core.py 74.9 KB
Newer Older
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1
2
3
4
5
6
7
8
#!/usr/bin/env
# encoding: utf-8
"""
Author:     Daniel Boeckenhoff
Mail:       daniel.boeckenhoff@ipp.mpg.de

core of tfields library
contains numpy ndarray derived bases of the tfields package
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
9
10

Notes:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
11
    It could be worthwhile concidering `np.li.mixins.NDArrayOperatorsMixin <https://docs.scipy.org/doc/numpy-1.15.1/reference/generated/numpy.lib.mixins.NDArrayOperatorsMixin.html>`_
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
12
13
14
15
16
17
18
19
20
21
22
23
"""
import warnings
import os
import pathlib
from six import string_types
from contextlib import contextmanager
from collections import Counter

import numpy as np
import sympy
import scipy as sp
import tfields.bases
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
24
from nltk.misc.chomsky import objects
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
np.seterr(all='warn', over='raise')


def rank(tensor):
    """
    Tensor rank
    """
    return len(tensor.shape) - 1


def dim(tensor):
    """
    Manifold dimension
    """
    if rank(tensor) == 0:
        return 1
    return tensor.shape[1]


class AbstractNdarray(np.ndarray):
    """
    All tensors and subclasses should derive from AbstractNdarray.
    AbstractNdarray implements all the inheritance specifics for np.ndarray
    Whene inheriting, three attributes are of interest:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
49
50

    Attributes:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
51
52
53
54
55
56
57
58
59
60
61
62
63
        __slots__ (list of str): If you want to add attributes to
            your AbstractNdarray subclass, add the attribute name to __slots__
        __slot_defaults__ (list): if __slot_defaults__ is None, the
            defaults for the attributes in __slots__ will be None
            other values will be treaded as defaults to the corresponding
            arg at the same position in the __slots__ list.
        __slotDtype__ (list of types): for the conversion of the
            args in __slots__ to numpy arrays. None values mean no
            conversion.

    Args:
        array (array-like): input array
        **kwargs: arguments corresponding to __slots__
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
64

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
65
66
    TODO:
        equality check
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
67

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
    """
    __slots__ = []
    __slot_defaults__ = []
    __slotDtypes__ = []
    __slot_setters__ = []

    def __new__(cls, array, **kwargs):  # pragma: no cover
        raise NotImplementedError("{clsType} type must implement '__new__'"
                                  .format(clsType=type(cls)))

    def __array_finalize__(self, obj):
        if obj is None:
            return
        for attr in self._iter_slots():
            setattr(self, attr, getattr(obj, attr, None))

    def __array_wrap__(self, out_arr, context=None):
        return np.ndarray.__array_wrap__(self, out_arr, context)

    @classmethod
    def _iter_slots(cls):
        return [att for att in cls.__slots__ if att != '_cache']

    @classmethod
    def _update_slot_kwargs(cls, kwargs):
        """
        set the defaults in kwargs according to __slot_defaults__
        and convert the kwargs according to __slotDtypes__
        """
        slotDefaults = cls.__slot_defaults__ + \
            [None] * (len(cls.__slots__) - len(cls.__slot_defaults__))
        slotDtypes = cls.__slotDtypes__ + \
            [None] * (len(cls.__slots__) - len(cls.__slotDtypes__))
        for attr, default, dtype in zip(cls.__slots__, slotDefaults, slotDtypes):
            if attr == '_cache':
                continue
            if attr not in kwargs:
                kwargs[attr] = default
            if dtype is not None:
                try:
                    kwargs[attr] = np.array(kwargs[attr], dtype=dtype)
                except Exception as err:
                    raise ValueError(str(attr) + str(dtype) + str(kwargs[attr]) + str(err))

    def __setattr__(self, name, value):
        if name in self.__slots__:
            index = self.__slots__.index(name)
            try:
                setter = self.__slot_setters__[index]
            except IndexError:
                setter = None
            if setter is not None:
                value = setter(value)
        super(AbstractNdarray, self).__setattr__(name, value)

    def __reduce__(self):
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
125
126
        important for pickling (see `here <https://stackoverflow.com/questions/26598109/preserve-custom-attributes-when-pickling-subclass-of-numpy-array>`_)

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
127
128
129
130
131
132
        Examples:
            >>> from tempfile import NamedTemporaryFile
            >>> import pickle
            >>> import tfields

            Build a dummy scalar field
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
133

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
134
135
136
            >>> from tfields import Tensors, TensorFields
            >>> scalars = Tensors([0, 1, 2])
            >>> vectors = Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
137
            >>> scalar_field = TensorFields(vectors, scalars, coord_sys='cylinder')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
138
139

            Save it and restore it
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
140

141
            >>> out_file = NamedTemporaryFile(suffix='.pickle')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
142

143
            >>> pickle.dump(scalar_field,
144
145
            ...             out_file)
            >>> _ = out_file.seek(0)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
146

147
            >>> sf = pickle.load(out_file)
148
            >>> sf.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
            True
            >>> sf.fields[0][2] == 2.
            True

        """
        # Get the parent's __reduce__ tuple
        pickled_state = super(AbstractNdarray, self).__reduce__()

        # Create our own tuple to pass to __setstate__
        new_state = pickled_state[2] + tuple([getattr(self, slot) for slot in
                                              self._iter_slots()])

        # Return a tuple that replaces the parent's __setstate__ tuple with our own
        return (pickled_state[0], pickled_state[1], new_state)

    def __setstate__(self, state):
        """
166
        Counterpart to __reduce__. Important for unpickling.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
167
168
169
170
171
172
173
174
175
        """
        # Call the parent's __setstate__ with the other tuple elements.
        super(AbstractNdarray, self).__setstate__(state[0:-len(self._iter_slots())])

        # set the __slot__ attributes
        for i, slot in enumerate(reversed(self._iter_slots())):
            index = -(i + 1)
            setattr(self, slot, state[index])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
176
177
178
179
180
181
182
183
    @property
    def bulk(self):
        """
        The pure ndarray version of the actual state
            -> nothing attached
        """
        return np.array(self)

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
184
185
186
    def copy(self, *args, **kwargs):
        """
        The standard ndarray copy does not copy slots. Correct for this.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
187

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
188
189
190
191
192
193
194
195
196
197
198
        Examples:
            >>> import tfields
            >>> m = tfields.TensorMaps([[1,2,3], [3,3,3], [0,0,0], [5,6,7]],
            ...                        maps=[tfields.TensorFields([[0, 1, 2], [1, 2, 3]],
            ...                                                   [1, 2])])
            >>> mc = m.copy()
            >>> mc is m
            False
            >>> mc.maps[0].fields[0] is m.maps[0].fields[0]
            False

