core.py 97.9 KB
Newer Older
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1
2
3
4
5
6
7
8
#!/usr/bin/env
# encoding: utf-8
"""
Author:     Daniel Boeckenhoff
Mail:       daniel.boeckenhoff@ipp.mpg.de

core of tfields library
contains numpy ndarray derived bases of the tfields package
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
9
10

Notes:
dboe's avatar
dboe committed
11
12
13
    It could be worthwhile concidering `np.li.mixins.NDArrayOperatorsMixin ...
    <https://docs.scipy.org/doc/numpy-1.15.1/reference/generated/...
    ... numpy.lib.mixins.NDArrayOperatorsMixin.html>`_
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
14
"""
dboe's avatar
dboe committed
15
# builtin
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
16
17
18
19
20
import warnings
import pathlib
from six import string_types
from contextlib import contextmanager
from collections import Counter
dboe's avatar
dboe committed
21
from copy import deepcopy
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
22

dboe's avatar
dboe committed
23
# 3rd party
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
24
25
26
import numpy as np
import sympy
import scipy as sp
dboe's avatar
dboe committed
27
import sortedcontainers
28
import rna
dboe's avatar
dboe committed
29

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
30
import tfields.bases
dboe's avatar
dboe committed
31
32

np.seterr(all="warn", over="raise")
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
33
34
35
36
37
38


def rank(tensor):
    """
    Tensor rank
    """
dboe's avatar
dboe committed
39
    tensor = np.asarray(tensor)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
40
41
42
43
44
45
46
    return len(tensor.shape) - 1


def dim(tensor):
    """
    Manifold dimension
    """
dboe's avatar
dboe committed
47
    tensor = np.asarray(tensor)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
48
49
50
51
52
    if rank(tensor) == 0:
        return 1
    return tensor.shape[1]


dboe's avatar
dboe committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
class AbstractObject(object):
    def save(self, path, *args, **kwargs):
        """
        Saving by redirecting to the correct save method depending on path

        Args:
            path (str or buffer)
            *args:
                forwarded to extension specific method
            **kwargs:
                extension (str): only needed if path is buffer
                ... remaining:forwarded to extension specific method
        """
        # get the extension
        if isinstance(path, (string_types, pathlib.Path)):
            extension = pathlib.Path(path).suffix.lstrip(".")
        else:
            raise ValueError("Wrong path type {0}".format(type(path)))
        path = str(path)

        # get the save method
        try:
            save_method = getattr(self, "_save_{extension}".format(**locals()))
        except:
            raise NotImplementedError(
                "Can not find save method for extension: "
                "{extension}.".format(**locals())
            )

        path = rna.path.resolve(path)
        return save_method(path, **kwargs)

    @classmethod
    def load(cls, path, *args, **kwargs):
        """
        load a file as a tensors object.

        Args:
            path (str or buffer)
            *args:
                forwarded to extension specific method
            **kwargs:
                extension (str): only needed if path is buffer
                ... remaining:forwarded to extension specific method
        """
        if isinstance(path, (string_types, pathlib.Path)):
            extension = pathlib.Path(path).suffix.lstrip(".")
            path = str(path)
            path = rna.path.resolve(path)
        else:
            extension = kwargs.pop("extension", "npz")

        try:
            load_method = getattr(cls, "_load_{e}".format(e=extension))
        except:
            raise NotImplementedError(
                "Can not find load method for extension: "
                "{extension}.".format(**locals())
            )
        return load_method(path, *args, **kwargs)

    def _save_npz(self, path, **kwargs):
        """
        Args:
            path (open file or str/unicode): destination to save file to.

        Examples:
            Build some dummies:
            >>> import tfields
            >>> from tempfile import NamedTemporaryFile
            >>> out_file = NamedTemporaryFile(suffix='.npz')
            >>> p = tfields.Points3D([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]],
            ...                      name='my_points')
            >>> scalars = tfields.Tensors([0, 1, 2], name=42)
            >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
            >>> maps = [tfields.TensorFields([[0, 1, 2], [0, 1, 2]], [42, 21]),
            ...         tfields.TensorFields([[1], [2]], [-42, -21])]
            >>> m = tfields.TensorMaps(vectors, scalars,
            ...                        maps=maps)

            Simply give the file name to save
            >>> p.save(out_file.name)
            >>> _ = out_file.seek(0)  # this is only necessary in the test
            >>> p1 = tfields.Points3D.load(out_file.name)
            >>> assert p.equal(p1)
            >>> assert p.coord_sys == p1.coord_sys

            The fully nested structure of a TensorMaps object is reconstructed
            >>> out_file_maps = NamedTemporaryFile(suffix='.npz')
            >>> m.save(out_file_maps.name)
            >>> _ = out_file_maps.seek(0)
            >>> m1 = tfields.TensorMaps.load(out_file_maps.name,
            ...                              allow_pickle=True)
            >>> assert m.equal(m1)
dboe's avatar
dboe committed
147
            >>> assert m.maps[3].dtype == m1.maps[3].dtype
dboe's avatar
dboe committed
148
149
150
151
152
153
154

            Names are preserved
            >>> assert p.name == 'my_points'
            >>> m.names
            [42]

        """
dboe's avatar
dboe committed
155
        content_dict = self._as_new_dict()
dboe's avatar
dboe committed
156
157
158
159
160
161
162
163
164
165
166
167
        np.savez(path, **content_dict)

    @classmethod
    def _load_npz(cls, path, **load_kwargs):
        """
        Factory method
        Given a path to a npz file, construct the object
        """
        # TODO: think about allow_pickle, wheter it really should be True or
        # wheter we could avoid pickling (potential security issue)
        load_kwargs.setdefault('allow_pickle', True)
        np_file = np.load(path, **load_kwargs)
dboe's avatar
dboe committed
168
        return cls._from_new_dict(dict(np_file))
dboe's avatar
dboe committed
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

    def _args(self) -> tuple:
        return tuple()

    def _kwargs(self) -> dict:
        return dict()

