core.py 97 KB
Newer Older
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1
2
3
4
5
6
7
8
#!/usr/bin/env
# encoding: utf-8
"""
Author:     Daniel Boeckenhoff
Mail:       daniel.boeckenhoff@ipp.mpg.de

core of tfields library
contains numpy ndarray derived bases of the tfields package
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
9
10

Notes:
dboe's avatar
dboe committed
11
12
13
    It could be worthwhile concidering `np.li.mixins.NDArrayOperatorsMixin ...
    <https://docs.scipy.org/doc/numpy-1.15.1/reference/generated/...
    ... numpy.lib.mixins.NDArrayOperatorsMixin.html>`_
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
14
"""
dboe's avatar
dboe committed
15
# builtin
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
16
17
18
19
20
import warnings
import pathlib
from six import string_types
from contextlib import contextmanager
from collections import Counter
dboe's avatar
dboe committed
21
from copy import deepcopy
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
22

dboe's avatar
dboe committed
23
# 3rd party
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
24
25
26
import numpy as np
import sympy
import scipy as sp
dboe's avatar
dboe committed
27
import sortedcontainers
28
import rna
dboe's avatar
dboe committed
29

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
30
import tfields.bases
dboe's avatar
dboe committed
31
32

np.seterr(all="warn", over="raise")
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
33
34
35
36
37
38


def rank(tensor):
    """
    Tensor rank
    """
dboe's avatar
dboe committed
39
    tensor = np.asarray(tensor)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
40
41
42
43
44
45
46
    return len(tensor.shape) - 1


def dim(tensor):
    """
    Manifold dimension
    """
dboe's avatar
dboe committed
47
    tensor = np.asarray(tensor)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
48
49
50
51
52
    if rank(tensor) == 0:
        return 1
    return tensor.shape[1]


dboe's avatar
dboe committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
class AbstractObject(object):
    def save(self, path, *args, **kwargs):
        """
        Saving by redirecting to the correct save method depending on path

        Args:
            path (str or buffer)
            *args:
                forwarded to extension specific method
            **kwargs:
                extension (str): only needed if path is buffer
                ... remaining:forwarded to extension specific method
        """
        # get the extension
        if isinstance(path, (string_types, pathlib.Path)):
            extension = pathlib.Path(path).suffix.lstrip(".")
        else:
            raise ValueError("Wrong path type {0}".format(type(path)))
        path = str(path)

        # get the save method
        try:
            save_method = getattr(self, "_save_{extension}".format(**locals()))
        except:
            raise NotImplementedError(
                "Can not find save method for extension: "
                "{extension}.".format(**locals())
            )

        path = rna.path.resolve(path)
        return save_method(path, **kwargs)

    @classmethod
    def load(cls, path, *args, **kwargs):
        """
        load a file as a tensors object.

        Args:
            path (str or buffer)
            *args:
                forwarded to extension specific method
            **kwargs:
                extension (str): only needed if path is buffer
                ... remaining:forwarded to extension specific method
        """
        if isinstance(path, (string_types, pathlib.Path)):
            extension = pathlib.Path(path).suffix.lstrip(".")
            path = str(path)
            path = rna.path.resolve(path)
        else:
            extension = kwargs.pop("extension", "npz")

        try:
            load_method = getattr(cls, "_load_{e}".format(e=extension))
        except:
            raise NotImplementedError(
                "Can not find load method for extension: "
                "{extension}.".format(**locals())
            )
        return load_method(path, *args, **kwargs)

    def _save_npz(self, path, **kwargs):
        """
        Args:
            path (open file or str/unicode): destination to save file to.

        Examples:
            Build some dummies:
            >>> import tfields
            >>> from tempfile import NamedTemporaryFile
            >>> out_file = NamedTemporaryFile(suffix='.npz')
            >>> p = tfields.Points3D([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]],
            ...                      name='my_points')
            >>> scalars = tfields.Tensors([0, 1, 2], name=42)
            >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
            >>> maps = [tfields.TensorFields([[0, 1, 2], [0, 1, 2]], [42, 21]),
            ...         tfields.TensorFields([[1], [2]], [-42, -21])]
            >>> m = tfields.TensorMaps(vectors, scalars,
            ...                        maps=maps)

            Simply give the file name to save
            >>> p.save(out_file.name)
            >>> _ = out_file.seek(0)  # this is only necessary in the test
            >>> p1 = tfields.Points3D.load(out_file.name)
            >>> assert p.equal(p1)
            >>> assert p.coord_sys == p1.coord_sys

            The fully nested structure of a TensorMaps object is reconstructed
            >>> out_file_maps = NamedTemporaryFile(suffix='.npz')
            >>> m.save(out_file_maps.name)
            >>> _ = out_file_maps.seek(0)
            >>> m1 = tfields.TensorMaps.load(out_file_maps.name,
            ...                              allow_pickle=True)
            >>> assert m.equal(m1)
dboe's avatar
dboe committed
147
            >>> assert m.maps[3].dtype == m1.maps[3].dtype
dboe's avatar
dboe committed
148
149
150
151
152
153
154