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
199
200
        TODO:
            This function implementation could be more general or maybe redirect to deepcopy?
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
201
202
203
204
        """
        inst = super(AbstractNdarray, self).copy(*args, **kwargs)
        for attr in self._iter_slots():
            value = getattr(self, attr)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
205
            if hasattr(value, 'copy') and not isinstance(value, list):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
                setattr(inst, attr, value.copy(*args, **kwargs))
            elif isinstance(value, list):
                list_copy = []
                for item in value:
                    if hasattr(item, 'copy'):
                        list_copy.append(item.copy(*args, **kwargs))
                    else:
                        list_copy.append(item)
                setattr(inst, attr, list_copy)

        return inst

    def save(self, path, *args, **kwargs):
        """
        Saving a tensors object by redirecting to the correct save method depending on path
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
221

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
222
223
224
225
226
227
228
229
230
        Args:
            path (str or buffer)
            *args:
                forwarded to extension specific method
            **kwargs:
                extension (str): only needed if path is buffer
                ... remaining:forwarded to extension specific method
        """
        # get the extension
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
231
        if isinstance(path, (string_types, pathlib.Path)):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
232
            extension = pathlib.Path(path).suffix.lstrip('.')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
233
234
235
        else:
            raise ValueError("Wrong path type {0}".format(type(path)))
        path = str(path)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
236
237
238
239
240
241
242
243
244

        # get the save method
        try:
            save_method = getattr(self,
                                  '_save_{extension}'.format(**locals()))
        except:
            raise NotImplementedError("Can not find save method for extension: "
                                      "{extension}.".format(**locals()))

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
245
        path = tfields.lib.in_out.resolve(path)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
246
247
248
249
250
251
        return save_method(path, **kwargs)

    @classmethod
    def load(cls, path, *args, **kwargs):
        """
        load a file as a tensors object.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
252

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
253
254
255
256
257
258
259
260
        Args:
            path (str or buffer)
            *args:
                forwarded to extension specific method
            **kwargs:
                extension (str): only needed if path is buffer
                ... remaining:forwarded to extension specific method
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
261
        if isinstance(path, (string_types, pathlib.Path)):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
262
            extension = pathlib.Path(path).suffix.lstrip('.')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
263
264
265
266
            path = str(path)
            path = tfields.lib.in_out.resolve(path)
        else:
            extension = kwargs.pop('extension', 'npz')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
267
268
269
270
271
272
273
274
275
276
277
278

        try:
            load_method = getattr(cls, '_load_{e}'.format(e=extension))
        except:
            raise NotImplementedError("Can not find load method for extension: "
                                      "{extension}.".format(**locals()))
        return load_method(path, *args, **kwargs)

    def _save_npz(self, path, **kwargs):
        """
        Args:
            path (open file or str/unicode): destination to save file to.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
279

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
280
        Examples:
281
            Build some dummies:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
282
283
            >>> import tfields
            >>> from tempfile import NamedTemporaryFile
284
            >>> out_file = NamedTemporaryFile(suffix='.npz')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
285
            >>> p = tfields.Points3D([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]])
286
287
288
289
290
291
292
293
294
295
296
297

            >>> scalars = tfields.Tensors([0, 1, 2])
            >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
            >>> maps = [tfields.TensorFields([[0, 1, 2], [0, 1, 2]], [42, 21]),
            ...         tfields.TensorFields([[1], [2]], [-42, -21])]
            >>> m = tfields.TensorMaps(vectors, scalars,
            ...                        maps=maps)

            Simply give the file name to save
            >>> p.save(out_file.name)
            >>> _ = out_file.seek(0)
            >>> p1 = tfields.Points3D.load(out_file.name)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
298
299
            >>> assert p.equal(p1)

300
301
302
303
304
305
            The fully nested structure of a TensorMaps object is reconstructed
            >>> out_file_maps = NamedTemporaryFile(suffix='.npz')
            >>> m.save(out_file_maps.name)
            >>> _ = out_file_maps.seek(0)
            >>> m1 = tfields.TensorMaps.load(out_file_maps.name)
            >>> assert m.equal(m1)
306
            >>> assert m.maps[0].dtype == m1.maps[0].dtype
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
307

308
        """
309
310
        content_dict = self._as_dict()
        np.savez(path, **content_dict)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
311
312
313
314
315
316
317
318

    @classmethod
    def _load_npz(cls, path, **load_kwargs):
        """
        Factory method
        Given a path to a npz file, construct the object
        """
        np_file = np.load(path, **load_kwargs)
319
320
321
322
323
324
325
        return cls._from_dict(**np_file)

    def _as_dict(self):
        """
        Recursively walk trough all __slots__ and describe all elements
        """
        d = {}
326
        d['bulk'] = self.bulk
327
328
329
330
331
332
333
334
335
336
337
        d['bulk_type'] = self.__class__.__name__
        for attr in self._iter_slots():
            value = getattr(self, attr)
            if isinstance(value, list):
                if len(value) == 0:
                    d[attr] = None
                if all([isinstance(part, AbstractNdarray) for part in value]):
                    for i, part in enumerate(value):
                        part_dict = part._as_dict()
                        for part_attr, part_value in part_dict.items():
                            d["{attr}::{i}::{part_attr}".format(**locals())] = part_value
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
338
                    continue
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
            if isinstance(value, AbstractNdarray):
                value = value._as_dict()
            d[attr] = value
        return d

    @classmethod
    def _from_dict(cls, **d):
        """
        Opposite of _as_dict
        """
        list_dict = {}
        kwargs = {}
        '''
        De-Flatten the first layer of lists
        '''
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
354
        for key in sorted(list(d)):
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
            if '::' in key:
                splits = key.split('::')
                attr, _, end = key.partition('::')
                if attr not in list_dict:
                    list_dict[attr] = {}

                index, _, end = end.partition('::')
                if not index.isdigit():
                    raise ValueError("None digit index given")
                index = int(index)
                if index not in list_dict[attr]:
                    list_dict[attr][index] = {}
                list_dict[attr][index][end] = d[key]
            else:
                kwargs[key] = d[key]