    _HIERARCHY_SEPARATOR = '::'

    def _as_new_dict(self):
        d = {}

        # type
        d["type"] = type(self).__name__

        # args and kwargs
        for base_attr, iterable in [
                ('args', ((str(i), arg)
                          for i, arg in enumerate(self._args()))),
                ('kwargs', self._kwargs().items())]:
            for attr, value in iterable:
                attr = base_attr + self._HIERARCHY_SEPARATOR + attr
                if hasattr(value, '_as_new_dict'):
                    part_dict = value._as_new_dict()
                    for part_attr, part_value in part_dict.items():
                        d[
                            attr + self._HIERARCHY_SEPARATOR + part_attr
                        ] = part_value
                else:
                    d[attr] = value
        return d

    @classmethod
    def _from_new_dict(cls, d: dict):
        d.pop('type')

        here = {}
        for string in d:  # TOO no sortelist
            value = d[string]

            attr, _, end = string.partition(cls._HIERARCHY_SEPARATOR)
            key, _, end = end.partition(cls._HIERARCHY_SEPARATOR)
            if attr not in here:
                here[attr] = {}
            if key not in here[attr]:
                here[attr][key] = {}
            here[attr][key][end] = value

        """
        Do the recursion
        """
        for attr in here:
            for key in here[attr]:
dboe's avatar
dboe committed
222
                if 'type' in here[attr][key]:
dboe's avatar
dboe committed
223
                    obj_type = here[attr][key].get("type")
dboe's avatar
dboe committed
224
225
                    if isinstance(obj_type, np.ndarray):  # happens on np.load
                        obj_type = obj_type.tolist()
dboe's avatar
dboe committed
226
227
228
229
230
231
                    if isinstance(obj_type, bytes):
                        # asthonishingly, this is not necessary under linux.
                        # Found under nt. ???
                        obj_type = obj_type.decode("UTF-8")
                    obj_type = getattr(tfields, obj_type)
                    attr_value = obj_type._from_new_dict(here[attr][key])
dboe's avatar
dboe committed
232
                else:  # if len(here[attr][key]) == 1:
dboe's avatar
dboe committed
233
                    attr_value = here[attr][key].pop('')
dboe's avatar
dboe committed
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
                here[attr][key] = attr_value

        '''
        Build the generic way
        '''
        args = here.pop('args', tuple())
        args = tuple(args[key] for key in sorted(args))
        kwargs = here.pop('kwargs', {})
        assert len(here) == 0
        obj = cls(*args, **kwargs)
        return obj

    def _as_dict(self):
        """
        Recursively walk trough all __slots__ and describe all elements
        """
        d = {}
        d["bulk"] = self.bulk
        d["bulk_type"] = self.__class__.__name__
        for attr in self._iter_slots():
            value = getattr(self, attr)

            if hasattr(value, '_as_dict'):
                value = value._as_dict()
            elif isinstance(value, (list)):  # is_iterable
                if len(value) == 0:
                    d[attr] = None
                elif hasattr(value[0], '_as_dict'):
                    for i, part in enumerate(value):
                        part_dict = part._as_dict()
                        for part_attr, part_value in part_dict.items():
                            d[
                                "{attr}::{i}::{part_attr}".format(**locals())
                            ] = part_value
                    continue
            d[attr] = value
        return d

    @classmethod
    def _from_dict(cls, **d):
        """
        legacy method - Opposite of old _as_dict method which is removed in
        favour of nested object saving under 'data'
        """
        list_dict = {}
        kwargs = {}
        """
        De-Flatten the first layer of lists
        """
        for key in sorted(list(d)):
            if "::" in key:
                splits = key.split("::")
                attr, _, end = key.partition("::")
                if attr not in list_dict:
                    list_dict[attr] = {}

                index, _, end = end.partition("::")
                if not index.isdigit():
                    raise ValueError("None digit index given")
                index = int(index)
                if index not in list_dict[attr]:
                    list_dict[attr][index] = {}
                list_dict[attr][index][end] = d[key]
            else:
                kwargs[key] = d[key]

        """
        Build the lists (recursively)
        """
        for key in list(list_dict):
            sub_dict = list_dict[key]
            list_dict[key] = []
            for index in sorted(list(sub_dict)):
                bulk_type = sub_dict[index].get("bulk_type")
                # bulk_type = bulk_type.tolist() was necessary before. no clue
                if isinstance(bulk_type, bytes):
                    # asthonishingly, this is not necessary under linux.
                    # Found under nt. ???
                    bulk_type = bulk_type.decode("UTF-8")
                bulk_type = getattr(tfields, bulk_type)
                list_dict[key].append(bulk_type._from_dict(**sub_dict[index]))

        with cls._bypass_setters('fields', demand_existence=False):
            '''
            Build the normal way
            '''
            bulk = kwargs.pop('bulk')
            bulk_type = kwargs.pop('bulk_type')
            obj = cls.__new__(cls, bulk, **kwargs)

            '''
            Set list attributes
            '''
            for attr, list_value in list_dict.items():
                setattr(obj, attr, list_value)
        return obj


class AbstractNdarray(np.ndarray, AbstractObject):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
333
334
335
336
    """
    All tensors and subclasses should derive from AbstractNdarray.
    AbstractNdarray implements all the inheritance specifics for np.ndarray
    Whene inheriting, three attributes are of interest:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
337
338

    Attributes:
339
        __slots__ (List(str)): If you want to add attributes to
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
340
341
342
343
344
            your AbstractNdarray subclass, add the attribute name to __slots__
        __slot_defaults__ (list): if __slot_defaults__ is None, the
            defaults for the attributes in __slots__ will be None
            other values will be treaded as defaults to the corresponding
            arg at the same position in the __slots__ list.
345
        __slot_dtype__ (List(dtypes)): for the conversion of the
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
346
347
            args in __slots__ to numpy arrays. None values mean no
            conversion.
348
349
350
        __slot_setters__ (List(callable)): Because __slots__ and properties are
            mutually exclusive this is a possibility to take care of proper
            attribute handling. None will be passed for 'not set'.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
351
352
353
354

    Args:
        array (array-like): input array
        **kwargs: arguments corresponding to __slots__
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
355

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
356
357
    TODO:
        equality check
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
358

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
359
    """
dboe's avatar
dboe committed
360

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
361
362
    __slots__ = []
    __slot_defaults__ = []
363
    __slot_dtypes__ = []
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
364
365
366
    __slot_setters__ = []

    def __new__(cls, array, **kwargs):  # pragma: no cover
dboe's avatar
dboe committed
367
368
369
        raise NotImplementedError(
            "{clsType} type must implement '__new__'".format(clsType=type(cls))
        )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
370
371
372
373
374
375
376
377
378
379
380
381

    def __array_finalize__(self, obj):
        if obj is None:
            return
        for attr in self._iter_slots():
            setattr(self, attr, getattr(obj, attr, None))

    def __array_wrap__(self, out_arr, context=None):
        return np.ndarray.__array_wrap__(self, out_arr, context)

