core.py 102 KB
Newer Older
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1
2
3
4
5
6
7
8
#!/usr/bin/env
# encoding: utf-8
"""
Author:     Daniel Boeckenhoff
Mail:       daniel.boeckenhoff@ipp.mpg.de

core of tfields library
contains numpy ndarray derived bases of the tfields package
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
9
10

Notes:
dboe's avatar
dboe committed
11
12
13
    It could be worthwhile concidering `np.li.mixins.NDArrayOperatorsMixin ...
    <https://docs.scipy.org/doc/numpy-1.15.1/reference/generated/...
    ... numpy.lib.mixins.NDArrayOperatorsMixin.html>`_
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
14
"""
dboe's avatar
dboe committed
15
# builtin
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
16
17
18
19
20
21
import warnings
import pathlib
from six import string_types
from contextlib import contextmanager
from collections import Counter

dboe's avatar
dboe committed
22
# 3rd party
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
23
24
25
import numpy as np
import sympy
import scipy as sp
dboe's avatar
dboe committed
26
import sortedcontainers
27
import rna
dboe's avatar
dboe committed
28

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
29
import tfields.bases
dboe's avatar
dboe committed
30
31

np.seterr(all="warn", over="raise")
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
32
33
34
35
36
37


def rank(tensor):
    """
    Tensor rank
    """
dboe's avatar
dboe committed
38
    tensor = np.asarray(tensor)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
39
40
41
42
43
44
45
    return len(tensor.shape) - 1


def dim(tensor):
    """
    Manifold dimension
    """
dboe's avatar
dboe committed
46
    tensor = np.asarray(tensor)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
47
48
49
50
51
    if rank(tensor) == 0:
        return 1
    return tensor.shape[1]


dboe's avatar
dboe committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
class AbstractObject(object):
    def save(self, path, *args, **kwargs):
        """
        Saving by redirecting to the correct save method depending on path

        Args:
            path (str or buffer)
            *args:
                forwarded to extension specific method
            **kwargs:
                extension (str): only needed if path is buffer
                ... remaining:forwarded to extension specific method
        """
        # get the extension
        if isinstance(path, (string_types, pathlib.Path)):
            extension = pathlib.Path(path).suffix.lstrip(".")
        else:
            raise ValueError("Wrong path type {0}".format(type(path)))
        path = str(path)

        # get the save method
        try:
            save_method = getattr(self, "_save_{extension}".format(**locals()))
        except:
            raise NotImplementedError(
                "Can not find save method for extension: "
                "{extension}.".format(**locals())
            )

        path = rna.path.resolve(path)
        return save_method(path, **kwargs)

    @classmethod
    def load(cls, path, *args, **kwargs):
        """
        load a file as a tensors object.

        Args:
            path (str or buffer)
            *args:
                forwarded to extension specific method
            **kwargs:
                extension (str): only needed if path is buffer
                ... remaining:forwarded to extension specific method
        """
        if isinstance(path, (string_types, pathlib.Path)):
            extension = pathlib.Path(path).suffix.lstrip(".")
            path = str(path)
            path = rna.path.resolve(path)
        else:
            extension = kwargs.pop("extension", "npz")

        try:
            load_method = getattr(cls, "_load_{e}".format(e=extension))
        except:
            raise NotImplementedError(
                "Can not find load method for extension: "
                "{extension}.".format(**locals())
            )
        return load_method(path, *args, **kwargs)

    def _save_npz(self, path, **kwargs):
        """
        Args:
            path (open file or str/unicode): destination to save file to.

        Examples:
            Build some dummies:
            >>> import tfields
            >>> from tempfile import NamedTemporaryFile
            >>> out_file = NamedTemporaryFile(suffix='.npz')
            >>> p = tfields.Points3D([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]],
            ...                      name='my_points')
            >>> scalars = tfields.Tensors([0, 1, 2], name=42)
            >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
            >>> maps = [tfields.TensorFields([[0, 1, 2], [0, 1, 2]], [42, 21]),
            ...         tfields.TensorFields([[1], [2]], [-42, -21])]
            >>> m = tfields.TensorMaps(vectors, scalars,
            ...                        maps=maps)

            Simply give the file name to save
            >>> p.save(out_file.name)
            >>> _ = out_file.seek(0)  # this is only necessary in the test
            >>> p1 = tfields.Points3D.load(out_file.name)
            >>> assert p.equal(p1)
            >>> assert p.coord_sys == p1.coord_sys

            The fully nested structure of a TensorMaps object is reconstructed
            >>> out_file_maps = NamedTemporaryFile(suffix='.npz')
            >>> m.save(out_file_maps.name)
            >>> _ = out_file_maps.seek(0)
            >>> m1 = tfields.TensorMaps.load(out_file_maps.name,
            ...                              allow_pickle=True)
            >>> assert m.equal(m1)
            >>> assert m.maps[0].dtype == m1.maps[0].dtype

            Names are preserved
            >>> assert p.name == 'my_points'
            >>> m.names
            [42]

        """
dboe's avatar
dboe committed
154
        content_dict = self._as_new_dict()
dboe's avatar
dboe committed
155
156
157
158
159
160
161
162
163
164
165
166
        np.savez(path, **content_dict)

    @classmethod
    def _load_npz(cls, path, **load_kwargs):
        """
        Factory method
        Given a path to a npz file, construct the object
        """
        # TODO: think about allow_pickle, wheter it really should be True or
        # wheter we could avoid pickling (potential security issue)
        load_kwargs.setdefault('allow_pickle', True)
        np_file = np.load(path, **load_kwargs)
dboe's avatar
dboe committed
167
        return cls._from_new_dict(dict(np_file))
dboe's avatar
dboe committed
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

    def _args(self) -> tuple:
        return tuple()

    def _kwargs(self) -> dict:
        return dict()

    _HIERARCHY_SEPARATOR = '::'

    def _as_new_dict(self):
        d = {}

        # type
        d["type"] = type(self).__name__

        # args and kwargs
        for base_attr, iterable in [
                ('args', ((str(i), arg)
                          for i, arg in enumerate(self._args()))),
                ('kwargs', self._kwargs().items())]:
            for attr, value in iterable:
                attr = base_attr + self._HIERARCHY_SEPARATOR + attr
                if hasattr(value, '_as_new_dict'):
                    part_dict = value._as_new_dict()
                    for part_attr, part_value in part_dict.items():
                        d[
                            attr + self._HIERARCHY_SEPARATOR + part_attr
                        ] = part_value
                else:
                    d[attr] = value
        return d