            Names are preserved
            >>> assert p.name == 'my_points'
            >>> m.names
            [42]

        """
dboe's avatar
dboe committed
155
        content_dict = self._as_dict()
dboe's avatar
dboe committed
156
157
158
159
160
161
162
163
164
165
166
167
        np.savez(path, **content_dict)

    @classmethod
    def _load_npz(cls, path, **load_kwargs):
        """
        Factory method
        Given a path to a npz file, construct the object
        """
        # TODO: think about allow_pickle, wheter it really should be True or
        # wheter we could avoid pickling (potential security issue)
        load_kwargs.setdefault('allow_pickle', True)
        np_file = np.load(path, **load_kwargs)
dboe's avatar
dboe committed
168
        return cls._from_dict(dict(np_file))
dboe's avatar
dboe committed
169
170
171
172
173
174
175
176
177

    def _args(self) -> tuple:
        return tuple()

    def _kwargs(self) -> dict:
        return dict()

    _HIERARCHY_SEPARATOR = '::'

dboe's avatar
dboe committed
178
    def _as_dict(self):
dboe's avatar
dboe committed
179
180
181
182
183
184
185
186
187
188
189
190
        d = {}

        # type
        d["type"] = type(self).__name__

        # args and kwargs
        for base_attr, iterable in [
                ('args', ((str(i), arg)
                          for i, arg in enumerate(self._args()))),
                ('kwargs', self._kwargs().items())]:
            for attr, value in iterable:
                attr = base_attr + self._HIERARCHY_SEPARATOR + attr
dboe's avatar
dboe committed
191
192
                if hasattr(value, '_as_dict'):
                    part_dict = value._as_dict()
dboe's avatar
dboe committed
193
194
195
196
197
198
199
200
201
                    for part_attr, part_value in part_dict.items():
                        d[
                            attr + self._HIERARCHY_SEPARATOR + part_attr
                        ] = part_value
                else:
                    d[attr] = value
        return d

    @classmethod
dboe's avatar
dboe committed
202
203
204
205
206
207
    def _from_dict(cls, d: dict):
        try:
            d.pop('type')
        except KeyError:
            # legacy
            return cls._from_dict_legacy(**d)
dboe's avatar
dboe committed
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

        here = {}
        for string in d:  # TOO no sortelist
            value = d[string]

            attr, _, end = string.partition(cls._HIERARCHY_SEPARATOR)
            key, _, end = end.partition(cls._HIERARCHY_SEPARATOR)
            if attr not in here:
                here[attr] = {}
            if key not in here[attr]:
                here[attr][key] = {}
            here[attr][key][end] = value

        """
        Do the recursion
        """
        for attr in here:
            for key in here[attr]:
dboe's avatar
dboe committed
226
                if 'type' in here[attr][key]:
dboe's avatar
dboe committed
227
                    obj_type = here[attr][key].get("type")
dboe's avatar
dboe committed
228
229
                    if isinstance(obj_type, np.ndarray):  # happens on np.load
                        obj_type = obj_type.tolist()
dboe's avatar
dboe committed
230
231
232
233
234
                    if isinstance(obj_type, bytes):
                        # asthonishingly, this is not necessary under linux.
                        # Found under nt. ???
                        obj_type = obj_type.decode("UTF-8")
                    obj_type = getattr(tfields, obj_type)
dboe's avatar
dboe committed
235
                    attr_value = obj_type._from_dict(here[attr][key])
dboe's avatar
dboe committed
236
                else:  # if len(here[attr][key]) == 1:
dboe's avatar
dboe committed
237
                    attr_value = here[attr][key].pop('')
dboe's avatar
dboe committed
238
239
240
241
242
243
244
245
246
247
248
249
250
                here[attr][key] = attr_value

        '''
        Build the generic way
        '''
        args = here.pop('args', tuple())
        args = tuple(args[key] for key in sorted(args))
        kwargs = here.pop('kwargs', {})
        assert len(here) == 0
        obj = cls(*args, **kwargs)
        return obj

    @classmethod
dboe's avatar
dboe committed
251
    def _from_dict_legacy(cls, **d):
dboe's avatar
dboe committed
252
        """
dboe's avatar
dboe committed
253
254
        legacy method of _from_dict - Opposite of old _as_dict method
        which is overridden in this version
dboe's avatar
dboe committed
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
        """
        list_dict = {}
        kwargs = {}
        """
        De-Flatten the first layer of lists
        """
        for key in sorted(list(d)):
            if "::" in key:
                attr, _, end = key.partition("::")
                if attr not in list_dict:
                    list_dict[attr] = {}

                index, _, end = end.partition("::")
                if not index.isdigit():
                    raise ValueError("None digit index given")
                index = int(index)
                if index not in list_dict[attr]:
                    list_dict[attr][index] = {}
                list_dict[attr][index][end] = d[key]
            else:
                kwargs[key] = d[key]