        '''
        Build the lists (recursively)
        '''
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
374
        for key in list(list_dict):
375
376
            sub_dict = list_dict[key]
            list_dict[key] = []
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
377
            for index in sorted(list(sub_dict)):
Priyanjana Sinha's avatar
Priyanjana Sinha committed
378
379
380
381
382
                bulk_type = sub_dict[index].get('bulk_type').tolist()
                if isinstance(bulk_type, bytes):
                    # asthonishingly, this is not necessary under linux. Found under nt. ???
                    bulk_type = bulk_type.decode('UTF-8')
                bulk_type = getattr(tfields, bulk_type)
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
                list_dict[key].append(bulk_type._from_dict(**sub_dict[index]))

        '''
        Build the normal way
        '''
        bulk = kwargs.pop('bulk')
        bulk_type = kwargs.pop('bulk_type')
        obj = cls.__new__(cls, bulk, **kwargs)

        '''
        Set list attributes
        '''
        for attr, list_value in list_dict.items():
            setattr(obj, attr, list_value)
        return obj
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
398
399
400
401
402


class Tensors(AbstractNdarray):
    """
    Set of tensors with the same basis.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
403

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
404
405
    TODO:
        all slot args should be protected -> _base
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
406

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
407
408
    Args:
        tensors: np.ndarray or AbstractNdarray subclass
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
409

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
410
411
    Examples:
        >>> import numpy as np
412
        >>> import tfields
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
413
414

        Initialize a scalar range
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
415

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
416
417
418
419
420
        >>> scalars = tfields.Tensors([0, 1, 2])
        >>> scalars.rank == 0
        True

        Initialize vectors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
421

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
422
423
424
425
426
        >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
        >>> vectors.rank == 1
        True
        >>> vectors.dim == 3
        True
427
        >>> assert vectors.coord_sys == 'cartesian'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
428
429

        Initialize the Levi-Zivita Tensor
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
430

431
432
433
434
        >>> matrices = tfields.Tensors(
        ...                     [[[0, 0, 0], [0, 0, 1], [0, -1, 0]],
        ...                      [[0, 0, -1], [0, 0, 0], [1, 0, 0]],
        ...                      [[0, 1, 0], [-1, 0, 0], [0, 0, 0]]])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
435
436
437
438
439
440
441
442
        >>> matrices.shape == (3, 3, 3)
        True
        >>> matrices.rank == 2
        True
        >>> matrices.dim == 3
        True

        Initializing in different start coordinate system
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
443

444
445
        >>> cyl = tfields.Tensors([[5, np.arctan(4. / 3.), 42]], coord_sys='cylinder')
        >>> assert cyl.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
446
        >>> cyl.transform('cartesian')
447
        >>> assert cyl.coord_sys == 'cartesian'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
448
449
450
451
452
453
        >>> cart = cyl
        >>> assert round(cart[0, 0], 10) == 3.
        >>> assert round(cart[0, 1], 10) == 4.
        >>> assert cart[0, 2] == 42

        Initialize with copy constructor keeps the coordinate system
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
454

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
455
456
        >>> with vectors.tmp_transform('cylinder'):
        ...     vect_cyl = tfields.Tensors(vectors)
457
458
        ...     assert vect_cyl.coord_sys == vectors.coord_sys
        >>> assert vect_cyl.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
459
460

        You can demand a special dimension.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
461

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
462
463
464
465
466
467
468
469
        >>> _ = tfields.Tensors([[1, 2, 3]], dim=3)
        >>> _ = tfields.Tensors([[1, 2, 3]], dim=2)  # doctest: +ELLIPSIS
        Traceback (most recent call last):
            ...
        ValueError: Incorrect dimension: 3 given, 2 demanded.

        The dimension argument (dim) becomes necessary if you want to initialize
        an empty array
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
470

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
471
472
473
474
475
476
477
478
        >>> _ = tfields.Tensors([])  # doctest: +ELLIPSIS
        Traceback (most recent call last):
            ...
        ValueError: Empty tensors need dimension parameter 'dim'.
        >>> tfields.Tensors([], dim=7)
        Tensors([], shape=(0, 7), dtype=float64)

    """
479
    __slots__ = ['coord_sys']
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
480
481
482
483
484
485
486
487
488
489
490
491
    __slot_defaults__ = ['cartesian']
    __slot_setters__ = [tfields.bases.get_coord_system_name]

    def __new__(cls, tensors, **kwargs):
        dtype = kwargs.pop('dtype', None)
        order = kwargs.pop('order', None)
        dim = kwargs.pop('dim', None)

        ''' copy constructor extracts the kwargs from tensors'''
        if issubclass(type(tensors), Tensors):
            if dim is not None:
                dim = tensors.dim
492
            coord_sys = kwargs.pop('coord_sys', tensors.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
493
            tensors = tensors.copy()
494
495
            tensors.transform(coord_sys)
            kwargs['coord_sys'] = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
496
497
498
499
            if dtype is None:
                dtype = tensors.dtype
        else:
            if dtype is None:
500
501
502
503
                if hasattr(tensors, 'dtype'):
                    dtype = tensors.dtype
                else:
                    dtype = np.float64
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532

        ''' demand iterable structure '''
        try:
            len(tensors)
        except TypeError as err:
            raise TypeError("Iterable structure necessary."
                            " Got {tensors}"
                            .format(**locals()))

        ''' process empty inputs '''
        if len(tensors) == 0:
            if issubclass(type(tensors), tfields.Tensors):
                tensors = np.empty(tensors.shape, dtype=tensors.dtype)
            elif dim is not None:
                tensors = np.empty((0, dim))
            if issubclass(type(tensors), np.ndarray):
                # np.empty
                pass
            else:
                raise ValueError("Empty tensors need dimension "
                                 "parameter 'dim'.")

        tensors = np.asarray(tensors, dtype=dtype, order=order)
        obj = tensors.view(cls)

        ''' check dimension(s) '''
        for d in obj.shape[1:]:
            if not d == obj.dim:
                raise ValueError("Dimensions are inconstistent. "
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
533
                                 "Manifold dimension is {obj.dim}. "
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
                                 "Found dimensions {found} in {obj}."
                                 .format(found=obj.shape[1:], **locals()))
        if dim is not None:
            if dim != obj.dim:
                raise ValueError("Incorrect dimension: {obj.dim} given,"
                                 " {dim} demanded."
                                 .format(**locals()))

        ''' update kwargs with defaults from slots '''
        cls._update_slot_kwargs(kwargs)

        ''' set kwargs to slots attributes '''
        for attr in kwargs:
            if attr not in cls._iter_slots():
                raise AttributeError("Keyword argument {attr} not accepted "
                                     "for class {cls}".format(**locals()))
            setattr(obj, attr, kwargs[attr])

        return obj

554
555
556
557
    def __iter__(self):
        """
        Forwarding iterations to the bulk array. Otherwise __getitem__ would
        kick in and slow down imensely.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
558