    @classmethod
    def _from_new_dict(cls, d: dict):
        d.pop('type')

        here = {}
        for string in d:  # TOO no sortelist
            value = d[string]

            attr, _, end = string.partition(cls._HIERARCHY_SEPARATOR)
            key, _, end = end.partition(cls._HIERARCHY_SEPARATOR)
            if attr not in here:
                here[attr] = {}
            if key not in here[attr]:
                here[attr][key] = {}
            here[attr][key][end] = value

        """
        Do the recursion
        """
        for attr in here:
            for key in here[attr]:
dboe's avatar
dboe committed
221
                if 'type' in here[attr][key]:
dboe's avatar
dboe committed
222
                    obj_type = here[attr][key].get("type")
dboe's avatar
dboe committed
223
224
                    if isinstance(obj_type, np.ndarray):  # happens on np.load
                        obj_type = obj_type.tolist()
dboe's avatar
dboe committed
225
226
227
228
229
230
                    if isinstance(obj_type, bytes):
                        # asthonishingly, this is not necessary under linux.
                        # Found under nt. ???
                        obj_type = obj_type.decode("UTF-8")
                    obj_type = getattr(tfields, obj_type)
                    attr_value = obj_type._from_new_dict(here[attr][key])
dboe's avatar
dboe committed
231
232
                else: # if len(here[attr][key]) == 1:
                    attr_value = here[attr][key].pop('')
dboe's avatar
dboe committed
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
                here[attr][key] = attr_value

        '''
        Build the generic way
        '''
        args = here.pop('args', tuple())
        args = tuple(args[key] for key in sorted(args))
        kwargs = here.pop('kwargs', {})
        assert len(here) == 0
        obj = cls(*args, **kwargs)
        return obj

    def _as_dict(self):
        """
        Recursively walk trough all __slots__ and describe all elements
        """
        d = {}
        d["bulk"] = self.bulk
        d["bulk_type"] = self.__class__.__name__
        for attr in self._iter_slots():
            value = getattr(self, attr)

            if hasattr(value, '_as_dict'):
                value = value._as_dict()
            elif isinstance(value, (list)):  # is_iterable
                if len(value) == 0:
                    d[attr] = None
                elif hasattr(value[0], '_as_dict'):
                    for i, part in enumerate(value):
                        part_dict = part._as_dict()
                        for part_attr, part_value in part_dict.items():
                            d[
                                "{attr}::{i}::{part_attr}".format(**locals())
                            ] = part_value
                    continue
            d[attr] = value
        return d

    @classmethod
    def _from_dict(cls, **d):
        """
        legacy method - Opposite of old _as_dict method which is removed in
        favour of nested object saving under 'data'
        """
        list_dict = {}
        kwargs = {}
        """
        De-Flatten the first layer of lists
        """
        for key in sorted(list(d)):
            if "::" in key:
                splits = key.split("::")
                attr, _, end = key.partition("::")
                if attr not in list_dict:
                    list_dict[attr] = {}

                index, _, end = end.partition("::")
                if not index.isdigit():
                    raise ValueError("None digit index given")
                index = int(index)
                if index not in list_dict[attr]:
                    list_dict[attr][index] = {}
                list_dict[attr][index][end] = d[key]
            else:
                kwargs[key] = d[key]

        """
        Build the lists (recursively)
        """
        for key in list(list_dict):
            sub_dict = list_dict[key]
            list_dict[key] = []
            for index in sorted(list(sub_dict)):
                bulk_type = sub_dict[index].get("bulk_type")
                # bulk_type = bulk_type.tolist() was necessary before. no clue
                if isinstance(bulk_type, bytes):
                    # asthonishingly, this is not necessary under linux.
                    # Found under nt. ???
                    bulk_type = bulk_type.decode("UTF-8")
                bulk_type = getattr(tfields, bulk_type)
                list_dict[key].append(bulk_type._from_dict(**sub_dict[index]))

        with cls._bypass_setters('fields', demand_existence=False):
            '''
            Build the normal way
            '''
            bulk = kwargs.pop('bulk')
            bulk_type = kwargs.pop('bulk_type')
            obj = cls.__new__(cls, bulk, **kwargs)

            '''
            Set list attributes
            '''
            for attr, list_value in list_dict.items():
                setattr(obj, attr, list_value)
        return obj


class AbstractNdarray(np.ndarray, AbstractObject):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
332
333
334
335
    """
    All tensors and subclasses should derive from AbstractNdarray.
    AbstractNdarray implements all the inheritance specifics for np.ndarray
    Whene inheriting, three attributes are of interest:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
336
337

    Attributes:
338
        __slots__ (List(str)): If you want to add attributes to
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
339
340
341
342
343
            your AbstractNdarray subclass, add the attribute name to __slots__
        __slot_defaults__ (list): if __slot_defaults__ is None, the
            defaults for the attributes in __slots__ will be None
            other values will be treaded as defaults to the corresponding
            arg at the same position in the __slots__ list.
344
        __slot_dtype__ (List(dtypes)): for the conversion of the
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
345
346
            args in __slots__ to numpy arrays. None values mean no
            conversion.
347
348
349
        __slot_setters__ (List(callable)): Because __slots__ and properties are
            mutually exclusive this is a possibility to take care of proper
            attribute handling. None will be passed for 'not set'.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
350
351
352
353

    Args:
        array (array-like): input array
        **kwargs: arguments corresponding to __slots__
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
354

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
355
356
    TODO:
        equality check
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
357

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
358
    """
dboe's avatar
dboe committed
359

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
360
361
    __slots__ = []
    __slot_defaults__ = []
362
    __slot_dtypes__ = []
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
363
364
365
    __slot_setters__ = []

    def __new__(cls, array, **kwargs):  # pragma: no cover
dboe's avatar
dboe committed
366
367
368
        raise NotImplementedError(
            "{clsType} type must implement '__new__'".format(clsType=type(cls))
        )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
369
370
371
372
373
374
375
376
377
378
379
380

    def __array_finalize__(self, obj):
        if obj is None:
            return
        for attr in self._iter_slots():
            setattr(self, attr, getattr(obj, attr, None))

    def __array_wrap__(self, out_arr, context=None):
        return np.ndarray.__array_wrap__(self, out_arr, context)