    @classmethod
    def _iter_slots(cls):
dboe's avatar
dboe committed
382
        return [att for att in cls.__slots__ if att != "_cache"]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
383
384
385
386
387

    @classmethod
    def _update_slot_kwargs(cls, kwargs):
        """
        set the defaults in kwargs according to __slot_defaults__
388
        and convert the kwargs according to __slot_dtypes__
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
389
        """
390
        slot_defaults = cls.__slot_defaults__ + [None] * (
dboe's avatar
dboe committed
391
392
            len(cls.__slots__) - len(cls.__slot_defaults__)
        )
393
394
        slot_dtypes = cls.__slot_dtypes__ + [None] * (
            len(cls.__slots__) - len(cls.__slot_dtypes__)
dboe's avatar
dboe committed
395
396
        )
        for attr, default, dtype in zip(
397
            cls.__slots__, slot_defaults, slot_dtypes
dboe's avatar
dboe committed
398
399
        ):
            if attr == "_cache":
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
400
401
402
403
404
405
406
                continue
            if attr not in kwargs:
                kwargs[attr] = default
            if dtype is not None:
                try:
                    kwargs[attr] = np.array(kwargs[attr], dtype=dtype)
                except Exception as err:
dboe's avatar
dboe committed
407
408
409
                    raise ValueError(
                        str(attr) + str(dtype) + str(kwargs[attr]) + str(err)
                    )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
410
411
412
413
414
415
416
417

    def __setattr__(self, name, value):
        if name in self.__slots__:
            index = self.__slots__.index(name)
            try:
                setter = self.__slot_setters__[index]
            except IndexError:
                setter = None
418
419
            if isinstance(setter, str):
                setter = getattr(self, setter)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
420
421
422
423
            if setter is not None:
                value = setter(value)
        super(AbstractNdarray, self).__setattr__(name, value)

dboe's avatar
dboe committed
424
425
426
427
428
429
    def _args(self):
        return (np.array(self),)

    def _kwargs(self):
        return dict((attr, getattr(self, attr)) for attr in self._iter_slots())

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
430
431
    def __reduce__(self):
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
432
433
        important for pickling (see `here <https://stackoverflow.com/questions/26598109/preserve-custom-attributes-when-pickling-subclass-of-numpy-array>`_)

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
434
435
436
437
438
439
        Examples:
            >>> from tempfile import NamedTemporaryFile
            >>> import pickle
            >>> import tfields

            Build a dummy scalar field
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
440

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
441
442
443
            >>> from tfields import Tensors, TensorFields
            >>> scalars = Tensors([0, 1, 2])
            >>> vectors = Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
dboe's avatar
dboe committed
444
445
446
            >>> scalar_field = TensorFields(vectors,
            ...                             scalars,
            ...                             coord_sys='cylinder')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
447
448

            Save it and restore it
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
449

450
            >>> out_file = NamedTemporaryFile(suffix='.pickle')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
451

452
            >>> pickle.dump(scalar_field,
453
454
            ...             out_file)
            >>> _ = out_file.seek(0)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
455

456
            >>> sf = pickle.load(out_file)
457
            >>> sf.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
458
459
460
461
462
463
464
465
466
            True
            >>> sf.fields[0][2] == 2.
            True

        """
        # Get the parent's __reduce__ tuple
        pickled_state = super(AbstractNdarray, self).__reduce__()

        # Create our own tuple to pass to __setstate__
dboe's avatar
dboe committed
467
468
469
        new_state = pickled_state[2] + tuple(
            [getattr(self, slot) for slot in self._iter_slots()]
        )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
470

dboe's avatar
dboe committed
471
472
        # Return a tuple that replaces the parent's __setstate__
        # tuple with our own
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
473
474
475
476
        return (pickled_state[0], pickled_state[1], new_state)

    def __setstate__(self, state):
        """
477
        Counterpart to __reduce__. Important for unpickling.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
478
479
        """
        # Call the parent's __setstate__ with the other tuple elements.
dboe's avatar
dboe committed
480
        super(AbstractNdarray, self).__setstate__(
dboe's avatar
dboe committed
481
            state[0:-len(self._iter_slots())]
dboe's avatar
dboe committed
482
        )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
483
484

        # set the __slot__ attributes
485
486
487
488
489
        valid_slot_attrs = list(self._iter_slots())
        added_slot_attrs = ['name']  # attributes that have been added later
                                     # have not been pickled with the full
                                     # information and thus need to be
                                     # excluded from the __setstate__
dboe's avatar
dboe committed
490
491
                                     # need to be in the same order as they
                                     # have been added to __slots__
dboe's avatar
dboe committed
492
493
        n_np = 5  # number of numpy array states
        n_old = len(valid_slot_attrs) - len(state[n_np:])
494
495
496
        if n_old > 0:
            for latest_index in range(n_old):
                new_slot = added_slot_attrs[-latest_index]
dboe's avatar
dboe committed
497
498
499
500
                warnings.warn("Slots with names '{new_slot}' appears to have "
                              "been added after the creation of the reduced "
                              "state. No corresponding state found in "
                              "__setstate__."
501
502
503
504
505
                              .format(**locals()))
                valid_slot_attrs.pop(valid_slot_attrs.index(new_slot))
                setattr(self, new_slot, None)

        for slot_index, slot in enumerate(valid_slot_attrs):
dboe's avatar
dboe committed
506
            state_index = n_np + slot_index
507
            setattr(self, slot, state[state_index])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
508

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
509
510
511
512
513
514
515
516
    @property
    def bulk(self):
        """
        The pure ndarray version of the actual state
            -> nothing attached
        """
        return np.array(self)

517
518
    @classmethod
    @contextmanager
dboe's avatar
dboe committed
519
520
521
    def _bypass_setters(cls, *slots,
                        empty_means_all=True,
                        demand_existence=False):
522
523
524
        """
        Temporarily remove the setter in __slot_setters__ corresponding to slot
        position in __slot__. You should know what you do, when using this.
525
526
527
528
529