        """
        Build the lists (recursively)
        """
        for key in list(list_dict):
            sub_dict = list_dict[key]
            list_dict[key] = []
            for index in sorted(list(sub_dict)):
                bulk_type = sub_dict[index].get("bulk_type")
dboe's avatar
dboe committed
285
                bulk_type = bulk_type.tolist()
dboe's avatar
dboe committed
286
287
288
289
290
                if isinstance(bulk_type, bytes):
                    # asthonishingly, this is not necessary under linux.
                    # Found under nt. ???
                    bulk_type = bulk_type.decode("UTF-8")
                bulk_type = getattr(tfields, bulk_type)
dboe's avatar
dboe committed
291
                list_dict[key].append(bulk_type._from_dict_legacy(**sub_dict[index]))
dboe's avatar
dboe committed
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309

        with cls._bypass_setters('fields', demand_existence=False):
            '''
            Build the normal way
            '''
            bulk = kwargs.pop('bulk')
            bulk_type = kwargs.pop('bulk_type')
            obj = cls.__new__(cls, bulk, **kwargs)

            '''
            Set list attributes
            '''
            for attr, list_value in list_dict.items():
                setattr(obj, attr, list_value)
        return obj


class AbstractNdarray(np.ndarray, AbstractObject):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
310
311
312
313
    """
    All tensors and subclasses should derive from AbstractNdarray.
    AbstractNdarray implements all the inheritance specifics for np.ndarray
    Whene inheriting, three attributes are of interest:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
314
315

    Attributes:
316
        __slots__ (List(str)): If you want to add attributes to
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
317
318
319
320
321
            your AbstractNdarray subclass, add the attribute name to __slots__
        __slot_defaults__ (list): if __slot_defaults__ is None, the
            defaults for the attributes in __slots__ will be None
            other values will be treaded as defaults to the corresponding
            arg at the same position in the __slots__ list.
322
        __slot_dtype__ (List(dtypes)): for the conversion of the
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
323
324
            args in __slots__ to numpy arrays. None values mean no
            conversion.
325
326
327
        __slot_setters__ (List(callable)): Because __slots__ and properties are
            mutually exclusive this is a possibility to take care of proper
            attribute handling. None will be passed for 'not set'.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
328
329
330
331

    Args:
        array (array-like): input array
        **kwargs: arguments corresponding to __slots__
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
332

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
333
334
    TODO:
        equality check
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
335

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
336
    """
dboe's avatar
dboe committed
337

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
338
339
    __slots__ = []
    __slot_defaults__ = []
340
    __slot_dtypes__ = []
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
341
342
343
    __slot_setters__ = []

    def __new__(cls, array, **kwargs):  # pragma: no cover
dboe's avatar
dboe committed
344
345
346
        raise NotImplementedError(
            "{clsType} type must implement '__new__'".format(clsType=type(cls))
        )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
347
348
349
350
351
352
353
354
355
356
357
358

    def __array_finalize__(self, obj):
        if obj is None:
            return
        for attr in self._iter_slots():
            setattr(self, attr, getattr(obj, attr, None))

    def __array_wrap__(self, out_arr, context=None):
        return np.ndarray.__array_wrap__(self, out_arr, context)

    @classmethod
    def _iter_slots(cls):
dboe's avatar
dboe committed
359
        return [att for att in cls.__slots__ if att != "_cache"]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
360
361
362
363
364

    @classmethod
    def _update_slot_kwargs(cls, kwargs):
        """
        set the defaults in kwargs according to __slot_defaults__
365
        and convert the kwargs according to __slot_dtypes__
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
366
        """
367
        slot_defaults = cls.__slot_defaults__ + [None] * (
dboe's avatar
dboe committed
368
369
            len(cls.__slots__) - len(cls.__slot_defaults__)
        )
370
371
        slot_dtypes = cls.__slot_dtypes__ + [None] * (
            len(cls.__slots__) - len(cls.__slot_dtypes__)
dboe's avatar
dboe committed
372
373
        )
        for attr, default, dtype in zip(
374
            cls.__slots__, slot_defaults, slot_dtypes
dboe's avatar
dboe committed
375
376
        ):
            if attr == "_cache":
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
377
378
379
380
381
382
383
                continue
            if attr not in kwargs:
                kwargs[attr] = default
            if dtype is not None:
                try:
                    kwargs[attr] = np.array(kwargs[attr], dtype=dtype)
                except Exception as err:
dboe's avatar
dboe committed
384
385
386
                    raise ValueError(
                        str(attr) + str(dtype) + str(kwargs[attr]) + str(err)
                    )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
387
388
389
390
391
392
393
394

    def __setattr__(self, name, value):
        if name in self.__slots__:
            index = self.__slots__.index(name)
            try:
                setter = self.__slot_setters__[index]
            except IndexError:
                setter = None
395
396
            if isinstance(setter, str):
                setter = getattr(self, setter)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
397
398
399
400
            if setter is not None:
                value = setter(value)
        super(AbstractNdarray, self).__setattr__(name, value)

dboe's avatar
dboe committed
401
402
403
404
405
406
    def _args(self):
        return (np.array(self),)

    def _kwargs(self):
        return dict((attr, getattr(self, attr)) for attr in self._iter_slots())