    @classmethod
    def _iter_slots(cls):
dboe's avatar
dboe committed
381
        return [att for att in cls.__slots__ if att != "_cache"]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
382
383
384
385
386

    @classmethod
    def _update_slot_kwargs(cls, kwargs):
        """
        set the defaults in kwargs according to __slot_defaults__
387
        and convert the kwargs according to __slot_dtypes__
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
388
        """
389
        slot_defaults = cls.__slot_defaults__ + [None] * (
dboe's avatar
dboe committed
390
391
            len(cls.__slots__) - len(cls.__slot_defaults__)
        )
392
393
        slot_dtypes = cls.__slot_dtypes__ + [None] * (
            len(cls.__slots__) - len(cls.__slot_dtypes__)
dboe's avatar
dboe committed
394
395
        )
        for attr, default, dtype in zip(
396
            cls.__slots__, slot_defaults, slot_dtypes
dboe's avatar
dboe committed
397
398
        ):
            if attr == "_cache":
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
399
400
401
402
403
404
405
                continue
            if attr not in kwargs:
                kwargs[attr] = default
            if dtype is not None:
                try:
                    kwargs[attr] = np.array(kwargs[attr], dtype=dtype)
                except Exception as err:
dboe's avatar
dboe committed
406
407
408
                    raise ValueError(
                        str(attr) + str(dtype) + str(kwargs[attr]) + str(err)
                    )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
409
410
411
412
413
414
415
416
417
418
419
420

    def __setattr__(self, name, value):
        if name in self.__slots__:
            index = self.__slots__.index(name)
            try:
                setter = self.__slot_setters__[index]
            except IndexError:
                setter = None
            if setter is not None:
                value = setter(value)
        super(AbstractNdarray, self).__setattr__(name, value)

dboe's avatar
dboe committed
421
422
423
424
425
426
    def _args(self):
        return (np.array(self),)

    def _kwargs(self):
        return dict((attr, getattr(self, attr)) for attr in self._iter_slots())

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
427
428
    def __reduce__(self):
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
429
430
        important for pickling (see `here <https://stackoverflow.com/questions/26598109/preserve-custom-attributes-when-pickling-subclass-of-numpy-array>`_)

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
431
432
433
434
435
436
        Examples:
            >>> from tempfile import NamedTemporaryFile
            >>> import pickle
            >>> import tfields

            Build a dummy scalar field
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
437

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
438
439
440
            >>> from tfields import Tensors, TensorFields
            >>> scalars = Tensors([0, 1, 2])
            >>> vectors = Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
dboe's avatar
dboe committed
441
442
443
            >>> scalar_field = TensorFields(vectors,
            ...                             scalars,
            ...                             coord_sys='cylinder')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
444
445

            Save it and restore it
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
446

447
            >>> out_file = NamedTemporaryFile(suffix='.pickle')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
448

449
            >>> pickle.dump(scalar_field,
450
451
            ...             out_file)
            >>> _ = out_file.seek(0)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
452

453
            >>> sf = pickle.load(out_file)
454
            >>> sf.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
455
456
457
458
459
460
461
462
463
            True
            >>> sf.fields[0][2] == 2.
            True

        """
        # Get the parent's __reduce__ tuple
        pickled_state = super(AbstractNdarray, self).__reduce__()

        # Create our own tuple to pass to __setstate__
dboe's avatar
dboe committed
464
465
466
        new_state = pickled_state[2] + tuple(
            [getattr(self, slot) for slot in self._iter_slots()]
        )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
467

dboe's avatar
dboe committed
468
469
        # Return a tuple that replaces the parent's __setstate__
        # tuple with our own
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
470
471
472
473
        return (pickled_state[0], pickled_state[1], new_state)

    def __setstate__(self, state):
        """
474
        Counterpart to __reduce__. Important for unpickling.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
475
476
        """
        # Call the parent's __setstate__ with the other tuple elements.
dboe's avatar
dboe committed
477
478
479
        super(AbstractNdarray, self).__setstate__(
            state[0 : -len(self._iter_slots())]
        )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
480
481

        # set the __slot__ attributes
482
483
484
485
486
487
488
489
490
491
492
        valid_slot_attrs = list(self._iter_slots())
        added_slot_attrs = ['name']  # attributes that have been added later
                                     # have not been pickled with the full
                                     # information and thus need to be
                                     # excluded from the __setstate__
                                     # need to be in the same order as they have
                                     # been added to __slots__
        n_old = len(valid_slot_attrs) - len(state[5:])
        if n_old > 0:
            for latest_index in range(n_old):
                new_slot = added_slot_attrs[-latest_index]
493
                warnings.warn("Slots with names '{new_slot}' appears to have been "
494
495
496
497
498
499
500
501
502
                              "added after the creation of the reduced state. "
                              "No corresponding state found in __setstate__."
                              .format(**locals()))
                valid_slot_attrs.pop(valid_slot_attrs.index(new_slot))
                setattr(self, new_slot, None)

        for slot_index, slot in enumerate(valid_slot_attrs):
            state_index = 5 + slot_index
            setattr(self, slot, state[state_index])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
503

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
504
505
506
507
508
509
510
511
    @property
    def bulk(self):
        """
        The pure ndarray version of the actual state
            -> nothing attached
        """
        return np.array(self)

512
513
    @classmethod
    @contextmanager
dboe's avatar
dboe committed
514
515
516
    def _bypass_setters(cls, *slots,
                        empty_means_all=True,
                        demand_existence=False):
517
518
519
        """
        Temporarily remove the setter in __slot_setters__ corresponding to slot
        position in __slot__. You should know what you do, when using this.
520
521
522
523
524

        Args:
            *slots (str): attribute names in __slots__
            empty_means_all (bool): defines behaviour when slots is empty.
                When True: if slots is empty mute all slots in __slots__
dboe's avatar
dboe committed
525
526
            demand_existence (bool): if false do not check the existence of the
                slot in __slots__ - do nothing for that slot. Handle with care!
527
528
529
530
531
532
        """
        if not slots and empty_means_all:
            slots = cls.__slots__
        slot_indices = []
        setters = []
        for slot in slots:
dboe's avatar
dboe committed
533
534
535
536
537
538
539
540
            slot_index = cls.__slots__.index(slot)\
                if slot in cls.__slots__ else None
            if slot_index is None:
                # slot not in cls.__slots__.
                if demand_existence:
                    raise ValueError(
                        "Slot {slot} not existing".format(**locals()))
                continue
541
542
543
544
545
546
547
            if len(cls.__slot_setters__) < slot_index + 1:
                # no setter to be found
                continue
            slot_indices.append(slot_index)
            setter = cls.__slot_setters__[slot_index]
            setters.append(setter)
            cls.__slot_setters__[slot_index] = None
548
        yield
549
550
        for slot_index, setter in zip(slot_indices, setters):
            cls.__slot_setters__[slot_index] = setter
551