559
560
561
562
563
564
565
566
567
568
569
        Examples:
            >>> import tfields
            >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
            >>> scalar_field = tfields.TensorFields(vectors, [42, 21, 10.5], [1, 2, 3])
            >>> [(point.rank, point.dim) for point in scalar_field]
            [(0, 1), (0, 1), (0, 1)]

        """
        for index in range(len(self)):
            yield super(Tensors, self).__getitem__(index).view(Tensors)

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
570
571
572
573
574
575
576
577
578
579
580
581
    @classmethod
    def merged(cls, *objects, **kwargs):
        """
        Factory method
        Merges all tensor inputs to one tensor

        Examples:
            >>> import numpy as np
            >>> import tfields
            >>> import tfields.bases

            Use of most frequent coordinate system
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
582

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
583
            >>> vec_a = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
584
585
            >>> vec_b = tfields.Tensors([[5, 4, 1]], coord_sys=tfields.bases.cylinder)
            >>> vec_c = tfields.Tensors([[4, 2, 3]], coord_sys=tfields.bases.cylinder)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
586
            >>> merge = tfields.Tensors.merged(vec_a, vec_b, vec_c, [[2, 0, 1]])
587
            >>> assert merge.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
588
589
590
591
592
593
594
595
            >>> assert merge.equal([[0, 0, 0],
            ...                     [0, 0, 1],
            ...                     [1, -np.pi / 2, 0],
            ...                     [5, 4, 1],
            ...                     [4, 2, 3],
            ...                     [2, 0, 1]])

            Merge also shifts the maps to still refer to the same tensors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
596

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
597
598
            >>> tm_a = tfields.TensorMaps(merge, maps=[[[0, 1, 2]]])
            >>> tm_b = tm_a.copy()
599
            >>> assert tm_a.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
600
            >>> tm_merge = tfields.TensorMaps.merged(tm_a, tm_b)
601
            >>> assert tm_merge.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
602
603
604
605
606
            >>> assert tm_merge.maps[0].equal([[0, 1, 2],
            ...                               list(range(len(merge),
            ...                                          len(merge) + 3,
            ...                                          1))])
            
607
            >>> obj_list = [tfields.Tensors([[1, 2, 3]], coord_sys=tfields.bases.CYLINDER),
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
608
609
            ...             tfields.Tensors([[3] * 3]),
            ...             tfields.Tensors([[5, 1, 3]])]
610
            >>> merge2 = tfields.Tensors.merged(*obj_list, coord_sys=tfields.bases.CARTESIAN)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
611
612
            >>> assert merge2.equal([[-0.41614684, 0.90929743, 3.],
            ...                      [3, 3, 3], [5, 1, 3]], atol=1e-8)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
613

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
614
615
        """

616
617
        ''' get most frequent coord_sys or predefined coord_sys '''
        coord_sys = kwargs.get('coord_sys', None)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
618
        dimension = kwargs.get('dim', None)
619
        if coord_sys is None:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
620
621
622
            bases = []
            for t in objects:
                try:
623
                    bases.append(t.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
624
625
626
                except AttributeError:
                    pass
            if bases:
627
628
629
                # get most frequent coord_sys
                coord_sys = sorted(bases, key=Counter(bases).get, reverse=True)[0]
                kwargs['coord_sys'] = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
630
            else:
631
632
                default = cls.__slot_defaults__[cls.__slots__.index('coord_sys')]
                kwargs['coord_sys'] = default
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
633

634
        ''' transform all raw inputs to cls type with correct coord_sys. Also
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
635
636
        automatically make a copy of those instances that are of the correct
        type already.'''
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
637
        objects = [cls.__new__(cls, t, **kwargs) for t in objects]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661

        ''' check rank and dimension equality '''
        if not len(set([t.rank for t in objects])) == 1:
            raise TypeError("Tensors must have the same rank for merging.")
        if not len(set([t.dim for t in objects])) == 1:
            raise TypeError("Tensors must have the same dimension for merging.")

        ''' merge all objects '''
        remainingObjects = objects[1:] or []
        tensors = objects[0]

        for i, obj in enumerate(remainingObjects):
            tensors = np.append(tensors, obj, axis=0)

        if len(tensors) == 0 and dimension is None:
            for obj in objects:
                kwargs['dim'] = dim(obj)

        return cls.__new__(cls, tensors, **kwargs)

    @classmethod
    def grid(cls, *base_vectors, **kwargs):
        """
        Args:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
662
663
664
665
666
667
668
669
670
671
672
673
674
675
            *base_vectors (Iterable): base coordinates. The amount of base
                vectors defines the dimension

            **kwargs:
                iter_order (list): order in which the iteration will be done.
                    Frequency rises with position in list. default is [0, 1, 2]
                    iteration will be done like::
                          
                    for v0 in base_vectors[iter_order[0]]:
                        for v1 in base_vectors[iter_order[1]]:
                            for v2 in base_vectors[iter_order[2]]:
                                coords0.append(locals()['v%i' % iter_order[0]])
                                coords1.append(locals()['v%i' % iter_order[1]])
                                coords2.append(locals()['v%i' % iter_order[2]])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
676
677
678

        Examples:
            Initilaize using the mgrid notation
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
679

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
680
681
682
683
684
685
686
687
688
689
690
            >>> import tfields
            >>> mgrid = tfields.Tensors.grid((0, 1, 2j), (3, 4, 2j), (6, 7, 2j))
            >>> mgrid.equal([[0, 3, 6],
            ...              [0, 3, 7],
            ...              [0, 4, 6],
            ...              [0, 4, 7],
            ...              [1, 3, 6],
            ...              [1, 3, 7],
            ...              [1, 4, 6],
            ...              [1, 4, 7]])
            True
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
691
692
693

            Lists or arrays are accepted also.
            Furthermore, the iteration order can be changed
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
694

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
            >>> lins = tfields.Tensors.grid(np.linspace(3, 4, 2), np.linspace(0, 1, 2),
            ...                             np.linspace(6, 7, 2), iter_order=[1, 0, 2])
            >>> lins.equal([[3, 0, 6],
            ...             [3, 0, 7],
            ...             [4, 0, 6],
            ...             [4, 0, 7],
            ...             [3, 1, 6],
            ...             [3, 1, 7],
            ...             [4, 1, 6],
            ...             [4, 1, 7]])
            True
            >>> lins2 = tfields.Tensors.grid(np.linspace(0, 1, 2),
            ...                              np.linspace(3, 4, 2),
            ...                              np.linspace(6, 7, 2),
            ...                              iter_order=[2, 0, 1])
            >>> lins2.equal([[0, 3, 6],
            ...              [0, 4, 6],
            ...              [1, 3, 6],
            ...              [1, 4, 6],
            ...              [0, 3, 7],
            ...              [0, 4, 7],
            ...              [1, 3, 7],
            ...              [1, 4, 7]])
            True