        Args:
            *slots (str): attribute names in __slots__
            empty_means_all (bool): defines behaviour when slots is empty.
                When True: if slots is empty mute all slots in __slots__
dboe's avatar
dboe committed
530
531
            demand_existence (bool): if false do not check the existence of the
                slot in __slots__ - do nothing for that slot. Handle with care!
532
533
534
535
536
537
        """
        if not slots and empty_means_all:
            slots = cls.__slots__
        slot_indices = []
        setters = []
        for slot in slots:
dboe's avatar
dboe committed
538
539
540
541
542
543
544
545
            slot_index = cls.__slots__.index(slot)\
                if slot in cls.__slots__ else None
            if slot_index is None:
                # slot not in cls.__slots__.
                if demand_existence:
                    raise ValueError(
                        "Slot {slot} not existing".format(**locals()))
                continue
546
547
548
549
550
551
552
            if len(cls.__slot_setters__) < slot_index + 1:
                # no setter to be found
                continue
            slot_indices.append(slot_index)
            setter = cls.__slot_setters__[slot_index]
            setters.append(setter)
            cls.__slot_setters__[slot_index] = None
553
        yield
554
555
        for slot_index, setter in zip(slot_indices, setters):
            cls.__slot_setters__[slot_index] = setter
556

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
557
558
559
    def copy(self, *args, **kwargs):
        """
        The standard ndarray copy does not copy slots. Correct for this.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
560

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
561
562
        Examples:
            >>> import tfields
dboe's avatar
dboe committed
563
564
            >>> m = tfields.TensorMaps(
            ...     [[1,2,3], [3,3,3], [0,0,0], [5,6,7]],
dboe's avatar
dboe committed
565
            ...     [[1], [3], [0], [5]],
566
567
            ...     maps=[
            ...         ([[0, 1, 2], [1, 2, 3]], [21, 42]),
dboe's avatar
dboe committed
568
569
            ...         [[1]],
            ...         [[0, 1, 2, 3]]
570
            ...     ])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
571
            >>> mc = m.copy()
dboe's avatar
dboe committed
572
573
            >>> mc.equal(m)
            True
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
574
575
            >>> mc is m
            False
dboe's avatar
dboe committed
576
577
578
579
            >>> mc.fields is m.fields
            False
            >>> mc.fields[0] is m.fields[0]
            False
dboe's avatar
dboe committed
580
            >>> mc.maps[3].fields[0] is m.maps[3].fields[0]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
581
582
583
            False

        """
dboe's avatar
dboe committed
584
585
        # works with __reduce__ / __setstate__
        return deepcopy(self)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
586
587
588
589
590


class Tensors(AbstractNdarray):
    """
    Set of tensors with the same basis.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
591

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
592
593
    TODO:
        all slot args should be protected -> _base
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
594

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
595
596
    Args:
        tensors: np.ndarray or AbstractNdarray subclass
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
597
598
        **kwargs:
            name: optional - custom name, can be anything
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
599

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
600
601
    Examples:
        >>> import numpy as np
602
        >>> import tfields
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
603
604

        Initialize a scalar range
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
605

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
606
607
608
609
610
        >>> scalars = tfields.Tensors([0, 1, 2])
        >>> scalars.rank == 0
        True

        Initialize vectors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
611

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
612
613
614
615
616
        >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
        >>> vectors.rank == 1
        True
        >>> vectors.dim == 3
        True
617
        >>> assert vectors.coord_sys == 'cartesian'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
618
619

        Initialize the Levi-Zivita Tensor
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
620

621
622
623
624
        >>> matrices = tfields.Tensors(
        ...                     [[[0, 0, 0], [0, 0, 1], [0, -1, 0]],
        ...                      [[0, 0, -1], [0, 0, 0], [1, 0, 0]],
        ...                      [[0, 1, 0], [-1, 0, 0], [0, 0, 0]]])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
625
626
627
628
629
630
631
632
        >>> matrices.shape == (3, 3, 3)
        True
        >>> matrices.rank == 2
        True
        >>> matrices.dim == 3
        True

        Initializing in different start coordinate system
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
633

dboe's avatar
dboe committed
634
635
        >>> cyl = tfields.Tensors([[5, np.arctan(4. / 3.), 42]],
        ...                       coord_sys='cylinder')
636
        >>> assert cyl.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
637
        >>> cyl.transform('cartesian')
638
        >>> assert cyl.coord_sys == 'cartesian'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
639
640
641
642
643
644
        >>> cart = cyl
        >>> assert round(cart[0, 0], 10) == 3.
        >>> assert round(cart[0, 1], 10) == 4.
        >>> assert cart[0, 2] == 42

        Initialize with copy constructor keeps the coordinate system
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
645

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
646
647
        >>> with vectors.tmp_transform('cylinder'):
        ...     vect_cyl = tfields.Tensors(vectors)
648
649
        ...     assert vect_cyl.coord_sys == vectors.coord_sys
        >>> assert vect_cyl.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
650
651

        You can demand a special dimension.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
652

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
653
654
655
656
657
658
659
660
        >>> _ = tfields.Tensors([[1, 2, 3]], dim=3)
        >>> _ = tfields.Tensors([[1, 2, 3]], dim=2)  # doctest: +ELLIPSIS
        Traceback (most recent call last):
            ...
        ValueError: Incorrect dimension: 3 given, 2 demanded.

        The dimension argument (dim) becomes necessary if you want to initialize
        an empty array
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
661

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
662
663
664
665
666
667
668
669
        >>> _ = tfields.Tensors([])  # doctest: +ELLIPSIS
        Traceback (most recent call last):
            ...
        ValueError: Empty tensors need dimension parameter 'dim'.
        >>> tfields.Tensors([], dim=7)
        Tensors([], shape=(0, 7), dtype=float64)