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
552
553
554
    def copy(self, *args, **kwargs):
        """
        The standard ndarray copy does not copy slots. Correct for this.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
555

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
556
557
        Examples:
            >>> import tfields
dboe's avatar
dboe committed
558
559
            >>> m = tfields.TensorMaps(
            ...     [[1,2,3], [3,3,3], [0,0,0], [5,6,7]],
dboe's avatar
dboe committed
560
            ...     maps=[[[0, 1, 2], [1, 2, 3]], [1, 2])])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
561
562
563
564
565
566
            >>> mc = m.copy()
            >>> mc is m
            False
            >>> mc.maps[0].fields[0] is m.maps[0].fields[0]
            False

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
567
        TODO:
dboe's avatar
dboe committed
568
569
            This function implementation could be more general or maybe
            redirect to deepcopy?
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
570
        """
dboe's avatar
dboe committed
571
        inst = super().copy(*args, **kwargs)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
572
573
        for attr in self._iter_slots():
            value = getattr(self, attr)
dboe's avatar
dboe committed
574
            if hasattr(value, "copy") and not isinstance(value, list):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
575
576
577
578
                setattr(inst, attr, value.copy(*args, **kwargs))
            elif isinstance(value, list):
                list_copy = []
                for item in value:
dboe's avatar
dboe committed
579
                    if hasattr(item, "copy"):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
580
581
582
583
584
585
586
587
588
589
590
                        list_copy.append(item.copy(*args, **kwargs))
                    else:
                        list_copy.append(item)
                setattr(inst, attr, list_copy)

        return inst


class Tensors(AbstractNdarray):
    """
    Set of tensors with the same basis.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
591

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
592
593
    TODO:
        all slot args should be protected -> _base
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
594

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
595
596
    Args:
        tensors: np.ndarray or AbstractNdarray subclass
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
597
598
        **kwargs:
            name: optional - custom name, can be anything
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
599

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
600
601
    Examples:
        >>> import numpy as np
602
        >>> import tfields
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
603
604

        Initialize a scalar range
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
605

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
606
607
608
609
610
        >>> scalars = tfields.Tensors([0, 1, 2])
        >>> scalars.rank == 0
        True

        Initialize vectors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
611

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
612
613
614
615
616
        >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
        >>> vectors.rank == 1
        True
        >>> vectors.dim == 3
        True
617
        >>> assert vectors.coord_sys == 'cartesian'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
618
619

        Initialize the Levi-Zivita Tensor
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
620

621
622
623
624
        >>> matrices = tfields.Tensors(
        ...                     [[[0, 0, 0], [0, 0, 1], [0, -1, 0]],
        ...                      [[0, 0, -1], [0, 0, 0], [1, 0, 0]],
        ...                      [[0, 1, 0], [-1, 0, 0], [0, 0, 0]]])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
625
626
627
628
629
630
631
632
        >>> matrices.shape == (3, 3, 3)
        True
        >>> matrices.rank == 2
        True
        >>> matrices.dim == 3
        True

        Initializing in different start coordinate system
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
633

634
635
        >>> cyl = tfields.Tensors([[5, np.arctan(4. / 3.), 42]], coord_sys='cylinder')
        >>> assert cyl.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
636
        >>> cyl.transform('cartesian')
637
        >>> assert cyl.coord_sys == 'cartesian'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
638
639
640
641
642
643
        >>> cart = cyl
        >>> assert round(cart[0, 0], 10) == 3.
        >>> assert round(cart[0, 1], 10) == 4.
        >>> assert cart[0, 2] == 42

        Initialize with copy constructor keeps the coordinate system
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
644

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
645
646
        >>> with vectors.tmp_transform('cylinder'):
        ...     vect_cyl = tfields.Tensors(vectors)
647
648
        ...     assert vect_cyl.coord_sys == vectors.coord_sys
        >>> assert vect_cyl.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
649
650

        You can demand a special dimension.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
651

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
652
653
654
655
656
657
658
659
        >>> _ = tfields.Tensors([[1, 2, 3]], dim=3)
        >>> _ = tfields.Tensors([[1, 2, 3]], dim=2)  # doctest: +ELLIPSIS
        Traceback (most recent call last):
            ...
        ValueError: Incorrect dimension: 3 given, 2 demanded.

        The dimension argument (dim) becomes necessary if you want to initialize
        an empty array
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
660

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
661
662
663
664
665
666
667
668
        >>> _ = tfields.Tensors([])  # doctest: +ELLIPSIS
        Traceback (most recent call last):
            ...
        ValueError: Empty tensors need dimension parameter 'dim'.
        >>> tfields.Tensors([], dim=7)
        Tensors([], shape=(0, 7), dtype=float64)

    """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
669
    __slots__ = ['coord_sys', 'name']
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
670
671
672
673
    __slot_defaults__ = ['cartesian']
    __slot_setters__ = [tfields.bases.get_coord_system_name]

    def __new__(cls, tensors, **kwargs):
dboe's avatar
dboe committed
674
675
676
        dtype = kwargs.pop("dtype", None)
        order = kwargs.pop("order", None)
        dim = kwargs.pop("dim", None)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
677

dboe's avatar
dboe committed
678
        """ copy constructor extracts the kwargs from tensors"""
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
679
680
681
        if issubclass(type(tensors), Tensors):
            if dim is not None:
                dim = tensors.dim
dboe's avatar
dboe committed
682
            coord_sys = kwargs.pop("coord_sys", tensors.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
683
            tensors = tensors.copy()
684
685
            tensors.transform(coord_sys)
            kwargs['coord_sys'] = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
686
            kwargs['name'] = kwargs.pop('name', tensors.name)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
687
688
689
690
            if dtype is None:
                dtype = tensors.dtype
        else:
            if dtype is None:
dboe's avatar
dboe committed
691
                if hasattr(tensors, "dtype"):
692
693
694
                    dtype = tensors.dtype
                else:
                    dtype = np.float64
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
695