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
407
408
    def __reduce__(self):
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
409
410
        important for pickling (see `here <https://stackoverflow.com/questions/26598109/preserve-custom-attributes-when-pickling-subclass-of-numpy-array>`_)

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
411
412
413
414
415
416
        Examples:
            >>> from tempfile import NamedTemporaryFile
            >>> import pickle
            >>> import tfields

            Build a dummy scalar field
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
417

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
418
419
420
            >>> from tfields import Tensors, TensorFields
            >>> scalars = Tensors([0, 1, 2])
            >>> vectors = Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
dboe's avatar
dboe committed
421
422
423
            >>> scalar_field = TensorFields(vectors,
            ...                             scalars,
            ...                             coord_sys='cylinder')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
424
425

            Save it and restore it
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
426

427
            >>> out_file = NamedTemporaryFile(suffix='.pickle')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
428

429
            >>> pickle.dump(scalar_field,
430
431
            ...             out_file)
            >>> _ = out_file.seek(0)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
432

433
            >>> sf = pickle.load(out_file)
434
            >>> sf.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
435
436
437
438
439
440
441
442
443
            True
            >>> sf.fields[0][2] == 2.
            True

        """
        # Get the parent's __reduce__ tuple
        pickled_state = super(AbstractNdarray, self).__reduce__()

        # Create our own tuple to pass to __setstate__
dboe's avatar
dboe committed
444
445
446
        new_state = pickled_state[2] + tuple(
            [getattr(self, slot) for slot in self._iter_slots()]
        )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
447

dboe's avatar
dboe committed
448
449
        # Return a tuple that replaces the parent's __setstate__
        # tuple with our own
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
450
451
452
453
        return (pickled_state[0], pickled_state[1], new_state)

    def __setstate__(self, state):
        """
454
        Counterpart to __reduce__. Important for unpickling.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
455
456
        """
        # Call the parent's __setstate__ with the other tuple elements.
dboe's avatar
dboe committed
457
        super(AbstractNdarray, self).__setstate__(
dboe's avatar
dboe committed
458
            state[0:-len(self._iter_slots())]
dboe's avatar
dboe committed
459
        )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
460
461

        # set the __slot__ attributes
462
463
464
465
466
        valid_slot_attrs = list(self._iter_slots())
        added_slot_attrs = ['name']  # attributes that have been added later
                                     # have not been pickled with the full
                                     # information and thus need to be
                                     # excluded from the __setstate__
dboe's avatar
dboe committed
467
468
                                     # need to be in the same order as they
                                     # have been added to __slots__
dboe's avatar
dboe committed
469
470
        n_np = 5  # number of numpy array states
        n_old = len(valid_slot_attrs) - len(state[n_np:])
471
472
473
        if n_old > 0:
            for latest_index in range(n_old):
                new_slot = added_slot_attrs[-latest_index]
dboe's avatar
dboe committed
474
475
476
477
                warnings.warn("Slots with names '{new_slot}' appears to have "
                              "been added after the creation of the reduced "
                              "state. No corresponding state found in "
                              "__setstate__."
478
479
480
481
482
                              .format(**locals()))
                valid_slot_attrs.pop(valid_slot_attrs.index(new_slot))
                setattr(self, new_slot, None)

        for slot_index, slot in enumerate(valid_slot_attrs):
dboe's avatar
dboe committed
483
            state_index = n_np + slot_index
484
            setattr(self, slot, state[state_index])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
485

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
486
487
488
489
490
491
492
493
    @property
    def bulk(self):
        """
        The pure ndarray version of the actual state
            -> nothing attached
        """
        return np.array(self)

494
495
    @classmethod
    @contextmanager
dboe's avatar
dboe committed
496
497
498
    def _bypass_setters(cls, *slots,
                        empty_means_all=True,
                        demand_existence=False):
499
500
501
        """
        Temporarily remove the setter in __slot_setters__ corresponding to slot
        position in __slot__. You should know what you do, when using this.
502
503
504
505
506

        Args:
            *slots (str): attribute names in __slots__
            empty_means_all (bool): defines behaviour when slots is empty.
                When True: if slots is empty mute all slots in __slots__
dboe's avatar
dboe committed
507
508
            demand_existence (bool): if false do not check the existence of the
                slot in __slots__ - do nothing for that slot. Handle with care!
509
510
511
512
513
514
        """
        if not slots and empty_means_all:
            slots = cls.__slots__
        slot_indices = []
        setters = []
        for slot in slots:
dboe's avatar
dboe committed
515
516
517
518
519
520
521
522
            slot_index = cls.__slots__.index(slot)\
                if slot in cls.__slots__ else None
            if slot_index is None:
                # slot not in cls.__slots__.
                if demand_existence:
                    raise ValueError(
                        "Slot {slot} not existing".format(**locals()))
                continue
523
524
525
526
527
528
529
            if len(cls.__slot_setters__) < slot_index + 1:
                # no setter to be found
                continue
            slot_indices.append(slot_index)
            setter = cls.__slot_setters__[slot_index]
            setters.append(setter)
            cls.__slot_setters__[slot_index] = None
530
        yield
531
532
        for slot_index, setter in zip(slot_indices, setters):
            cls.__slot_setters__[slot_index] = setter
533

