """
        coord_sys = kwargs.get("coord_sys", None)
746
        return_templates = kwargs.pop("return_templates", False)
747
        if coord_sys is None:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
748
749
750
            bases = []
            for t in objects:
                try:
751
                    bases.append(t.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
752
753
754
                except AttributeError:
                    pass
            if bases:
755
                # get most frequent coord_sys
dboe's avatar
dboe committed
756
757
758
759
                coord_sys = sorted(bases, key=Counter(bases).get, reverse=True)[
                    0
                ]
                kwargs["coord_sys"] = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
760
            else:
dboe's avatar
dboe committed
761
762
763
764
                default = cls.__slot_defaults__[
                    cls.__slots__.index("coord_sys")
                ]
                kwargs["coord_sys"] = default
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
765

dboe's avatar
dboe committed
766
        """ transform all raw inputs to cls type with correct coord_sys. Also
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
767
        automatically make a copy of those instances that are of the correct
dboe's avatar
dboe committed
768
        type already."""
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
769
        objects = [cls.__new__(cls, t, **kwargs) for t in objects]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
770

dboe's avatar
dboe committed
771
        """ check rank and dimension equality """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
772
773
774
775
776
        if not len(set([t.rank for t in objects])) == 1:
            raise TypeError("Tensors must have the same rank for merging.")
        if not len(set([t.dim for t in objects])) == 1:
            raise TypeError("Tensors must have the same dimension for merging.")

dboe's avatar
dboe committed
777
        """ merge all objects """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
778
779
780
781
782
783
        remainingObjects = objects[1:] or []
        tensors = objects[0]

        for i, obj in enumerate(remainingObjects):
            tensors = np.append(tensors, obj, axis=0)

dboe's avatar
dboe committed
784
        if len(tensors) == 0 and 'dim' not in kwargs:
785
786
            # if you can not determine the tensor dimension, search for the
            # first object with some entries
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
787
            for obj in objects:
788
789
790
                if len(obj) != 0:
                    kwargs['dim'] = dim(obj)
                    break
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
791

792
793
794
795
796
797
798
799
800
801
802
803
        if not return_templates:
            return cls.__new__(cls, tensors, **kwargs)
        else:
            tensor_lengths = [len(o) for o in objects]
            cum_tensor_lengths = [sum(tensor_lengths[:i])
                                  for i in range(len(objects))]
            templates = [
                tfields.TensorFields(
                    obj,
                    np.arange(tensor_lengths[i]) + cum_tensor_lengths[i])
                for i, obj in enumerate(objects)]
            return cls.__new__(cls, tensors, **kwargs), templates
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
804
805
806
807
808

    @classmethod
    def grid(cls, *base_vectors, **kwargs):
        """
        Args:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
809
810
811
812
813
814
815
            *base_vectors (Iterable): base coordinates. The amount of base
                vectors defines the dimension

            **kwargs:
                iter_order (list): order in which the iteration will be done.
                    Frequency rises with position in list. default is [0, 1, 2]
                    iteration will be done like::
dboe's avatar
dboe committed
816

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
817
818
819
820
821
822
                    for v0 in base_vectors[iter_order[0]]:
                        for v1 in base_vectors[iter_order[1]]:
                            for v2 in base_vectors[iter_order[2]]:
                                coords0.append(locals()['v%i' % iter_order[0]])
                                coords1.append(locals()['v%i' % iter_order[1]])
                                coords2.append(locals()['v%i' % iter_order[2]])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
823
824
825

        Examples:
            Initilaize using the mgrid notation
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
826

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
827
828
829
830
831
832
833
834
835
836
837
            >>> import tfields
            >>> mgrid = tfields.Tensors.grid((0, 1, 2j), (3, 4, 2j), (6, 7, 2j))
            >>> mgrid.equal([[0, 3, 6],
            ...              [0, 3, 7],
            ...              [0, 4, 6],
            ...              [0, 4, 7],
            ...              [1, 3, 6],
            ...              [1, 3, 7],
            ...              [1, 4, 6],
            ...              [1, 4, 7]])
            True
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
838
839
840

            Lists or arrays are accepted also.
            Furthermore, the iteration order can be changed
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
841