dboe's avatar
dboe committed
696
        """ demand iterable structure """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
697
698
699
        try:
            len(tensors)
        except TypeError as err:
dboe's avatar
dboe committed
700
701
702
703
            raise TypeError(
                "Iterable structure necessary."
                " Got {tensors}".format(**locals())
            )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
704

dboe's avatar
dboe committed
705
        """ process empty inputs """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
706
707
708
709
710
711
712
713
        if len(tensors) == 0:
            if issubclass(type(tensors), tfields.Tensors):
                tensors = np.empty(tensors.shape, dtype=tensors.dtype)
            elif dim is not None:
                tensors = np.empty((0, dim))
            if issubclass(type(tensors), np.ndarray):
                # np.empty
                pass
dboe's avatar
dboe committed
714
715
            elif hasattr(tensors, 'shape'):
                dim = dim(tensors)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
716
            else:
dboe's avatar
dboe committed
717
                raise ValueError(
dboe's avatar
dboe committed
718
                    "Empty tensors need dimension parameter 'dim'."
dboe's avatar
dboe committed
719
                )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
720
721
722
723

        tensors = np.asarray(tensors, dtype=dtype, order=order)
        obj = tensors.view(cls)

dboe's avatar
dboe committed
724
        """ check dimension(s) """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
725
726
        for d in obj.shape[1:]:
            if not d == obj.dim:
dboe's avatar
dboe committed
727
728
729
730
731
732
733
                raise ValueError(
                    "Dimensions are inconstistent. "
                    "Manifold dimension is {obj.dim}. "
                    "Found dimensions {found} in {obj}.".format(
                        found=obj.shape[1:], **locals()
                    )
                )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
734
735
        if dim is not None:
            if dim != obj.dim:
dboe's avatar
dboe committed
736
737
738
739
                raise ValueError(
                    "Incorrect dimension: {obj.dim} given,"
                    " {dim} demanded.".format(**locals())
                )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
740

dboe's avatar
dboe committed
741
        """ update kwargs with defaults from slots """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
742
743
        cls._update_slot_kwargs(kwargs)

dboe's avatar
dboe committed
744
        """ set kwargs to slots attributes """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
745
746
        for attr in kwargs:
            if attr not in cls._iter_slots():
dboe's avatar
dboe committed
747
748
749
750
                raise AttributeError(
                    "Keyword argument {attr} not accepted "
                    "for class {cls}".format(**locals())
                )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
751
752
753
754
            setattr(obj, attr, kwargs[attr])

        return obj

755
756
757
758
    def __iter__(self):
        """
        Forwarding iterations to the bulk array. Otherwise __getitem__ would
        kick in and slow down imensely.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
759

760
761
762
763
764
765
766
767
768
769
770
        Examples:
            >>> import tfields
            >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
            >>> scalar_field = tfields.TensorFields(vectors, [42, 21, 10.5], [1, 2, 3])
            >>> [(point.rank, point.dim) for point in scalar_field]
            [(0, 1), (0, 1), (0, 1)]

        """
        for index in range(len(self)):
            yield super(Tensors, self).__getitem__(index).view(Tensors)

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
771
772
773
774
    @classmethod
    def merged(cls, *objects, **kwargs):
        """
        Factory method
dboe's avatar
dboe committed
775
        Merges all input arguments to one object
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
776

777
778
779
        Args:
            return_templates (bool): return the templates which can be used
                together with cut to retrieve the original objects
dboe's avatar
dboe committed
780
781
            dim (int):
            **kwargs: passed to cls
782

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
783
784
785
786
787
        Examples:
            >>> import numpy as np
            >>> import tfields
            >>> import tfields.bases

788
789
            The new object with turn out in the most frequent coordinate
            system if not specified explicitly
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
790

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
791
            >>> vec_a = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
792
793
            >>> vec_b = tfields.Tensors([[5, 4, 1]], coord_sys=tfields.bases.cylinder)
            >>> vec_c = tfields.Tensors([[4, 2, 3]], coord_sys=tfields.bases.cylinder)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
794
            >>> merge = tfields.Tensors.merged(vec_a, vec_b, vec_c, [[2, 0, 1]])
795
            >>> assert merge.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
796
797
798
799
800
801
802
803
            >>> assert merge.equal([[0, 0, 0],
            ...                     [0, 0, 1],
            ...                     [1, -np.pi / 2, 0],
            ...                     [5, 4, 1],
            ...                     [4, 2, 3],
            ...                     [2, 0, 1]])

            Merge also shifts the maps to still refer to the same tensors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
804

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
805
806
            >>> tm_a = tfields.TensorMaps(merge, maps=[[[0, 1, 2]]])
            >>> tm_b = tm_a.copy()
807
            >>> assert tm_a.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
808
            >>> tm_merge = tfields.TensorMaps.merged(tm_a, tm_b)
809
            >>> assert tm_merge.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
810
811
812
813
            >>> assert tm_merge.maps[0].equal([[0, 1, 2],
            ...                               list(range(len(merge),
            ...                                          len(merge) + 3,
            ...                                          1))])
dboe's avatar
dboe committed
814

815
816
            >>> obj_list = [tfields.Tensors([[1, 2, 3]],
            ...             coord_sys=tfields.bases.CYLINDER),
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
817
818
            ...             tfields.Tensors([[3] * 3]),
            ...             tfields.Tensors([[5, 1, 3]])]
819
820
            >>> merge2 = tfields.Tensors.merged(
            ...     *obj_list, coord_sys=tfields.bases.CARTESIAN)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
821
822
            >>> assert merge2.equal([[-0.41614684, 0.90929743, 3.],
            ...                      [3, 3, 3], [5, 1, 3]], atol=1e-8)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
823

824
825
826
827
828
829
830
831
832
            The return_templates argument allows to retrieve a template which
            can be used with the cut method.