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
720
721
            When given the coord_sys argument, the grid is performed in the
            given coorinate system:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
722

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
723
724
725
726
727
728
729
730
731
            >>> lins3 = tfields.Tensors.grid(np.linspace(4, 9, 2),
            ...                              np.linspace(np.pi/2, np.pi/2, 1),
            ...                              np.linspace(4, 4, 1),
            ...                              iter_order=[2, 0, 1],
            ...                              coord_sys=tfields.bases.CYLINDER)
            >>> assert lins3.coord_sys == 'cylinder'
            >>> lins3.transform('cartesian')
            >>> assert np.array_equal(lins3[:, 1], [4, 9])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
732
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
733
        cls_kwargs = {attr: kwargs.pop(attr) for attr in list(kwargs) if attr in cls.__slots__}
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
734
735
736
        inst = cls.__new__(cls,
                           tfields.lib.grid.igrid(*base_vectors, **kwargs),
                           **cls_kwargs)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
        return inst

    @property
    def rank(self):
        """
        Tensor rank
        """
        return rank(self)

    @property
    def dim(self):
        """
        Manifold dimension
        """
        return dim(self)

753
    def transform(self, coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
754
755
        """
        Args:
756
            coord_sys (str)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
757
758
759
760
761
762
763
764
765
766

        Examples:
            >>> import numpy as np
            >>> import tfields

            CARTESIAN to SPHERICAL
            >>> t = tfields.Tensors([[1, 2, 2], [1, 0, 0], [0, 0, -1], [0, 0, 1], [0, 0, 0]])
            >>> t.transform('spherical')

            r
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
767

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
768
769
770
            >>> assert t[0, 0] == 3

            phi
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
771

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
772
773
774
775
            >>> assert t[1, 1] == 0.
            >>> assert t[2, 1] == 0.

            theta is 0 at (0, 0, 1) and pi / 2 at (0, 0, -1)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
776

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
777
778
779
780
781
            >>> assert round(t[1, 2], 10) == round(0, 10)
            >>> assert t[2, 2] == -np.pi / 2
            >>> assert t[3, 2] == np.pi / 2

            theta is defined 0 for R == 0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
782

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
783
784
785
786
787
            >>> assert t[4, 0] == 0.
            >>> assert t[4, 2] == 0.


            CARTESIAN to CYLINDER
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
788

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
789
790
791
            >>> tCart = tfields.Tensors([[3, 4, 42], [1, 0, 0], [0, 1, -1], [-1, 0, 1], [0, 0, 0]])
            >>> t_cyl = tCart.copy()
            >>> t_cyl.transform('cylinder')
792
            >>> assert t_cyl.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
793
794

            R
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
795

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
796
797
798
799
800
801
            >>> assert t_cyl[0, 0] == 5
            >>> assert t_cyl[1, 0] == 1
            >>> assert t_cyl[2, 0] == 1
            >>> assert t_cyl[4, 0] == 0

            Phi
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
802
            
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
803
804
805
806
807
808
            >>> assert round(t_cyl[0, 1], 10) == round(np.arctan(4. / 3), 10)
            >>> assert t_cyl[1, 1] == 0
            >>> assert round(t_cyl[2, 1], 10) == round(np.pi / 2, 10)
            >>> assert t_cyl[1, 1] == 0

            Z
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
809
            
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
810
811
812
813
            >>> assert t_cyl[0, 2] == 42
            >>> assert t_cyl[2, 2] == -1

            >>> t_cyl.transform('cartesian')
814
            >>> assert t_cyl.coord_sys == 'cartesian'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
815
816
817
818
            >>> assert t_cyl[0, 0] == 3

        """
        #           scalars                 empty             already there
819
820
        if self.rank == 0 or self.shape[0] == 0 or self.coord_sys == coord_sys:
            self.coord_sys = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
821
822
            return

823
824
825
        tfields.bases.transform(self, self.coord_sys, coord_sys)
        # self[:] = tfields.bases.transform(self, self.coord_sys, coord_sys)
        self.coord_sys = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
826
827

    @contextmanager
828
    def tmp_transform(self, coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
829
        """
830
        Temporarily change the coord_sys to another coord_sys and change it back at exit
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
831
832
        This method is for cleaner code only.
        No speed improvements go with this.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
833

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
834
835
        Args:
            see transform
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
836

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
837
838
        Examples:
            >>> import tfields
839
            >>> p = tfields.Tensors([[1,2,3]], coord_sys=tfields.bases.SPHERICAL)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
840
            >>> with p.tmp_transform(tfields.bases.CYLINDER):
841
842
            ...     assert p.coord_sys == tfields.bases.CYLINDER
            >>> assert p.coord_sys == tfields.bases.SPHERICAL
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
843
844

        """
845
846
        baseBefore = self.coord_sys
        if baseBefore == coord_sys:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
847
848
            yield
        else:
849
            self.transform(coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
850
851
852
853
854
855
856
857

            yield

            self.transform(baseBefore)

    def mirror(self, coordinate, condition=None):
        """
        Reflect/Mirror the entries meeting <condition> at <coordinate> = 0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
858

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
859
860
        Args:
            coordinate (int): coordinate index
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
861

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
862
863
864
865
866
867
        Examples:
            >>> import tfields
            >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]])
            >>> p.mirror(1)
            >>> assert p.equal([[1, -2, 3], [4, -5,  6], [1, -2, -6]])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
868
869
            multiple coordinates can be mirrored at the same time
            i.e. a point mirrorion would be
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
870

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
871
872
873
874
875
876
            >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]])
            >>> p.mirror([0,2])
            >>> assert p.equal([[-1, 2, -3], [-4, 5, -6], [-1, 2., 6.]])