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
534
535
536
    def copy(self, *args, **kwargs):
        """
        The standard ndarray copy does not copy slots. Correct for this.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
537

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
538
539
        Examples:
            >>> import tfields
dboe's avatar
dboe committed
540
541
            >>> m = tfields.TensorMaps(
            ...     [[1,2,3], [3,3,3], [0,0,0], [5,6,7]],
dboe's avatar
dboe committed
542
            ...     [[1], [3], [0], [5]],
543
544
            ...     maps=[
            ...         ([[0, 1, 2], [1, 2, 3]], [21, 42]),
dboe's avatar
dboe committed
545
546
            ...         [[1]],
            ...         [[0, 1, 2, 3]]
547
            ...     ])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
548
            >>> mc = m.copy()
dboe's avatar
dboe committed
549
550
            >>> mc.equal(m)
            True
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
551
552
            >>> mc is m
            False
dboe's avatar
dboe committed
553
554
555
556
            >>> mc.fields is m.fields
            False
            >>> mc.fields[0] is m.fields[0]
            False
dboe's avatar
dboe committed
557
            >>> mc.maps[3].fields[0] is m.maps[3].fields[0]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
558
559
560
            False

        """
dboe's avatar
dboe committed
561
562
        # works with __reduce__ / __setstate__
        return deepcopy(self)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
563
564
565
566
567


class Tensors(AbstractNdarray):
    """
    Set of tensors with the same basis.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
568

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
569
570
    TODO:
        all slot args should be protected -> _base
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
571

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
572
573
    Args:
        tensors: np.ndarray or AbstractNdarray subclass
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
574
575
        **kwargs:
            name: optional - custom name, can be anything
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
576

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
577
578
    Examples:
        >>> import numpy as np
579
        >>> import tfields
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
580
581

        Initialize a scalar range
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
582

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
583
584
585
586
587
        >>> scalars = tfields.Tensors([0, 1, 2])
        >>> scalars.rank == 0
        True

        Initialize vectors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
588

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
589
590
591
592
593
        >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
        >>> vectors.rank == 1
        True
        >>> vectors.dim == 3
        True
594
        >>> assert vectors.coord_sys == 'cartesian'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
595
596

        Initialize the Levi-Zivita Tensor
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
597

598
599
600
601
        >>> matrices = tfields.Tensors(
        ...                     [[[0, 0, 0], [0, 0, 1], [0, -1, 0]],
        ...                      [[0, 0, -1], [0, 0, 0], [1, 0, 0]],
        ...                      [[0, 1, 0], [-1, 0, 0], [0, 0, 0]]])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
602
603
604
605
606
607
608
609
        >>> matrices.shape == (3, 3, 3)
        True
        >>> matrices.rank == 2
        True
        >>> matrices.dim == 3
        True

        Initializing in different start coordinate system
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
610

dboe's avatar
dboe committed
611
612
        >>> cyl = tfields.Tensors([[5, np.arctan(4. / 3.), 42]],
        ...                       coord_sys='cylinder')
613
        >>> assert cyl.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
614
        >>> cyl.transform('cartesian')
615
        >>> assert cyl.coord_sys == 'cartesian'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
616
617
618
619
620
621
        >>> cart = cyl
        >>> assert round(cart[0, 0], 10) == 3.
        >>> assert round(cart[0, 1], 10) == 4.
        >>> assert cart[0, 2] == 42

        Initialize with copy constructor keeps the coordinate system
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
622

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
623
624
        >>> with vectors.tmp_transform('cylinder'):
        ...     vect_cyl = tfields.Tensors(vectors)
625
626
        ...     assert vect_cyl.coord_sys == vectors.coord_sys
        >>> assert vect_cyl.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
627
628

        You can demand a special dimension.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
629

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
630
631
632
633
634
635
636
637
        >>> _ = tfields.Tensors([[1, 2, 3]], dim=3)
        >>> _ = tfields.Tensors([[1, 2, 3]], dim=2)  # doctest: +ELLIPSIS
        Traceback (most recent call last):
            ...
        ValueError: Incorrect dimension: 3 given, 2 demanded.