            >>> merge, templates = tfields.Tensors.merged(
            ...     vec_a, vec_b, vec_c, return_templates=True)
            >>> assert merge.cut(templates[0]).equal(vec_a)
            >>> assert merge.cut(templates[1]).equal(vec_b)
            >>> assert merge.cut(templates[2]).equal(vec_c)

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
833
834
        """

dboe's avatar
dboe committed
835
836
        """ get most frequent coord_sys or predefined coord_sys """
        coord_sys = kwargs.get("coord_sys", None)
837
        return_templates = kwargs.pop("return_templates", False)
838
        if coord_sys is None:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
839
840
841
            bases = []
            for t in objects:
                try:
842
                    bases.append(t.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
843
844
845
                except AttributeError:
                    pass
            if bases:
846
                # get most frequent coord_sys
dboe's avatar
dboe committed
847
848
849
850
                coord_sys = sorted(bases, key=Counter(bases).get, reverse=True)[
                    0
                ]
                kwargs["coord_sys"] = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
851
            else:
dboe's avatar
dboe committed
852
853
854
855
                default = cls.__slot_defaults__[
                    cls.__slots__.index("coord_sys")
                ]
                kwargs["coord_sys"] = default
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
856

dboe's avatar
dboe committed
857
        """ transform all raw inputs to cls type with correct coord_sys. Also
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
858
        automatically make a copy of those instances that are of the correct
dboe's avatar
dboe committed
859
        type already."""
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
860
        objects = [cls.__new__(cls, t, **kwargs) for t in objects]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
861

dboe's avatar
dboe committed
862
        """ check rank and dimension equality """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
863
864
865
866
867
        if not len(set([t.rank for t in objects])) == 1:
            raise TypeError("Tensors must have the same rank for merging.")
        if not len(set([t.dim for t in objects])) == 1:
            raise TypeError("Tensors must have the same dimension for merging.")

dboe's avatar
dboe committed
868
        """ merge all objects """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
869
870
871
872
873
874
        remainingObjects = objects[1:] or []
        tensors = objects[0]

        for i, obj in enumerate(remainingObjects):
            tensors = np.append(tensors, obj, axis=0)

dboe's avatar
dboe committed
875
        if len(tensors) == 0 and not kwargs.get('dim', None):
876
877
            # if you can not determine the tensor dimension, search for the
            # first object with some entries
dboe's avatar
dboe committed
878
            kwargs['dim'] = dim(objects[0])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
879

880
881
882
883
884
885
886
887
888
889
890
891
        if not return_templates:
            return cls.__new__(cls, tensors, **kwargs)
        else:
            tensor_lengths = [len(o) for o in objects]
            cum_tensor_lengths = [sum(tensor_lengths[:i])
                                  for i in range(len(objects))]
            templates = [
                tfields.TensorFields(
                    obj,
                    np.arange(tensor_lengths[i]) + cum_tensor_lengths[i])
                for i, obj in enumerate(objects)]
            return cls.__new__(cls, tensors, **kwargs), templates
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
892
893
894
895
896

    @classmethod
    def grid(cls, *base_vectors, **kwargs):
        """
        Args:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
897
898
899
900
901
902
903
            *base_vectors (Iterable): base coordinates. The amount of base
                vectors defines the dimension

            **kwargs:
                iter_order (list): order in which the iteration will be done.
                    Frequency rises with position in list. default is [0, 1, 2]
                    iteration will be done like::
dboe's avatar
dboe committed
904

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
905
906
907
908
909
910
                    for v0 in base_vectors[iter_order[0]]:
                        for v1 in base_vectors[iter_order[1]]:
                            for v2 in base_vectors[iter_order[2]]:
                                coords0.append(locals()['v%i' % iter_order[0]])
                                coords1.append(locals()['v%i' % iter_order[1]])
                                coords2.append(locals()['v%i' % iter_order[2]])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
911
912
913

        Examples:
            Initilaize using the mgrid notation
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
914

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
915
916
917
918
919
920
921
922
923
924
925
            >>> import tfields
            >>> mgrid = tfields.Tensors.grid((0, 1, 2j), (3, 4, 2j), (6, 7, 2j))
            >>> mgrid.equal([[0, 3, 6],
            ...              [0, 3, 7],
            ...              [0, 4, 6],
            ...              [0, 4, 7],
            ...              [1, 3, 6],
            ...              [1, 3, 7],
            ...              [1, 4, 6],
            ...              [1, 4, 7]])
            True
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
926
927
928

            Lists or arrays are accepted also.
            Furthermore, the iteration order can be changed
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
929

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
            >>> lins = tfields.Tensors.grid(np.linspace(3, 4, 2), np.linspace(0, 1, 2),
            ...                             np.linspace(6, 7, 2), iter_order=[1, 0, 2])
            >>> lins.equal([[3, 0, 6],
            ...             [3, 0, 7],
            ...             [4, 0, 6],
            ...             [4, 0, 7],
            ...             [3, 1, 6],
            ...             [3, 1, 7],
            ...             [4, 1, 6],
            ...             [4, 1, 7]])
            True
            >>> lins2 = tfields.Tensors.grid(np.linspace(0, 1, 2),
            ...                              np.linspace(3, 4, 2),
            ...                              np.linspace(6, 7, 2),
            ...                              iter_order=[2, 0, 1])
            >>> lins2.equal([[0, 3, 6],
            ...              [0, 4, 6],
            ...              [1, 3, 6],
            ...              [1, 4, 6],
            ...              [0, 3, 7],
            ...              [0, 4, 7],
            ...              [1, 3, 7],
            ...              [1, 4, 7]])
            True

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
955
956
            When given the coord_sys argument, the grid is performed in the
            given coorinate system:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
957

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
958
959
960
961
962
963
964
965
966
            >>> lins3 = tfields.Tensors.grid(np.linspace(4, 9, 2),
            ...                              np.linspace(np.pi/2, np.pi/2, 1),
            ...                              np.linspace(4, 4, 1),
            ...                              iter_order=[2, 0, 1],
            ...                              coord_sys=tfields.bases.CYLINDER)
            >>> assert lins3.coord_sys == 'cylinder'
            >>> lins3.transform('cartesian')
            >>> assert np.array_equal(lins3[:, 1], [4, 9])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
967
        """
dboe's avatar
dboe committed
968
969
970
971
972
973
974
975
        cls_kwargs = {
            attr: kwargs.pop(attr)
            for attr in list(kwargs)
            if attr in cls.__slots__
        }
        inst = cls.__new__(
            cls, tfields.lib.grid.igrid(*base_vectors, **kwargs), **cls_kwargs
        )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
        return inst

    @property
    def rank(self):
        """
        Tensor rank
        """
        return rank(self)

    @property
    def dim(self):
        """
        Manifold dimension
        """
        return dim(self)

992
    def transform(self, coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
993
994
        """
        Args:
995
            coord_sys (str)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
996
997
998
999
1000
1001
1002
1003
1004
1005

        Examples:
            >>> import numpy as np
            >>> import tfields

            CARTESIAN to SPHERICAL
            >>> t = tfields.Tensors([[1, 2, 2], [1, 0, 0], [0, 0, -1], [0, 0, 1], [0, 0, 0]])
            >>> t.transform('spherical')

            r
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1006

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1007
1008
1009
            >>> assert t[0, 0] == 3

            phi
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1010

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1011
1012
1013
1014
            >>> assert t[1, 1] == 0.
            >>> assert t[2, 1] == 0.

            theta is 0 at (0, 0, 1) and pi / 2 at (0, 0, -1)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1015

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1016
1017
1018
1019
1020
            >>> assert round(t[1, 2], 10) == round(0, 10)
            >>> assert t[2, 2] == -np.pi / 2
            >>> assert t[3, 2] == np.pi / 2

            theta is defined 0 for R == 0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1021

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1022
1023
1024
1025
1026
            >>> assert t[4, 0] == 0.
            >>> assert t[4, 2] == 0.