            You can give a condition as mask or as str.
            The mirroring will only be applied to the points meeting the condition.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
877

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
878
879
            >>> import sympy
            >>> x, y, z = sympy.symbols('x y z')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
880
            >>> p.mirror([0, 2], y > 3)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
881
882
883
884
885
886
887
888
889
890
            >>> p.equal([[-1, 2, -3], [4, 5, 6], [-1, 2, 6]])
            True

        """
        if condition is None:
            condition = np.array([True for i in range(len(self))])
        elif isinstance(condition, sympy.Basic):
            condition = self.evalf(condition)
        if isinstance(coordinate, list) or isinstance(coordinate, tuple):
            for c in coordinate:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
891
                self.mirror(c, condition=condition)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
892
893
894
895
896
897
        elif isinstance(coordinate, int):
            self[:, coordinate][condition] *= -1
        else:
            raise TypeError()

    def to_segment(self, segment, num_segments, coordinate,
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
898
                   periodicity=2 * np.pi, offset=0.,
899
                   coord_sys=None):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
900
901
902
903
904
        """
        For circular (close into themself after
        <periodicity>) coordinates at index <coordinate> assume
        <num_segments> segments and transform all values to
        segment number <segment>
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
905

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
906
907
908
909
910
911
        Args:
            segment (int): segment index (starting at 0)
            num_segments (int): number of segments
            coordinate (int): coordinate index
            periodicity (float): after what lenght, the coordiante repeats
            offset (float): offset in the mapping
912
            coord_sys (str or sympy.CoordinateSystem): in which coord sys the
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
913
                transformation should be done
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
914

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
915
916
917
918
919
        Examples:
            >>> import tfields
            >>> import numpy as np
            >>> pStart = tfields.Points3D([[6, 2 * np.pi, 1],
            ...                            [6, 2 * np.pi / 5 * 3, 1]],
920
            ...                           coord_sys='cylinder')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
921
922
923
924
925
926
927
928
929
930
931
932
            >>> p = tfields.Points3D(pStart)
            >>> p.to_segment(0, 5, 1, offset=-2 * np.pi / 10)
            >>> assert np.array_equal(p[:, 1], [0, 0])

            >>> p2 = tfields.Points3D(pStart)
            >>> p2.to_segment(1, 5, 1, offset=-2 * np.pi / 10)
            >>> assert np.array_equal(np.round(p2[:, 1], 4), [1.2566] * 2)

        """
        if segment > num_segments - 1:
            raise ValueError("Segment {0} not existent.".format(segment))

933
934
935
        if coord_sys is None:
            coord_sys = self.coord_sys
        with self.tmp_transform(coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
936
937
938
939
940
941
942
943
944
945
            # map all values to first segment
            self[:, coordinate] = \
                (self[:, coordinate] - offset) % (periodicity / num_segments) + \
                offset + segment * periodicity / num_segments

    def equal(self, other,
              rtol=None, atol=None, equal_nan=False,
              return_bool=True):
        """
        Evaluate, whether the instance has the same content as other.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
946

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
947
948
949
950
951
952
953
        Args:
            optional:
                rtol (float)
                atol (float)
                equal_nan (bool)
            see numpy.isclose
        """
954
        if issubclass(type(other), Tensors) and self.coord_sys != other.coord_sys:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
955
            other = other.copy()
956
            other.transform(self.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
        x, y = np.asarray(self), np.asarray(other)
        if rtol is None and atol is None:
            mask = (x == y)
            if equal_nan:
                both_nan = np.isnan(x) & np.isnan(y)
                mask[both_nan] = both_nan[both_nan]
        else:
            if rtol is None:
                rtol = 0.
            if atol is None:
                atol = 0.
            mask = np.isclose(x, y, rtol=rtol, atol=atol, equal_nan=equal_nan)
        if return_bool:
            return bool(np.all(mask))
        return mask

    def contains(self, other, **kwargs):
        """
        Inspired by a speed argument @
        stackoverflow.com/questions/14766194/testing-whether-a-numpy-array-contains-a-given-row
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
977

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
978
979
980
981
982
983
984
985
986
        Examples:
            >>> import tfields
            >>> p = tfields.Tensors([[1,2,3], [4,5,6], [6,7,8]])
            >>> p.contains([4,5,6])
            True

        """
        return any(self.equal(other, return_bool=False).all(1))

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
987
    def indices(self, tensor, rtol=None, atol=None):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
988
989
990
        """
        Returns:
            list of int: indices of tensor occuring
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
991

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
992
        Examples:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
993
            Rank 1 Tensors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
994

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
995
996
997
998
999
1000
1001
1002
            >>> import tfields
            >>> p = tfields.Tensors([[1,2,3], [4,5,6], [6,7,8], [4,5,6],
            ...                      [4.1, 5, 6]])
            >>> p.indices([4,5,6])
            array([1, 3])
            >>> p.indices([4,5,6.1], rtol=1e-5, atol=1e-1)
            array([1, 3, 4])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1003
            Rank 0 Tensors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1004

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1005
1006
1007
1008
1009
1010
            >>> p = tfields.Tensors([2, 3, 6, 3.01])
            >>> p.indices(3)
            array([1])
            >>> p.indices(3, rtol=1e-5, atol=1e-1)
            array([1, 3])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1011
        """
1012
1013
        x, y = np.asarray(self), np.asarray(tensor)
        if rtol is None and atol is None:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1014
            equal_method = np.equal
1015
1016
        else:
            equal_method = lambda a, b: np.isclose(a, b, rtol=rtol, atol=atol)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1017
1018

        # inspired by https://stackoverflow.com/questions/19228295/find-ordered-vector-in-numpy-array
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1019
1020
1021
1022
1023
1024
        if self.rank == 0:
            indices = np.where(equal_method((x-y), 0))[0]
        elif self.rank == 1:
            indices = np.where(np.all(equal_method((x-y), 0), axis=1))[0]
        else:
            raise NotImplementedError()
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1025
1026
        return indices

1027
    def index(self, tensor, **kwargs):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1028
1029
1030
        """
        Args:
            tensor
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1031

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1032
1033
1034
        Returns:
            int: index of tensor occuring
        """
1035
        indices = self.indices(tensor, **kwargs)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1036
1037
1038
1039
1040
1041
1042
        if not indices:
            return None
        if len(indices) == 1:
            return indices[0]
        raise ValueError("Multiple occurences of value {}"
                         .format(tensor))

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1043
    def moment(self, moment, weights=None):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1044
1045
1046
        """
        Returns:
            Moments of the distribution.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1047

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1048
1049
        Args:
            moment (int): n-th moment
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1050

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1051
1052
        Examples:
            >>> import tfields
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1053
            >>> import numpy as np
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1054
1055