        The dimension argument (dim) becomes necessary if you want to initialize
        an empty array
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
638

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
639
640
641
642
643
644
645
646
        >>> _ = tfields.Tensors([])  # doctest: +ELLIPSIS
        Traceback (most recent call last):
            ...
        ValueError: Empty tensors need dimension parameter 'dim'.
        >>> tfields.Tensors([], dim=7)
        Tensors([], shape=(0, 7), dtype=float64)

    """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
647
    __slots__ = ['coord_sys', 'name']
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
648
649
650
651
    __slot_defaults__ = ['cartesian']
    __slot_setters__ = [tfields.bases.get_coord_system_name]

    def __new__(cls, tensors, **kwargs):
dboe's avatar
dboe committed
652
653
654
        dtype = kwargs.pop("dtype", None)
        order = kwargs.pop("order", None)
        dim = kwargs.pop("dim", None)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
655

dboe's avatar
dboe committed
656
        """ copy constructor extracts the kwargs from tensors"""
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
657
658
659
        if issubclass(type(tensors), Tensors):
            if dim is not None:
                dim = tensors.dim
dboe's avatar
dboe committed
660
            coord_sys = kwargs.pop("coord_sys", tensors.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
661
            tensors = tensors.copy()
662
663
            tensors.transform(coord_sys)
            kwargs['coord_sys'] = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
664
            kwargs['name'] = kwargs.pop('name', tensors.name)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
665
666
667
668
            if dtype is None:
                dtype = tensors.dtype
        else:
            if dtype is None:
dboe's avatar
dboe committed
669
                if hasattr(tensors, "dtype"):
670
671
672
                    dtype = tensors.dtype
                else:
                    dtype = np.float64
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
673

dboe's avatar
dboe committed
674
        """ demand iterable structure """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
675
676
677
        try:
            len(tensors)
        except TypeError as err:
dboe's avatar
dboe committed
678
679
680
681
            raise TypeError(
                "Iterable structure necessary."
                " Got {tensors}".format(**locals())
            )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
682

dboe's avatar
dboe committed
683
        """ process empty inputs """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
684
685
686
687
688
689
690
691
        if len(tensors) == 0:
            if issubclass(type(tensors), tfields.Tensors):
                tensors = np.empty(tensors.shape, dtype=tensors.dtype)
            elif dim is not None:
                tensors = np.empty((0, dim))
            if issubclass(type(tensors), np.ndarray):
                # np.empty
                pass
dboe's avatar
dboe committed
692
693
            elif hasattr(tensors, 'shape'):
                dim = dim(tensors)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
694
            else:
dboe's avatar
dboe committed
695
                raise ValueError(
dboe's avatar
dboe committed
696
                    "Empty tensors need dimension parameter 'dim'."
dboe's avatar
dboe committed
697
                )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
698
699
700
701

        tensors = np.asarray(tensors, dtype=dtype, order=order)
        obj = tensors.view(cls)

dboe's avatar
dboe committed
702
        """ check dimension(s) """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
703
704
        for d in obj.shape[1:]:
            if not d == obj.dim:
dboe's avatar
dboe committed
705
706
707
708
709
710
711
                raise ValueError(
                    "Dimensions are inconstistent. "
                    "Manifold dimension is {obj.dim}. "
                    "Found dimensions {found} in {obj}.".format(
                        found=obj.shape[1:], **locals()
                    )
                )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
712
713
        if dim is not None:
            if dim != obj.dim:
dboe's avatar
dboe committed
714
715
716
717
                raise ValueError(
                    "Incorrect dimension: {obj.dim} given,"
                    " {dim} demanded.".format(**locals())
                )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
718

dboe's avatar
dboe committed
719
        """ update kwargs with defaults from slots """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
720
721
        cls._update_slot_kwargs(kwargs)

dboe's avatar
dboe committed
722
        """ set kwargs to slots attributes """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
723
724
        for attr in kwargs:
            if attr not in cls._iter_slots():
dboe's avatar
dboe committed
725
726
727
728
                raise AttributeError(
                    "Keyword argument {attr} not accepted "
                    "for class {cls}".format(**locals())
                )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
729
730
731
732
            setattr(obj, attr, kwargs[attr])

        return obj

733
734
735
736
    def __iter__(self):
        """
        Forwarding iterations to the bulk array. Otherwise __getitem__ would
        kick in and slow down imensely.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
737

738
739
740
        Examples:
            >>> import tfields
            >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
dboe's avatar
dboe committed
741
742
            >>> scalar_field = tfields.TensorFields(
            ...     vectors, [42, 21, 10.5], [1, 2, 3])
743
744
745
746
747
748
749
            >>> [(point.rank, point.dim) for point in scalar_field]
            [(0, 1), (0, 1), (0, 1)]

        """
        for index in range(len(self)):
            yield super(Tensors, self).__getitem__(index).view(Tensors)

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
750
751
752
753
    @classmethod
    def merged(cls, *objects, **kwargs):
        """
        Factory method
dboe's avatar
dboe committed
754
        Merges all input arguments to one object
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
755

756
757
758
        Args:
            return_templates (bool): return the templates which can be used
                together with cut to retrieve the original objects
dboe's avatar
dboe committed
759
760
            dim (int):
            **kwargs: passed to cls
761

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
762
763
764
765
766
        Examples:
            >>> import numpy as np
            >>> import tfields
            >>> import tfields.bases

767
768
            The new object with turn out in the most frequent coordinate
            system if not specified explicitly
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
769