            CARTESIAN to CYLINDER
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1027

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1028
1029
1030
            >>> tCart = tfields.Tensors([[3, 4, 42], [1, 0, 0], [0, 1, -1], [-1, 0, 1], [0, 0, 0]])
            >>> t_cyl = tCart.copy()
            >>> t_cyl.transform('cylinder')
1031
            >>> assert t_cyl.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1032
1033

            R
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1034

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1035
1036
1037
1038
1039
1040
            >>> assert t_cyl[0, 0] == 5
            >>> assert t_cyl[1, 0] == 1
            >>> assert t_cyl[2, 0] == 1
            >>> assert t_cyl[4, 0] == 0

            Phi
dboe's avatar
dboe committed
1041

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1042
1043
1044
1045
1046
1047
            >>> assert round(t_cyl[0, 1], 10) == round(np.arctan(4. / 3), 10)
            >>> assert t_cyl[1, 1] == 0
            >>> assert round(t_cyl[2, 1], 10) == round(np.pi / 2, 10)
            >>> assert t_cyl[1, 1] == 0

            Z
dboe's avatar
dboe committed
1048

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1049
1050
1051
1052
            >>> assert t_cyl[0, 2] == 42
            >>> assert t_cyl[2, 2] == -1

            >>> t_cyl.transform('cartesian')
1053
            >>> assert t_cyl.coord_sys == 'cartesian'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1054
1055
1056
1057
            >>> assert t_cyl[0, 0] == 3

        """
        #           scalars                 empty             already there
1058
1059
        if self.rank == 0 or self.shape[0] == 0 or self.coord_sys == coord_sys:
            self.coord_sys = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1060
1061
            return

1062
1063
1064
        tfields.bases.transform(self, self.coord_sys, coord_sys)
        # self[:] = tfields.bases.transform(self, self.coord_sys, coord_sys)
        self.coord_sys = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1065
1066

    @contextmanager
1067
    def tmp_transform(self, coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1068
        """
1069
        Temporarily change the coord_sys to another coord_sys and change it back at exit
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1070
1071
        This method is for cleaner code only.
        No speed improvements go with this.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1072

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1073
1074
        Args:
            see transform
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1075

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1076
1077
        Examples:
            >>> import tfields
1078
            >>> p = tfields.Tensors([[1,2,3]], coord_sys=tfields.bases.SPHERICAL)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1079
            >>> with p.tmp_transform(tfields.bases.CYLINDER):
1080
1081
            ...     assert p.coord_sys == tfields.bases.CYLINDER
            >>> assert p.coord_sys == tfields.bases.SPHERICAL
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1082
1083

        """
1084
1085
        baseBefore = self.coord_sys
        if baseBefore == coord_sys:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1086
1087
            yield
        else:
1088
            self.transform(coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1089
1090
1091
1092
1093
1094
1095
1096

            yield

            self.transform(baseBefore)

    def mirror(self, coordinate, condition=None):
        """
        Reflect/Mirror the entries meeting <condition> at <coordinate> = 0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1097

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1098
1099
        Args:
            coordinate (int): coordinate index
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1100

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1101
1102
1103
1104
1105
1106
        Examples:
            >>> import tfields
            >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]])
            >>> p.mirror(1)
            >>> assert p.equal([[1, -2, 3], [4, -5,  6], [1, -2, -6]])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1107
1108
            multiple coordinates can be mirrored at the same time
            i.e. a point mirrorion would be
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1109

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1110
1111
1112
1113
1114
1115
            >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]])
            >>> p.mirror([0,2])
            >>> assert p.equal([[-1, 2, -3], [-4, 5, -6], [-1, 2., 6.]])

            You can give a condition as mask or as str.
            The mirroring will only be applied to the points meeting the condition.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1116

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1117
1118
            >>> import sympy
            >>> x, y, z = sympy.symbols('x y z')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1119
            >>> p.mirror([0, 2], y > 3)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
            >>> p.equal([[-1, 2, -3], [4, 5, 6], [-1, 2, 6]])
            True

        """
        if condition is None:
            condition = np.array([True for i in range(len(self))])
        elif isinstance(condition, sympy.Basic):
            condition = self.evalf(condition)
        if isinstance(coordinate, list) or isinstance(coordinate, tuple):
            for c in coordinate:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1130
                self.mirror(c, condition=condition)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1131
1132
1133
1134
1135
        elif isinstance(coordinate, int):
            self[:, coordinate][condition] *= -1
        else:
            raise TypeError()

dboe's avatar
dboe committed
1136
1137
1138
1139
1140
1141
1142
1143
1144
    def to_segment(
        self,
        segment,
        num_segments,
        coordinate,
        periodicity=2 * np.pi,
        offset=0.0,
        coord_sys=None,
    ):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1145
1146
1147
1148
1149
        """
        For circular (close into themself after
        <periodicity>) coordinates at index <coordinate> assume
        <num_segments> segments and transform all values to
        segment number <segment>
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1150

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1151
1152
1153
1154
1155
1156
        Args:
            segment (int): segment index (starting at 0)
            num_segments (int): number of segments
            coordinate (int): coordinate index
            periodicity (float): after what lenght, the coordiante repeats
            offset (float): offset in the mapping
1157
            coord_sys (str or sympy.CoordinateSystem): in which coord sys the
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1158
                transformation should be done
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1159