            Skalars
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1056

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1057
            >>> t = tfields.Tensors(range(1, 6))
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1058
            >>> assert t.moment(1) == 0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1059
1060
1061
1062
            >>> assert t.moment(1, weights=[-2, -1, 20, 1, 2]) == 0.5
            >>> assert t.moment(2, weights=[0.25, 1, 17.5, 1, 0.25]) == 0.2

            Vectors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1063

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1064
            >>> t = tfields.Tensors(list(zip(range(1, 6), range(1, 6))))
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1065
1066
1067
1068
            >>> assert Tensors([0.5, 0.5]).equal(t.moment(1, weights=[-2, -1, 20, 1, 2]))
            >>> assert Tensors([1. , 0.5]).equal(
            ...     t.moment(1, weights=list(zip([-2, -1, 10, 1, 2],
            ...                                  [-2, -1, 20, 1, 2]))))
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1069

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1070
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1071
1072
1073
1074
        array = tfields.lib.stats.moment(self, moment, weights=weights)
        if self.rank == 0:  # scalar
            array = [array]
        return Tensors(array, coord_sys=self.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1075
1076
1077
1078
1079
1080

    def closest(self, other, **kwargs):
        """
        Args:
            other (Tensors): closest points to what? -> other
            **kwargs: forwarded to scipy.spatial.cKDTree.query
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1081

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1082
1083
        Returns:
            array shape(len(self)): Indices of other points that are closest to own points
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1084

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1085
1086
1087
1088
1089
1090
1091
1092
1093
        Examples:
            >>> import tfields
            >>> m = tfields.Tensors([[1,0,0], [0,1,0], [1,1,0], [0,0,1],
            ...                      [1,0,1]])
            >>> p = tfields.Tensors([[1.1,1,0], [0,0.1,1], [1,0,1.1]])
            >>> p.closest(m)
            array([2, 3, 4])

        """
1094
        with other.tmp_transform(self.coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1095
1096
1097
1098
1099
1100
1101
1102
            # balanced_tree option gives huge speedup!
            kd_tree = sp.spatial.cKDTree(other, 1000,
                                         balanced_tree=False)
            res = kd_tree.query(self, **kwargs)
            array = res[1]

        return array

1103
    def evalf(self, expression=None, coord_sys=None):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1104
1105
1106
        """
        Args:
            expression (sympy logical expression)
1107
            coord_sys (str): coord_sys to evalfuate the expression in.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1108

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1109
1110
1111
        Returns:
            np.ndarray: mask of dtype bool with lenght of number of points in self.
                 This array is True, where expression evalfuates True.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1112

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
        Examples:
            >>> import tfields
            >>> import numpy
            >>> import sympy
            >>> x, y, z = sympy.symbols('x y z')
            >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6],
            ...                      [-5, -5, -5], [1,0,-1], [0,1,-1]])
            >>> np.array_equal(p.evalf(x > 0),
            ...                [True, True, True, False, True, False])
            True
            >>> np.array_equal(p.evalf(x >= 0),
            ...                [True, True, True, False, True, True])
            True

            And combination
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1128

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1129
1130
1131
1132
1133
            >>> np.array_equal(p.evalf((x > 0) & (y < 3)),
            ...                [True, False, True, False, True, False])
            True

            Or combination
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1134

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1135
1136
1137
1138
1139
1140
            >>> np.array_equal(p.evalf((x > 0) | (y > 3)),
            ...                [True, True, True, False, True, False])
            True

        """
        coords = sympy.symbols('x y z')
1141
        with self.tmp_transform(coord_sys or self.coord_sys):
1142
            mask = tfields.evalf(np.array(self), expression, coords=coords)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1143
1144
        return mask

1145
    def cut(self, expression, coord_sys=None):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1146
1147
        """
        Default cut method for Points3D. Works on a copy.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1148

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1149
1150
1151
        Args:
            expression (sympy logical expression): logical expression which will be evalfuated.
                             use symbols x, y and z
1152
            coord_sys (str): coord_sys to evalfuate the expression in.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1153

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
        Examples:
            >>> import tfields
            >>> import sympy
            >>> x, y, z = sympy.symbols('x y z')
            >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6],
            ...                      [-5, -5, -5], [1,0,-1], [0,1,-1]])
            >>> p.cut(x > 0).equal([[1, 2, 3],
            ...                     [4, 5, 6],
            ...                     [1, 2, -6],
            ...                     [1, 0, -1]])
            True

            combinations of cuts
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1167

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1168
1169
1170
1171
1172
1173
1174
1175
1176
            >>> p.cut((x > 0) & (z < 0)).equal([[1, 2, -6], [1, 0, -1]])
            True

        Returns:
            copy of self with cut applied

        """
        if len(self) == 0:
            return self.copy()
1177
        mask = self.evalf(expression, coord_sys=coord_sys or self.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1178
1179
1180
1181
1182
1183
1184
        mask.astype(bool)
        inst = self[mask].copy()
        return inst

    def distances(self, other, **kwargs):
        """
        Args:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1185
            other(Iterable)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1186
1187
            **kwargs:
                ... is forwarded to sp.spatial.distance.cdist
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1188

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
        Examples:
            >>> import tfields
            >>> p = tfields.Tensors.grid((0, 2, 3j),
            ...                          (0, 2, 3j),
            ...                          (0, 0, 1j))
            >>> p[4,2] = 1
            >>> p.distances(p)[0,0]
            0.0
            >>> p.distances(p)[5,1]
            1.4142135623730951
            >>> p.distances([[0,1,2]])[-1][0] == 3
            True

        """
1203
        if issubclass(type(other), Tensors) and self.coord_sys != other.coord_sys:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1204
            other = other.copy()
1205
            other.transform(self.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
        return sp.spatial.distance.cdist(self, other, **kwargs)

    def min_dists(self, other=None, **kwargs):
        """
        Args:
            other(array | None): if None: closest distance to self
            **kwargs:
                memory_saving (bool): for very large array comparisons
                    default False
                ... rest is forwarded to sp.spatial.distance.cdist

        Returns:
            np.array: minimal distances of self to other

        Examples:
            >>> import tfields
            >>> import numpy as np
            >>> p = tfields.Tensors.grid((0, 2, 3),
            ...                          (0, 2, 3),
            ...                          (0, 0, 1))
            >>> p[4,2] = 1
            >>> dMin = p.min_dists()
            >>> expected = [1] * 9
            >>> expected[4] = np.sqrt(2)
            >>> np.array_equal(dMin, expected)
            True

            >>> dMin2 = p.min_dists(memory_saving=True)
            >>> bool((dMin2 == dMin).all())
            True