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
770
            >>> vec_a = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
dboe's avatar
dboe committed
771
772
773
774
775
776
            >>> vec_b = tfields.Tensors([[5, 4, 1]],
            ...     coord_sys=tfields.bases.cylinder)
            >>> vec_c = tfields.Tensors([[4, 2, 3]],
            ...     coord_sys=tfields.bases.cylinder)
            >>> merge = tfields.Tensors.merged(
            ...     vec_a, vec_b, vec_c, [[2, 0, 1]])
777
            >>> assert merge.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
778
779
780
781
782
783
784
785
            >>> assert merge.equal([[0, 0, 0],
            ...                     [0, 0, 1],
            ...                     [1, -np.pi / 2, 0],
            ...                     [5, 4, 1],
            ...                     [4, 2, 3],
            ...                     [2, 0, 1]])

            Merge also shifts the maps to still refer to the same tensors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
786

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
787
788
            >>> tm_a = tfields.TensorMaps(merge, maps=[[[0, 1, 2]]])
            >>> tm_b = tm_a.copy()
789
            >>> assert tm_a.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
790
            >>> tm_merge = tfields.TensorMaps.merged(tm_a, tm_b)
791
            >>> assert tm_merge.coord_sys == 'cylinder'
dboe's avatar
dboe committed
792
            >>> assert tm_merge.maps[3].equal([[0, 1, 2],
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
793
794
795
            ...                               list(range(len(merge),
            ...                                          len(merge) + 3,
            ...                                          1))])
dboe's avatar
dboe committed
796

797
798
            >>> obj_list = [tfields.Tensors([[1, 2, 3]],
            ...             coord_sys=tfields.bases.CYLINDER),
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
799
800
            ...             tfields.Tensors([[3] * 3]),
            ...             tfields.Tensors([[5, 1, 3]])]
801
802
            >>> merge2 = tfields.Tensors.merged(
            ...     *obj_list, coord_sys=tfields.bases.CARTESIAN)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
803
804
            >>> assert merge2.equal([[-0.41614684, 0.90929743, 3.],
            ...                      [3, 3, 3], [5, 1, 3]], atol=1e-8)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
805

806
807
808
809
810
811
812
813
814
            The return_templates argument allows to retrieve a template which
            can be used with the cut method.

            >>> merge, templates = tfields.Tensors.merged(
            ...     vec_a, vec_b, vec_c, return_templates=True)
            >>> assert merge.cut(templates[0]).equal(vec_a)
            >>> assert merge.cut(templates[1]).equal(vec_b)
            >>> assert merge.cut(templates[2]).equal(vec_c)

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
815
816
        """

dboe's avatar
dboe committed
817
818
        """ get most frequent coord_sys or predefined coord_sys """
        coord_sys = kwargs.get("coord_sys", None)
819
        return_templates = kwargs.pop("return_templates", False)
820
        if coord_sys is None:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
821
822
823
            bases = []
            for t in objects:
                try:
824
                    bases.append(t.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
825
826
827
                except AttributeError:
                    pass
            if bases:
828
                # get most frequent coord_sys
dboe's avatar
dboe committed
829
830
831
                coord_sys = sorted(
                    bases, key=Counter(bases).get, reverse=True
                )[0]
dboe's avatar
dboe committed
832
                kwargs["coord_sys"] = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
833
            else:
dboe's avatar
dboe committed
834
835
836
837
                default = cls.__slot_defaults__[
                    cls.__slots__.index("coord_sys")
                ]
                kwargs["coord_sys"] = default
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
838

dboe's avatar
dboe committed
839
        """ transform all raw inputs to cls type with correct coord_sys. Also
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
840
        automatically make a copy of those instances that are of the correct
dboe's avatar
dboe committed
841
        type already."""
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
842
        objects = [cls.__new__(cls, t, **kwargs) for t in objects]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
843

dboe's avatar
dboe committed
844
        """ check rank and dimension equality """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
845
846
847
848
849
        if not len(set([t.rank for t in objects])) == 1:
            raise TypeError("Tensors must have the same rank for merging.")
        if not len(set([t.dim for t in objects])) == 1:
            raise TypeError("Tensors must have the same dimension for merging.")

dboe's avatar
dboe committed
850
        """ merge all objects """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
851
852
853
854
855
856
        remainingObjects = objects[1:] or []
        tensors = objects[0]

        for i, obj in enumerate(remainingObjects):
            tensors = np.append(tensors, obj, axis=0)

dboe's avatar
dboe committed
857
        if len(tensors) == 0 and not kwargs.get('dim', None):
858
859
            # if you can not determine the tensor dimension, search for the
            # first object with some entries
dboe's avatar
dboe committed
860
            kwargs['dim'] = dim(objects[0])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
861

862
        inst = cls.__new__(cls, tensors, **kwargs)
863
        if not return_templates:
864
            return inst
865
866
867
868
869
870
        else:
            tensor_lengths = [len(o) for o in objects]
            cum_tensor_lengths = [sum(tensor_lengths[:i])
                                  for i in range(len(objects))]
            templates = [
                tfields.TensorFields(
871
                    np.empty((len(obj), 0)),
872
873
                    np.arange(tensor_lengths[i]) + cum_tensor_lengths[i])
                for i, obj in enumerate(objects)]
874
            return inst, templates
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
875
876
877
878
879