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1160
1161
1162
1163
1164
        Examples:
            >>> import tfields
            >>> import numpy as np
            >>> pStart = tfields.Points3D([[6, 2 * np.pi, 1],
            ...                            [6, 2 * np.pi / 5 * 3, 1]],
1165
            ...                           coord_sys='cylinder')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
            >>> p = tfields.Points3D(pStart)
            >>> p.to_segment(0, 5, 1, offset=-2 * np.pi / 10)
            >>> assert np.array_equal(p[:, 1], [0, 0])

            >>> p2 = tfields.Points3D(pStart)
            >>> p2.to_segment(1, 5, 1, offset=-2 * np.pi / 10)
            >>> assert np.array_equal(np.round(p2[:, 1], 4), [1.2566] * 2)

        """
        if segment > num_segments - 1:
            raise ValueError("Segment {0} not existent.".format(segment))

1178
1179
1180
        if coord_sys is None:
            coord_sys = self.coord_sys
        with self.tmp_transform(coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1181
            # map all values to first segment
dboe's avatar
dboe committed
1182
1183
1184
1185
1186
            self[:, coordinate] = (
                (self[:, coordinate] - offset) % (periodicity / num_segments)
                + offset
                + segment * periodicity / num_segments
            )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1187

dboe's avatar
dboe committed
1188
1189
1190
    def equal(
        self, other, rtol=None, atol=None, equal_nan=False, return_bool=True
    ):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1191
1192
        """
        Evaluate, whether the instance has the same content as other.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1193

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1194
1195
1196
1197
1198
1199
1200
        Args:
            optional:
                rtol (float)
                atol (float)
                equal_nan (bool)
            see numpy.isclose
        """
dboe's avatar
dboe committed
1201
1202
1203
1204
        if (
            issubclass(type(other), Tensors)
            and self.coord_sys != other.coord_sys
        ):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1205
            other = other.copy()
1206
            other.transform(self.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1207
1208
        x, y = np.asarray(self), np.asarray(other)
        if rtol is None and atol is None:
dboe's avatar
dboe committed
1209
            mask = x == y
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1210
1211
1212
1213
1214
            if equal_nan:
                both_nan = np.isnan(x) & np.isnan(y)
                mask[both_nan] = both_nan[both_nan]
        else:
            if rtol is None:
dboe's avatar
dboe committed
1215
                rtol = 0.0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1216
            if atol is None:
dboe's avatar
dboe committed
1217
                atol = 0.0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1218
1219
1220
1221
1222
1223
1224
1225
1226
            mask = np.isclose(x, y, rtol=rtol, atol=atol, equal_nan=equal_nan)
        if return_bool:
            return bool(np.all(mask))
        return mask

    def contains(self, other, **kwargs):
        """
        Inspired by a speed argument @
        stackoverflow.com/questions/14766194/testing-whether-a-numpy-array-contains-a-given-row
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1227

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1228
1229
1230
1231
1232
1233
1234
1235
1236
        Examples:
            >>> import tfields
            >>> p = tfields.Tensors([[1,2,3], [4,5,6], [6,7,8]])
            >>> p.contains([4,5,6])
            True

        """
        return any(self.equal(other, return_bool=False).all(1))

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1237
    def indices(self, tensor, rtol=None, atol=None):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1238
1239
1240
        """
        Returns:
            list of int: indices of tensor occuring
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1241

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1242
        Examples:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1243
            Rank 1 Tensors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1244

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1245
1246
1247
1248
1249
1250
1251
1252
            >>> import tfields
            >>> p = tfields.Tensors([[1,2,3], [4,5,6], [6,7,8], [4,5,6],
            ...                      [4.1, 5, 6]])
            >>> p.indices([4,5,6])
            array([1, 3])
            >>> p.indices([4,5,6.1], rtol=1e-5, atol=1e-1)
            array([1, 3, 4])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1253
            Rank 0 Tensors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1254

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1255
1256
1257
1258
1259
1260
            >>> p = tfields.Tensors([2, 3, 6, 3.01])
            >>> p.indices(3)
            array([1])
            >>> p.indices(3, rtol=1e-5, atol=1e-1)
            array([1, 3])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1261
        """
1262
1263
        x, y = np.asarray(self), np.asarray(tensor)
        if rtol is None and atol is None:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1264
            equal_method = np.equal
1265
1266
        else:
            equal_method = lambda a, b: np.isclose(a, b, rtol=rtol, atol=atol)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1267
1268

        # inspired by https://stackoverflow.com/questions/19228295/find-ordered-vector-in-numpy-array
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1269
        if self.rank == 0:
dboe's avatar
dboe committed
1270
            indices = np.where(equal_method((x - y), 0))[0]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1271
        elif self.rank == 1:
dboe's avatar
dboe committed
1272
            indices = np.where(np.all(equal_method((x - y), 0), axis=1))[0]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1273
1274
        else:
            raise NotImplementedError()
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1275
1276
        return indices

1277
    def index(self, tensor, **kwargs):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1278
1279
1280
        """
        Args:
            tensor
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1281

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1282
1283
1284
        Returns:
            int: index of tensor occuring
        """
1285
        indices = self.indices(tensor, **kwargs)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1286
1287
1288
1289
        if not indices:
            return None
        if len(indices) == 1:
            return indices[0]
dboe's avatar
dboe committed
1290
        raise ValueError("Multiple occurences of value {}".format(tensor))
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1291

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1292
    def moment(self, moment, weights=None):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1293
1294
1295
        """
        Returns:
            Moments of the distribution.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1296

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1297
1298
        Args:
            moment (int): n-th moment
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1299

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1300
1301
        Examples:
            >>> import tfields
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1302
            >>> import numpy as np
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1303
1304

            Skalars
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1305

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1306
            >>> t = tfields.Tensors(range(1, 6))
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1307
            >>> assert t.moment(1) == 0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1308
1309
1310
1311
            >>> assert t.moment(1, weights=[-2, -1, 20, 1, 2]) == 0.5
            >>> assert t.moment(2, weights=[0.25, 1, 17.5, 1, 0.25]) == 0.2

            Vectors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1312

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1313
            >>> t = tfields.Tensors(list(zip(range(1, 6), range(1, 6))))
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1314
1315
1316
1317
            >>> assert Tensors([0.5, 0.5]).equal(t.moment(1, weights=[-2, -1, 20, 1, 2]))
            >>> assert Tensors([1. , 0.5]).equal(
            ...     t.moment(1, weights=list(zip([-2, -1, 10, 1, 2],
            ...                                  [-2, -1, 20, 1, 2]))))
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1318

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1319
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1320
1321
1322
1323