    """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
670
    __slots__ = ['coord_sys', 'name']
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
671
672
673
674
    __slot_defaults__ = ['cartesian']
    __slot_setters__ = [tfields.bases.get_coord_system_name]

    def __new__(cls, tensors, **kwargs):
dboe's avatar
dboe committed
675
676
677
        dtype = kwargs.pop("dtype", None)
        order = kwargs.pop("order", None)
        dim = kwargs.pop("dim", None)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
678

dboe's avatar
dboe committed
679
        """ copy constructor extracts the kwargs from tensors"""
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
680
681
682
        if issubclass(type(tensors), Tensors):
            if dim is not None:
                dim = tensors.dim
dboe's avatar
dboe committed
683
            coord_sys = kwargs.pop("coord_sys", tensors.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
684
            tensors = tensors.copy()
685
686
            tensors.transform(coord_sys)
            kwargs['coord_sys'] = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
687
            kwargs['name'] = kwargs.pop('name', tensors.name)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
688
689
690
691
            if dtype is None:
                dtype = tensors.dtype
        else:
            if dtype is None:
dboe's avatar
dboe committed
692
                if hasattr(tensors, "dtype"):
693
694
695
                    dtype = tensors.dtype
                else:
                    dtype = np.float64
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
696

dboe's avatar
dboe committed
697
        """ demand iterable structure """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
698
699
700
        try:
            len(tensors)
        except TypeError as err:
dboe's avatar
dboe committed
701
702
703
704
            raise TypeError(
                "Iterable structure necessary."
                " Got {tensors}".format(**locals())
            )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
705

dboe's avatar
dboe committed
706
        """ process empty inputs """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
707
708
709
710
711
712
713
714
        if len(tensors) == 0:
            if issubclass(type(tensors), tfields.Tensors):
                tensors = np.empty(tensors.shape, dtype=tensors.dtype)
            elif dim is not None:
                tensors = np.empty((0, dim))
            if issubclass(type(tensors), np.ndarray):
                # np.empty
                pass
dboe's avatar
dboe committed
715
716
            elif hasattr(tensors, 'shape'):
                dim = dim(tensors)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
717
            else:
dboe's avatar
dboe committed
718
                raise ValueError(
dboe's avatar
dboe committed
719
                    "Empty tensors need dimension parameter 'dim'."
dboe's avatar
dboe committed
720
                )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
721
722
723
724

        tensors = np.asarray(tensors, dtype=dtype, order=order)
        obj = tensors.view(cls)

dboe's avatar
dboe committed
725
        """ check dimension(s) """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
726
727
        for d in obj.shape[1:]:
            if not d == obj.dim:
dboe's avatar
dboe committed
728
729
730
731
732
733
734
                raise ValueError(
                    "Dimensions are inconstistent. "
                    "Manifold dimension is {obj.dim}. "
                    "Found dimensions {found} in {obj}.".format(
                        found=obj.shape[1:], **locals()
                    )
                )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
735
736
        if dim is not None:
            if dim != obj.dim:
dboe's avatar
dboe committed
737
738
739
740
                raise ValueError(
                    "Incorrect dimension: {obj.dim} given,"
                    " {dim} demanded.".format(**locals())
                )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
741

dboe's avatar
dboe committed
742
        """ update kwargs with defaults from slots """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
743
744
        cls._update_slot_kwargs(kwargs)

dboe's avatar
dboe committed
745
        """ set kwargs to slots attributes """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
746
747
        for attr in kwargs:
            if attr not in cls._iter_slots():
dboe's avatar
dboe committed
748
749
750
751
                raise AttributeError(
                    "Keyword argument {attr} not accepted "
                    "for class {cls}".format(**locals())
                )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
752
753
754
755
            setattr(obj, attr, kwargs[attr])

        return obj

756
757
758
759
    def __iter__(self):
        """
        Forwarding iterations to the bulk array. Otherwise __getitem__ would
        kick in and slow down imensely.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
760

761
762
763
        Examples:
            >>> import tfields
            >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
dboe's avatar
dboe committed
764
765
            >>> scalar_field = tfields.TensorFields(
            ...     vectors, [42, 21, 10.5], [1, 2, 3])
766
767
768
769
770
771
772
            >>> [(point.rank, point.dim) for point in scalar_field]
            [(0, 1), (0, 1), (0, 1)]

        """
        for index in range(len(self)):
            yield super(Tensors, self).__getitem__(index).view(Tensors)

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
773
774
775
776
    @classmethod
    def merged(cls, *objects, **kwargs):
        """
        Factory method
dboe's avatar
dboe committed
777
        Merges all input arguments to one object
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
778

779
780
781
        Args:
            return_templates (bool): return the templates which can be used
                together with cut to retrieve the original objects
dboe's avatar
dboe committed
782
783
            dim (int):
            **kwargs: passed to cls
784

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
785
786
787
788
789
        Examples:
            >>> import numpy as np
            >>> import tfields
            >>> import tfields.bases

790
791
            The new object with turn out in the most frequent coordinate
            system if not specified explicitly
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
792

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
793
            >>> vec_a = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
dboe's avatar
dboe committed
794
795
796
797
798
799
            >>> vec_b = tfields.Tensors([[5, 4, 1]],
            ...     coord_sys=tfields.bases.cylinder)
            >>> vec_c = tfields.Tensors([[4, 2, 3]],
            ...     coord_sys=tfields.bases.cylinder)
            >>> merge = tfields.Tensors.merged(
            ...     vec_a, vec_b, vec_c, [[2, 0, 1]])
800
            >>> assert merge.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
801
802
803
804
805
806
807
808
            >>> assert merge.equal([[0, 0, 0],
            ...                     [0, 0, 1],
            ...                     [1, -np.pi / 2, 0],
            ...                     [5, 4, 1],
            ...                     [4, 2, 3],
            ...                     [2, 0, 1]])

            Merge also shifts the maps to still refer to the same tensors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
809

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
810
811
            >>> tm_a = tfields.TensorMaps(merge, maps=[[[0, 1, 2]]])
            >>> tm_b = tm_a.copy()
812
            >>> assert tm_a.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
813
            >>> tm_merge = tfields.TensorMaps.merged(tm_a, tm_b)
814
            >>> assert tm_merge.coord_sys == 'cylinder'
dboe's avatar
dboe committed
815
            >>> assert tm_merge.maps[3].equal([[0, 1, 2],
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
816
817
818
            ...                               list(range(len(merge),
            ...                                          len(merge) + 3,
            ...                                          1))])
dboe's avatar
dboe committed
819

820
821
            >>> obj_list = [tfields.Tensors([[1, 2, 3]],
            ...             coord_sys=tfields.bases.CYLINDER),
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
822
823
            ...             tfields.Tensors([[3] * 3]),
            ...             tfields.Tensors([[5, 1, 3]])]
824
825
            >>> merge2 = tfields.Tensors.merged(
            ...     *obj_list, coord_sys=tfields.bases.CARTESIAN)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
826
827
            >>> assert merge2.equal([[-0.41614684, 0.90929743, 3.],
            ...                      [3, 3, 3], [5, 1, 3]], atol=1e-8)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
828

829
830
831
832
833
834
835
836
837
            The return_templates argument allows to retrieve a template which
            can be used with the cut method.