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
            >>> lins = tfields.Tensors.grid(np.linspace(3, 4, 2), np.linspace(0, 1, 2),
            ...                             np.linspace(6, 7, 2), iter_order=[1, 0, 2])
            >>> lins.equal([[3, 0, 6],
            ...             [3, 0, 7],
            ...             [4, 0, 6],
            ...             [4, 0, 7],
            ...             [3, 1, 6],
            ...             [3, 1, 7],
            ...             [4, 1, 6],
            ...             [4, 1, 7]])
            True
            >>> lins2 = tfields.Tensors.grid(np.linspace(0, 1, 2),
            ...                              np.linspace(3, 4, 2),
            ...                              np.linspace(6, 7, 2),
            ...                              iter_order=[2, 0, 1])
            >>> lins2.equal([[0, 3, 6],
            ...              [0, 4, 6],
            ...              [1, 3, 6],
            ...              [1, 4, 6],
            ...              [0, 3, 7],
            ...              [0, 4, 7],
            ...              [1, 3, 7],
            ...              [1, 4, 7]])
            True

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
867
868
            When given the coord_sys argument, the grid is performed in the
            given coorinate system:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
869

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
870
871
872
873
874
875
876
877
878
            >>> lins3 = tfields.Tensors.grid(np.linspace(4, 9, 2),
            ...                              np.linspace(np.pi/2, np.pi/2, 1),
            ...                              np.linspace(4, 4, 1),
            ...                              iter_order=[2, 0, 1],
            ...                              coord_sys=tfields.bases.CYLINDER)
            >>> assert lins3.coord_sys == 'cylinder'
            >>> lins3.transform('cartesian')
            >>> assert np.array_equal(lins3[:, 1], [4, 9])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
879
        """
dboe's avatar
dboe committed
880
881
882
883
884
885
886
887
        cls_kwargs = {
            attr: kwargs.pop(attr)
            for attr in list(kwargs)
            if attr in cls.__slots__
        }
        inst = cls.__new__(
            cls, tfields.lib.grid.igrid(*base_vectors, **kwargs), **cls_kwargs
        )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
        return inst

    @property
    def rank(self):
        """
        Tensor rank
        """
        return rank(self)

    @property
    def dim(self):
        """
        Manifold dimension
        """
        return dim(self)

904
    def transform(self, coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
905
906
        """
        Args:
907
            coord_sys (str)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
908
909
910
911
912
913
914
915
916
917

        Examples:
            >>> import numpy as np
            >>> import tfields

            CARTESIAN to SPHERICAL
            >>> t = tfields.Tensors([[1, 2, 2], [1, 0, 0], [0, 0, -1], [0, 0, 1], [0, 0, 0]])
            >>> t.transform('spherical')

            r
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
918

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
919
920
921
            >>> assert t[0, 0] == 3

            phi
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
922

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
923
924
925
926
            >>> assert t[1, 1] == 0.
            >>> assert t[2, 1] == 0.

            theta is 0 at (0, 0, 1) and pi / 2 at (0, 0, -1)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
927

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
928
929
930
931
932
            >>> assert round(t[1, 2], 10) == round(0, 10)
            >>> assert t[2, 2] == -np.pi / 2
            >>> assert t[3, 2] == np.pi / 2

            theta is defined 0 for R == 0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
933

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
934
935
936
937
938
            >>> assert t[4, 0] == 0.
            >>> assert t[4, 2] == 0.


            CARTESIAN to CYLINDER
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
939

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
940
941
942
            >>> tCart = tfields.Tensors([[3, 4, 42], [1, 0, 0], [0, 1, -1], [-1, 0, 1], [0, 0, 0]])
            >>> t_cyl = tCart.copy()
            >>> t_cyl.transform('cylinder')
943
            >>> assert t_cyl.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
944
945

            R
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
946

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
947
948
949
950
951
952
            >>> assert t_cyl[0, 0] == 5
            >>> assert t_cyl[1, 0] == 1
            >>> assert t_cyl[2, 0] == 1
            >>> assert t_cyl[4, 0] == 0

            Phi
dboe's avatar
dboe committed
953

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
954
955
956
957
958
959
            >>> assert round(t_cyl[0, 1], 10) == round(np.arctan(4. / 3), 10)
            >>> assert t_cyl[1, 1] == 0
            >>> assert round(t_cyl[2, 1], 10) == round(np.pi / 2, 10)
            >>> assert t_cyl[1, 1] == 0

            Z
dboe's avatar
dboe committed
960

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
961
962
963
964
            >>> assert t_cyl[0, 2] == 42
            >>> assert t_cyl[2, 2] == -1

            >>> t_cyl.transform('cartesian')
965
            >>> assert t_cyl.coord_sys == 'cartesian'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
966
967
968
969
            >>> assert t_cyl[0, 0] == 3