        """
        memory_saving = kwargs.pop('memory_saving', False)

        if other is None:
            other = self
        else:
            raise NotImplementedError("Should be easy but make shure not to remove diagonal")

        try:
            if memory_saving:
                raise MemoryError()
            d = self.distances(other, **kwargs)
            return d[d > 0].reshape(d.shape[0], - 1).min(axis=1)
        except MemoryError:
            min_dists = np.empty(self.shape[0])
1252
            for i, point in enumerate(np.array(other)):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1253
1254
1255
1256
1257
1258
1259
1260
                d = self.distances([point], **kwargs)
                min_dists[i] = d[d > 0].reshape(-1).min()
            return min_dists

    def epsilon_neighbourhood(self, epsilon):
        """
        Returns:
            indices for those sets of points that lie within epsilon around the other
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1261

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
        Examples:
            Create mesh grid with one extra point that will have 8 neighbours
            within epsilon
            >>> import tfields
            >>> p = tfields.Tensors.grid((0, 1, 2j),
            ...                          (0, 1, 2j),
            ...                          (0, 1, 2j))
            >>> p = tfields.Tensors.merged(p, [[0.5, 0.5, 0.5]])
            >>> [len(en) for en in p.epsilon_neighbourhood(0.9)]
            [2, 2, 2, 2, 2, 2, 2, 2, 9]

        """
        indices = np.arange(self.shape[0])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1275
        dists = self.distances(self)  # this takes long
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1276
        distsInEpsilon = dists <= epsilon
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1277
1278
        indices = [indices[die] for die in distsInEpsilon]  # this takes long
        return indices
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1279
1280
1281
1282

    def _weights(self, weights, rigid=True):
        """
        transformer method for weights inputs.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1283

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1284
1285
1286
1287
1288
        Args:
            weights (np.ndarray | None):
                If weights is None, use np.ones
                Otherwise just pass the weights.
            rigid (bool): demand equal weights and tensor length
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1289

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
        Returns:
            weight array
        """
        # set weights to 1.0 if weights is None
        if weights is None:
            weights = np.ones(len(self))
        if rigid:
            if not len(weights) == len(self):
                raise ValueError("Equal number of weights as tensors demanded.")
        return weights

    def cov_eig(self, weights=None):
        """
        Calculate the covariance eigenvectors with lenghts of eigenvalues
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1304

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
        Args:
            weights (np.array | int | None): index to scalars to weight with
        """
        # weights = self.getNormedWeightedAreas(weights=weights)
        weights = self._weights(weights)
        cov = np.cov(self.T,
                     ddof=0,
                     aweights=weights)
        # calculate eigenvalues and eigenvectors of covariance
        evalfs, evecs = np.linalg.eigh(cov)
        idx = evalfs.argsort()[::-1]
        evalfs = evalfs[idx]
        evecs = evecs[:, idx]
        e = np.concatenate((evecs, evalfs.reshape(1, 3)))
        return e.T.reshape(12, )

    def main_axes(self, weights=None):
        """
        Returns:
            Main Axes eigen-vectors
        """
        # weights = self.getNormedWeightedAreas(weights=weights)
        weights = self._weights(weights)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1328
        mean = np.array(self).mean(axis=0)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1329
1330
1331
1332
1333
1334
1335
1336
        relative_coords = self - mean
        cov = np.cov(relative_coords.T,
                     ddof=0,
                     aweights=weights)
        # calculate eigenvalues and eigenvectors of covariance
        evalfs, evecs = np.linalg.eigh(cov)
        return (evecs * evalfs.T).T

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1337
1338
    def plot(self, **kwargs):
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1339
        Forwarding to tfields.lib.plotting.plot_array
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1340
1341
1342
1343
        """
        artist = tfields.plotting.plot_array(self, **kwargs)
        return artist

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360

class TensorFields(Tensors):
    """
    Discrete Tensor Field

    Args:
        tensors (array): base tensors
        *fields (array): multiple fields assigned to one base tensor. Fields
            themself are also of type tensor
        **kwargs:
            rigid (bool): demand equal field and tensor lenght
            ... : see tfields.Tensors

    Examples:
        >>> from tfields import Tensors, TensorFields
        >>> scalars = Tensors([0, 1, 2])
        >>> vectors = Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
1361
1362
        >>> scalar_field = TensorFields(vectors, scalars)
        >>> scalar_field.rank
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1363
        1
1364
        >>> scalar_field.fields[0].rank
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
        0
        >>> vectorField = TensorFields(vectors, vectors)
        >>> vectorField.fields[0].rank
        1
        >>> vectorField.fields[0].dim
        3
        >>> multiField = TensorFields(vectors, scalars, vectors)
        >>> multiField.fields[0].dim
        1
        >>> multiField.fields[1].dim
        3

        Empty initialization
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1378

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1379
1380
1381
1382
1383
        >>> empty_field = TensorFields([], dim=3)
        >>> assert empty_field.shape == (0, 3)
        >>> assert empty_field.fields == []

        Directly initializing with lists or arrays
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1384

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1385
1386
1387
1388
1389
        >>> vec_field_raw = tfields.TensorFields([[0, 1, 2], [3, 4, 5]],
        ...                                       [1, 6], [2, 7])
        >>> assert len(vec_field_raw.fields) == 2

        Copying
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1390

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1391
1392
1393
        >>> cp = TensorFields(vectorField)
        >>> assert vectorField.equal(cp)

1394
        Copying takes care of coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1395

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1396
1397
        >>> cp.transform(tfields.bases.CYLINDER)
        >>> cp_cyl = TensorFields(cp)
1398
        >>> assert cp_cyl.coord_sys == tfields.bases.CYLINDER
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1399
1400

        Copying with changing type
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1401

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1402
1403
1404
1405
1406
1407
        >>> tcp = TensorFields(vectorField, dtype=int)
        >>> assert vectorField.equal(tcp)
        >>> assert tcp.dtype == int

    Raises:
        TypeError:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1408

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1409
1410
1411
1412
1413
1414
1415
        >>> import tfields
        >>> tfields.TensorFields([1, 2, 3], [3])  # doctest: +ELLIPSIS
        Traceback (most recent call last):
        ...
        ValueError: Length of base (3) should be the same as the length of all fields ([1]).

        This error can be suppressed by setting rigid=False
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1416

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1417
1418
1419
1420
        >>> loose = tfields.TensorFields([1, 2, 3], [3], rigid=False)
        >>> assert len(loose) != 1

    """
1421
    __slots__ = ['coord_sys', 'fields']