            >>> merge, templates = tfields.Tensors.merged(
            ...     vec_a, vec_b, vec_c, return_templates=True)
            >>> assert merge.cut(templates[0]).equal(vec_a)
            >>> assert merge.cut(templates[1]).equal(vec_b)
            >>> assert merge.cut(templates[2]).equal(vec_c)

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
838
839
        """

dboe's avatar
dboe committed
840
841
        """ get most frequent coord_sys or predefined coord_sys """
        coord_sys = kwargs.get("coord_sys", None)
842
        return_templates = kwargs.pop("return_templates", False)
843
        if coord_sys is None:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
844
845
846
            bases = []
            for t in objects:
                try:
847
                    bases.append(t.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
848
849
850
                except AttributeError:
                    pass
            if bases:
851
                # get most frequent coord_sys
dboe's avatar
dboe committed
852
853
854
                coord_sys = sorted(
                    bases, key=Counter(bases).get, reverse=True
                )[0]
dboe's avatar
dboe committed
855
                kwargs["coord_sys"] = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
856
            else:
dboe's avatar
dboe committed
857
858
859
860
                default = cls.__slot_defaults__[
                    cls.__slots__.index("coord_sys")
                ]
                kwargs["coord_sys"] = default
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
861

dboe's avatar
dboe committed
862
        """ transform all raw inputs to cls type with correct coord_sys. Also
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
863
        automatically make a copy of those instances that are of the correct
dboe's avatar
dboe committed
864
        type already."""
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
865
        objects = [cls.__new__(cls, t, **kwargs) for t in objects]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
866

dboe's avatar
dboe committed
867
        """ check rank and dimension equality """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
868
869
870
871
872
        if not len(set([t.rank for t in objects])) == 1:
            raise TypeError("Tensors must have the same rank for merging.")
        if not len(set([t.dim for t in objects])) == 1:
            raise TypeError("Tensors must have the same dimension for merging.")

dboe's avatar
dboe committed
873
        """ merge all objects """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
874
875
876
877
878
879
        remainingObjects = objects[1:] or []
        tensors = objects[0]

        for i, obj in enumerate(remainingObjects):
            tensors = np.append(tensors, obj, axis=0)

dboe's avatar
dboe committed
880
        if len(tensors) == 0 and not kwargs.get('dim', None):
881
882
            # if you can not determine the tensor dimension, search for the
            # first object with some entries
dboe's avatar
dboe committed
883
            kwargs['dim'] = dim(objects[0])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
884

885
        inst = cls.__new__(cls, tensors, **kwargs)
886
        if not return_templates:
887
            return inst
888
889
890
891
892
893
        else:
            tensor_lengths = [len(o) for o in objects]
            cum_tensor_lengths = [sum(tensor_lengths[:i])
                                  for i in range(len(objects))]
            templates = [
                tfields.TensorFields(
894
                    np.empty((len(obj), 0)),
895
896
                    np.arange(tensor_lengths[i]) + cum_tensor_lengths[i])
                for i, obj in enumerate(objects)]
897
            return inst, templates
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
898
899
900
901
902

    @classmethod
    def grid(cls, *base_vectors, **kwargs):
        """
        Args:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
903
904
905
906
907
908
909
            *base_vectors (Iterable): base coordinates. The amount of base
                vectors defines the dimension

            **kwargs:
                iter_order (list): order in which the iteration will be done.
                    Frequency rises with position in list. default is [0, 1, 2]
                    iteration will be done like::
dboe's avatar
dboe committed
910

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
911
912
913
914
915
916
                    for v0 in base_vectors[iter_order[0]]:
                        for v1 in base_vectors[iter_order[1]]:
                            for v2 in base_vectors[iter_order[2]]:
                                coords0.append(locals()['v%i' % iter_order[0]])
                                coords1.append(locals()['v%i' % iter_order[1]])
                                coords2.append(locals()['v%i' % iter_order[2]])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
917
918
919

        Examples:
            Initilaize using the mgrid notation
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
920

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
921
922
923
924
925
926
927
928
929
930
931
            >>> import tfields
            >>> mgrid = tfields.Tensors.grid((0, 1, 2j), (3, 4, 2j), (6, 7, 2j))
            >>> mgrid.equal([[0, 3, 6],
            ...              [0, 3, 7],
            ...              [0, 4, 6],
            ...              [0, 4, 7],
            ...              [1, 3, 6],
            ...              [1, 3, 7],
            ...              [1, 4, 6],
            ...              [1, 4, 7]])
            True
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
932
933
934

            Lists or arrays are accepted also.
            Furthermore, the iteration order can be changed
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
935

dboe's avatar
dboe committed
936
937
938
            >>> lins = tfields.Tensors.grid(
            ...     np.linspace(3, 4, 2), np.linspace(0, 1, 2),
            ...     np.linspace(6, 7, 2), iter_order=[1, 0, 2])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
            >>> lins.equal([[3, 0, 6],
            ...             [3, 0, 7],
            ...             [4, 0, 6],
            ...             [4, 0, 7],
            ...             [3, 1, 6],
            ...             [3, 1, 7],
            ...             [4, 1, 6],
            ...             [4, 1, 7]])
            True
            >>> lins2 = tfields.Tensors.grid(np.linspace(0, 1, 2),
            ...                              np.linspace(3, 4, 2),
            ...                              np.linspace(6, 7, 2),
            ...                              iter_order=[2, 0, 1])
            >>> lins2.equal([[0, 3, 6],
            ...              [0, 4, 6],
            ...              [1, 3, 6],
            ...              [1, 4, 6],
            ...              [0, 3, 7],
            ...              [0, 4, 7],
            ...              [1, 3, 7],
            ...              [1, 4, 7]])
            True

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
962
963
            When given the coord_sys argument, the grid is performed in the
            given coorinate system:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
964