        """
        #           scalars                 empty             already there
970
971
        if self.rank == 0 or self.shape[0] == 0 or self.coord_sys == coord_sys:
            self.coord_sys = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
972
973
            return

974
975
976
        tfields.bases.transform(self, self.coord_sys, coord_sys)
        # self[:] = tfields.bases.transform(self, self.coord_sys, coord_sys)
        self.coord_sys = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
977
978

    @contextmanager
979
    def tmp_transform(self, coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
980
        """
981
        Temporarily change the coord_sys to another coord_sys and change it back at exit
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
982
983
        This method is for cleaner code only.
        No speed improvements go with this.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
984

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
985
986
        Args:
            see transform
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
987

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
988
989
        Examples:
            >>> import tfields
990
            >>> p = tfields.Tensors([[1,2,3]], coord_sys=tfields.bases.SPHERICAL)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
991
            >>> with p.tmp_transform(tfields.bases.CYLINDER):
992
993
            ...     assert p.coord_sys == tfields.bases.CYLINDER
            >>> assert p.coord_sys == tfields.bases.SPHERICAL
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
994
995

        """
996
997
        baseBefore = self.coord_sys
        if baseBefore == coord_sys:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
998
999
            yield
        else:
1000
            self.transform(coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1001
1002
1003
1004
1005
1006
1007
1008

            yield

            self.transform(baseBefore)

    def mirror(self, coordinate, condition=None):
        """
        Reflect/Mirror the entries meeting <condition> at <coordinate> = 0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1009

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1010
1011
        Args:
            coordinate (int): coordinate index
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1012

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1013
1014
1015
1016
1017
1018
        Examples:
            >>> import tfields
            >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]])
            >>> p.mirror(1)
            >>> assert p.equal([[1, -2, 3], [4, -5,  6], [1, -2, -6]])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1019
1020
            multiple coordinates can be mirrored at the same time
            i.e. a point mirrorion would be
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1021

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1022
1023
1024
1025
1026
1027
            >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]])
            >>> p.mirror([0,2])
            >>> assert p.equal([[-1, 2, -3], [-4, 5, -6], [-1, 2., 6.]])

            You can give a condition as mask or as str.
            The mirroring will only be applied to the points meeting the condition.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1028

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1029
1030
            >>> import sympy
            >>> x, y, z = sympy.symbols('x y z')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1031
            >>> p.mirror([0, 2], y > 3)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
            >>> p.equal([[-1, 2, -3], [4, 5, 6], [-1, 2, 6]])
            True

        """
        if condition is None:
            condition = np.array([True for i in range(len(self))])
        elif isinstance(condition, sympy.Basic):
            condition = self.evalf(condition)
        if isinstance(coordinate, list) or isinstance(coordinate, tuple):
            for c in coordinate:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1042
                self.mirror(c, condition=condition)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1043
1044
1045
1046
1047
        elif isinstance(coordinate, int):
            self[:, coordinate][condition] *= -1
        else:
            raise TypeError()

dboe's avatar
dboe committed
1048
1049
1050
1051
1052
1053
1054
1055
1056
    def to_segment(
        self,
        segment,
        num_segments,
        coordinate,
        periodicity=2 * np.pi,
        offset=0.0,
        coord_sys=None,
    ):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1057
1058
1059
1060
1061
        """
        For circular (close into themself after
        <periodicity>) coordinates at index <coordinate> assume
        <num_segments> segments and transform all values to
        segment number <segment>
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1062

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1063
1064
1065
1066
1067
1068
        Args:
            segment (int): segment index (starting at 0)
            num_segments (int): number of segments
            coordinate (int): coordinate index
            periodicity (float): after what lenght, the coordiante repeats
            offset (float): offset in the mapping
1069
            coord_sys (str or sympy.CoordinateSystem): in which coord sys the
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1070
                transformation should be done
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1071

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1072
1073
1074
1075
1076
        Examples:
            >>> import tfields
            >>> import numpy as np
            >>> pStart = tfields.Points3D([[6, 2 * np.pi, 1],
            ...                            [6, 2 * np.pi / 5 * 3, 1]],
1077
            ...                           coord_sys='cylinder')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
            >>> p = tfields.Points3D(pStart)
            >>> p.to_segment(0, 5, 1, offset=-2 * np.pi / 10)
            >>> assert np.array_equal(p[:, 1], [0, 0])

            >>> p2 = tfields.Points3D(pStart)
            >>> p2.to_segment(1, 5, 1, offset=-2 * np.pi / 10)
            >>> assert np.array_equal(np.round(p2[:, 1], 4), [1.2566] * 2)