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
965
966
967
968
969
970
971
972
973
            >>> lins3 = tfields.Tensors.grid(np.linspace(4, 9, 2),
            ...                              np.linspace(np.pi/2, np.pi/2, 1),
            ...                              np.linspace(4, 4, 1),
            ...                              iter_order=[2, 0, 1],
            ...                              coord_sys=tfields.bases.CYLINDER)
            >>> assert lins3.coord_sys == 'cylinder'
            >>> lins3.transform('cartesian')
            >>> assert np.array_equal(lins3[:, 1], [4, 9])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
974
        """
dboe's avatar
dboe committed
975
976
977
978
979
980
981
982
        cls_kwargs = {
            attr: kwargs.pop(attr)
            for attr in list(kwargs)
            if attr in cls.__slots__
        }
        inst = cls.__new__(
            cls, tfields.lib.grid.igrid(*base_vectors, **kwargs), **cls_kwargs
        )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
        return inst

    @property
    def rank(self):
        """
        Tensor rank
        """
        return rank(self)

    @property
    def dim(self):
        """
        Manifold dimension
        """
        return dim(self)

999
    def transform(self, coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1000
1001
        """
        Args:
1002
            coord_sys (str)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1003
1004
1005
1006
1007
1008

        Examples:
            >>> import numpy as np
            >>> import tfields

            CARTESIAN to SPHERICAL
dboe's avatar
dboe committed
1009
1010
            >>> t = tfields.Tensors([[1, 2, 2], [1, 0, 0], [0, 0, -1],
            ...                      [0, 0, 1], [0, 0, 0]])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1011
1012
1013
            >>> t.transform('spherical')

            r
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1014

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1015
1016
1017
            >>> assert t[0, 0] == 3

            phi
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1018

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1019
1020
1021
1022
            >>> assert t[1, 1] == 0.
            >>> assert t[2, 1] == 0.

            theta is 0 at (0, 0, 1) and pi / 2 at (0, 0, -1)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1023

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1024
1025
1026
1027
1028
            >>> assert round(t[1, 2], 10) == round(0, 10)
            >>> assert t[2, 2] == -np.pi / 2
            >>> assert t[3, 2] == np.pi / 2

            theta is defined 0 for R == 0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1029

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1030
1031
1032
1033
1034
            >>> assert t[4, 0] == 0.
            >>> assert t[4, 2] == 0.


            CARTESIAN to CYLINDER
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1035

dboe's avatar
dboe committed
1036
1037
            >>> tCart = tfields.Tensors([[3, 4, 42], [1, 0, 0], [0, 1, -1],
            ...                          [-1, 0, 1], [0, 0, 0]])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1038
1039
            >>> t_cyl = tCart.copy()
            >>> t_cyl.transform('cylinder')
1040
            >>> assert t_cyl.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1041
1042

            R
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1043

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1044
1045
1046
1047
1048
1049
            >>> assert t_cyl[0, 0] == 5
            >>> assert t_cyl[1, 0] == 1
            >>> assert t_cyl[2, 0] == 1
            >>> assert t_cyl[4, 0] == 0

            Phi
dboe's avatar
dboe committed
1050

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1051
1052
1053
1054
1055
1056
            >>> assert round(t_cyl[0, 1], 10) == round(np.arctan(4. / 3), 10)
            >>> assert t_cyl[1, 1] == 0
            >>> assert round(t_cyl[2, 1], 10) == round(np.pi / 2, 10)
            >>> assert t_cyl[1, 1] == 0

            Z
dboe's avatar
dboe committed
1057

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1058
1059
1060
1061
            >>> assert t_cyl[0, 2] == 42
            >>> assert t_cyl[2, 2] == -1

            >>> t_cyl.transform('cartesian')
1062
            >>> assert t_cyl.coord_sys == 'cartesian'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1063
1064
1065
1066
            >>> assert t_cyl[0, 0] == 3

        """
        #           scalars                 empty             already there
1067
1068
        if self.rank == 0 or self.shape[0] == 0 or self.coord_sys == coord_sys:
            self.coord_sys = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1069
1070
            return

1071
1072
1073
        tfields.bases.transform(self, self.coord_sys, coord_sys)
        # self[:] = tfields.bases.transform(self, self.coord_sys, coord_sys)
        self.coord_sys = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1074
1075

    @contextmanager
1076
    def tmp_transform(self, coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1077
        """
1078
        Temporarily change the coord_sys to another coord_sys and change it back at exit
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1079
1080
        This method is for cleaner code only.
        No speed improvements go with this.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1081

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1082
1083
        Args:
            see transform
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1084

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1085
1086
        Examples:
            >>> import tfields
1087
            >>> p = tfields.Tensors([[1,2,3]], coord_sys=tfields.bases.SPHERICAL)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1088
            >>> with p.tmp_transform(tfields.bases.CYLINDER):
1089
1090
            ...     assert p.coord_sys == tfields.bases.CYLINDER
            >>> assert p.coord_sys == tfields.bases.SPHERICAL
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1091
1092

        """
1093
1094
        baseBefore = self.coord_sys
        if baseBefore == coord_sys:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1095
1096
            yield
        else:
1097
            self.transform(coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1098
1099
1100
1101
1102
1103
1104
1105

            yield

            self.transform(baseBefore)

    def mirror(self, coordinate, condition=None):
        """
        Reflect/Mirror the entries meeting <condition> at <coordinate> = 0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1106

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1107
1108
        Args:
            coordinate (int): coordinate index
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1109

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1110
1111
1112
1113
1114
1115
        Examples:
            >>> import tfields
            >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]])
            >>> p.mirror(1)
            >>> assert p.equal([[1, -2, 3], [4, -5,  6], [1, -2, -6]])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1116
1117
            multiple coordinates can be mirrored at the same time
            i.e. a point mirrorion would be
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1118

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1119
1120
1121
1122
1123
            >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]])
            >>> p.mirror([0,2])
            >>> assert p.equal([[-1, 2, -3], [-4, 5, -6], [-1, 2., 6.]])

            You can give a condition as mask or as str.
dboe's avatar
dboe committed
1124
1125
            The mirroring will only be applied to the points meeting the
            condition.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1126

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1127
1128
            >>> import sympy
            >>> x, y, z = sympy.symbols('x y z')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1129
            >>> p.mirror([0, 2], y > 3)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
            >>> p.equal([[-1, 2, -3], [4, 5, 6], [-1, 2, 6]])
            True

        """
        if condition is None:
            condition = np.array([True for i in range(len(self))])
        elif isinstance(condition, sympy.Basic):
            condition = self.evalf(condition)
        if isinstance(coordinate, list) or isinstance(coordinate, tuple):
            for c in coordinate:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1140
                self.mirror(c, condition=condition)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1141
1142
1143
1144
1145
        elif isinstance(coordinate, int):
            self[:, coordinate][condition] *= -1
        else:
            raise TypeError()

dboe's avatar
dboe committed
1146
1147
1148
1149
1150
1151
1152
1153
1154
    def to_segment(
        self,
        segment,
        num_segments,
        coordinate,
        periodicity=2 * np.pi,
        offset=0.0,
        coord_sys=None,
    ):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1155
1156
1157
1158
1159
        """
        For circular (close into themself after
        <periodicity>) coordinates at index <coordinate> assume
        <num_segments> segments and transform all values to
        segment number <segment>
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1160

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1161
1162
1163
1164
1165
1166
        Args:
            segment (int): segment index (starting at 0)
            num_segments (int): number of segments
            coordinate (int): coordinate index
            periodicity (float): after what lenght, the coordiante repeats
            offset (float): offset in the mapping
1167
            coord_sys (str or sympy.CoordinateSystem): in which coord sys the
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1168
                transformation should be done
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1169

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1170
1171
1172
1173
1174
        Examples:
            >>> import tfields
            >>> import numpy as np
            >>> pStart = tfields.Points3D([[6, 2 * np.pi, 1],
            ...                            [6, 2 * np.pi / 5 * 3, 1]],
1175
            ...                           coord_sys='cylinder')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
            >>> p = tfields.Points3D(pStart)
            >>> p.to_segment(0, 5, 1, offset=-2 * np.pi / 10)
            >>> assert np.array_equal(p[:, 1], [0, 0])

            >>> p2 = tfields.Points3D(pStart)
            >>> p2.to_segment(1, 5, 1, offset=-2 * np.pi / 10)
            >>> assert np.array_equal(np.round(p2[:, 1], 4), [1.2566] * 2)

        """
        if segment > num_segments - 1:
            raise ValueError("Segment {0} not existent.".format(segment))

1188
1189
1190
        if coord_sys is None:
            coord_sys = self.coord_sys
        with self.tmp_transform(coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1191
            # map all values to first segment
dboe's avatar
dboe committed
1192
1193
1194
1195
1196
            self[:, coordinate] = (
                (self[:, coordinate] - offset) % (periodicity / num_segments)
                + offset
                + segment * periodicity / num_segments
            )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1197

dboe's avatar
dboe committed
1198
1199
1200
    def equal(
        self, other, rtol=None, atol=None, equal_nan=False, return_bool=True
    ):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1201
1202
        """
        Evaluate, whether the instance has the same content as other.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1203

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1204
1205
1206
1207
1208
1209
1210
        Args:
            optional:
                rtol (float)
                atol (float)
                equal_nan (bool)
            see numpy.isclose
        """
dboe's avatar
dboe committed
1211
1212
1213
1214
        if (
            issubclass(type(other), Tensors)
            and self.coord_sys != other.coord_sys
        ):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1215
            other = other.copy()
1216
            other.transform(self.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1217
1218
        x, y = np.asarray(self), np.asarray(other)
        if rtol is None and atol is None:
dboe's avatar
dboe committed
1219
            mask = x == y
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1220
1221
1222
1223
1224
            if equal_nan:
                both_nan = np.isnan(x) & np.isnan(y)
                mask[both_nan] = both_nan[both_nan]
        else:
            if rtol is None:
dboe's avatar
dboe committed
1225
                rtol = 0.0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1226
            if atol is None:
dboe's avatar
dboe committed
1227
                atol = 0.0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1228
1229
1230
1231
1232
1233
1234
1235
1236
            mask = np.isclose(x, y, rtol=rtol, atol=atol, equal_nan=equal_nan)
        if return_bool:
            return bool(np.all(mask))
        return mask

    def contains(self, other, **kwargs):
        """
        Inspired by a speed argument @
        stackoverflow.com/questions/14766194/testing-whether-a-numpy-array-contains-a-given-row
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1237

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1238
1239
1240
1241
1242
1243
1244
1245
1246
        Examples:
            >>> import tfields
            >>> p = tfields.Tensors([[1,2,3], [4,5,6], [6,7,8]])
            >>> p.contains([4,5,6])
            True

        """
        return any(self.equal(other, return_bool=False).all(1))

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1247
    def indices(self, tensor, rtol=None, atol=None):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1248
1249
1250
        """
        Returns:
            list of int: indices of tensor occuring
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1251

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1252
        Examples:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1253
            Rank 1 Tensors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1254

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1255
1256
1257
1258
1259
1260
1261
1262
            >>> import tfields
            >>> p = tfields.Tensors([[1,2,3], [4,5,6], [6,7,8], [4,5,6],
            ...                      [4.1, 5, 6]])
            >>> p.indices([4,5,6])
            array([1, 3])
            >>> p.indices([4,5,6.1], rtol=1e-5, atol=1e-1)
            array([1, 3, 4])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1263
            Rank 0 Tensors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1264

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1265
1266
1267
1268
1269
1270
            >>> p = tfields.Tensors([2, 3, 6, 3.01])
            >>> p.indices(3)
            array([1])
            >>> p.indices(3, rtol=1e-5, atol=1e-1)
            array([1, 3])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1271
        """
1272
1273
        x, y = np.asarray(self), np.asarray(tensor)
        if rtol is None and atol is None:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1274
            equal_method = np.equal
1275
1276
        else:
            equal_method = lambda a, b: np.isclose(a, b, rtol=rtol, atol=atol)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1277
1278

        # inspired by https://stackoverflow.com/questions/19228295/find-ordered-vector-in-numpy-array
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1279
        if self.rank == 0:
dboe's avatar
dboe committed
1280
            indices = np.where(equal_method((x - y), 0))[0]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1281
        elif self.rank == 1:
dboe's avatar
dboe committed
1282
            indices = np.where(np.all(equal_method((x - y), 0), axis=1))[0]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1283
1284
        else:
            raise NotImplementedError()
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1285
1286
        return indices

1287
    def index(self, tensor, **kwargs):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1288
1289
1290
        """
        Args:
            tensor
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1291