        """
        if segment > num_segments - 1:
            raise ValueError("Segment {0} not existent.".format(segment))

1090
1091
1092
        if coord_sys is None:
            coord_sys = self.coord_sys
        with self.tmp_transform(coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1093
            # map all values to first segment
dboe's avatar
dboe committed
1094
1095
1096
1097
1098
            self[:, coordinate] = (
                (self[:, coordinate] - offset) % (periodicity / num_segments)
                + offset
                + segment * periodicity / num_segments
            )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1099

dboe's avatar
dboe committed
1100
1101
1102
    def equal(
        self, other, rtol=None, atol=None, equal_nan=False, return_bool=True
    ):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1103
1104
        """
        Evaluate, whether the instance has the same content as other.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1105

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1106
1107
1108
1109
1110
1111
1112
        Args:
            optional:
                rtol (float)
                atol (float)
                equal_nan (bool)
            see numpy.isclose
        """
dboe's avatar
dboe committed
1113
1114
1115
1116
        if (
            issubclass(type(other), Tensors)
            and self.coord_sys != other.coord_sys
        ):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1117
            other = other.copy()
1118
            other.transform(self.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1119
1120
        x, y = np.asarray(self), np.asarray(other)
        if rtol is None and atol is None:
dboe's avatar
dboe committed
1121
            mask = x == y
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1122
1123
1124
1125
1126
            if equal_nan:
                both_nan = np.isnan(x) & np.isnan(y)
                mask[both_nan] = both_nan[both_nan]
        else:
            if rtol is None:
dboe's avatar
dboe committed
1127
                rtol = 0.0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1128
            if atol is None:
dboe's avatar
dboe committed
1129
                atol = 0.0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1130
1131
1132
1133
1134
1135
1136
1137
1138
            mask = np.isclose(x, y, rtol=rtol, atol=atol, equal_nan=equal_nan)
        if return_bool:
            return bool(np.all(mask))
        return mask

    def contains(self, other, **kwargs):
        """
        Inspired by a speed argument @
        stackoverflow.com/questions/14766194/testing-whether-a-numpy-array-contains-a-given-row
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1139

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1140
1141
1142
1143
1144
1145
1146
1147
1148
        Examples:
            >>> import tfields
            >>> p = tfields.Tensors([[1,2,3], [4,5,6], [6,7,8]])
            >>> p.contains([4,5,6])
            True

        """
        return any(self.equal(other, return_bool=False).all(1))

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1149
    def indices(self, tensor, rtol=None, atol=None):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1150
1151
1152
        """
        Returns:
            list of int: indices of tensor occuring
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1153

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1154
        Examples:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1155
            Rank 1 Tensors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1156

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1157
1158
1159
1160
1161
1162
1163
1164
            >>> import tfields
            >>> p = tfields.Tensors([[1,2,3], [4,5,6], [6,7,8], [4,5,6],
            ...                      [4.1, 5, 6]])
            >>> p.indices([4,5,6])
            array([1, 3])
            >>> p.indices([4,5,6.1], rtol=1e-5, atol=1e-1)
            array([1, 3, 4])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1165
            Rank 0 Tensors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1166

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1167
1168
1169
1170
1171
1172
            >>> p = tfields.Tensors([2, 3, 6, 3.01])
            >>> p.indices(3)
            array([1])
            >>> p.indices(3, rtol=1e-5, atol=1e-1)
            array([1, 3])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1173
        """
1174
1175
        x, y = np.asarray(self), np.asarray(tensor)
        if rtol is None and atol is None:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1176
            equal_method = np.equal
1177
1178
        else:
            equal_method = lambda a, b: np.isclose(a, b, rtol=rtol, atol=atol)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1179
1180

        # inspired by https://stackoverflow.com/questions/19228295/find-ordered-vector-in-numpy-array
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1181
        if self.rank == 0:
dboe's avatar
dboe committed
1182
            indices = np.where(equal_method((x - y), 0))[0]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1183
        elif self.rank == 1:
dboe's avatar
dboe committed
1184
            indices = np.where(np.all(equal_method((x - y), 0), axis=1))[0]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1185
1186
        else:
            raise NotImplementedError()
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1187
1188
        return indices

1189
    def index(self, tensor, **kwargs):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1190
1191
1192
        """
        Args:
            tensor
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1193

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1194
1195
1196
        Returns:
            int: index of tensor occuring
        """
1197
        indices = self.indices(tensor, **kwargs)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1198
1199
1200
1201
        if not indices:
            return None
        if len(indices) == 1:
            return indices[0]