    @classmethod
    def grid(cls, *base_vectors, **kwargs):
        """
        Args:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
880
881
882
883
884
885
886
            *base_vectors (Iterable): base coordinates. The amount of base
                vectors defines the dimension

            **kwargs:
                iter_order (list): order in which the iteration will be done.
                    Frequency rises with position in list. default is [0, 1, 2]
                    iteration will be done like::
dboe's avatar
dboe committed
887

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
888
889
890
891
892
893
                    for v0 in base_vectors[iter_order[0]]:
                        for v1 in base_vectors[iter_order[1]]:
                            for v2 in base_vectors[iter_order[2]]:
                                coords0.append(locals()['v%i' % iter_order[0]])
                                coords1.append(locals()['v%i' % iter_order[1]])
                                coords2.append(locals()['v%i' % iter_order[2]])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
894
895
896

        Examples:
            Initilaize using the mgrid notation
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
897

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
898
899
900
901
902
903
904
905
906
907
908
            >>> import tfields
            >>> mgrid = tfields.Tensors.grid((0, 1, 2j), (3, 4, 2j), (6, 7, 2j))
            >>> mgrid.equal([[0, 3, 6],
            ...              [0, 3, 7],
            ...              [0, 4, 6],
            ...              [0, 4, 7],
            ...              [1, 3, 6],
            ...              [1, 3, 7],
            ...              [1, 4, 6],
            ...              [1, 4, 7]])
            True
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
909
910
911

            Lists or arrays are accepted also.
            Furthermore, the iteration order can be changed
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
912

dboe's avatar
dboe committed
913
914
915
            >>> lins = tfields.Tensors.grid(
            ...     np.linspace(3, 4, 2), np.linspace(0, 1, 2),
            ...     np.linspace(6, 7, 2), iter_order=[1, 0, 2])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
            >>> lins.equal([[3, 0, 6],
            ...             [3, 0, 7],
            ...             [4, 0, 6],
            ...             [4, 0, 7],
            ...             [3, 1, 6],
            ...             [3, 1, 7],
            ...             [4, 1, 6],
            ...             [4, 1, 7]])
            True
            >>> lins2 = tfields.Tensors.grid(np.linspace(0, 1, 2),
            ...                              np.linspace(3, 4, 2),
            ...                              np.linspace(6, 7, 2),
            ...                              iter_order=[2, 0, 1])
            >>> lins2.equal([[0, 3, 6],
            ...              [0, 4, 6],
            ...              [1, 3, 6],
            ...              [1, 4, 6],
            ...              [0, 3, 7],
            ...              [0, 4, 7],
            ...              [1, 3, 7],
            ...              [1, 4, 7]])
            True

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
939
940
            When given the coord_sys argument, the grid is performed in the
            given coorinate system:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
941

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
942
943
944
945
946
947
948
949
950
            >>> lins3 = tfields.Tensors.grid(np.linspace(4, 9, 2),
            ...                              np.linspace(np.pi/2, np.pi/2, 1),
            ...                              np.linspace(4, 4, 1),
            ...                              iter_order=[2, 0, 1],
            ...                              coord_sys=tfields.bases.CYLINDER)
            >>> assert lins3.coord_sys == 'cylinder'
            >>> lins3.transform('cartesian')
            >>> assert np.array_equal(lins3[:, 1], [4, 9])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
951
        """
dboe's avatar
dboe committed
952
953
954
955
956
957
958
959
        cls_kwargs = {
            attr: kwargs.pop(attr)
            for attr in list(kwargs)
            if attr in cls.__slots__
        }
        inst = cls.__new__(
            cls, tfields.lib.grid.igrid(*base_vectors, **kwargs), **cls_kwargs
        )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
        return inst

    @property
    def rank(self):
        """
        Tensor rank
        """
        return rank(self)

    @property
    def dim(self):
        """
        Manifold dimension
        """
        return dim(self)

976
    def transform(self, coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
977
978
        """
        Args:
979
            coord_sys (str)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
980
981
982
983
984
985

        Examples:
            >>> import numpy as np
            >>> import tfields

            CARTESIAN to SPHERICAL
dboe's avatar
dboe committed
986
987
            >>> t = tfields.Tensors([[1, 2, 2], [1, 0, 0], [0, 0, -1],
            ...                      [0, 0, 1], [0, 0, 0]])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
988
989
990
            >>> t.transform('spherical')

            r
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
991

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
992
993
994
            >>> assert t[0, 0] == 3

            phi
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
995

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
996
997
998
999
            >>> assert t[1, 1] == 0.
            >>> assert t[2, 1] == 0.

            theta is 0 at (0, 0, 1) and pi / 2 at (0, 0, -1)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1000

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1001
1002
1003
1004
1005
            >>> assert round(t[1, 2], 10) == round(0, 10)
            >>> assert t[2, 2] == -np.pi / 2
            >>> assert t[3, 2] == np.pi / 2

            theta is defined 0 for R == 0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1006

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1007
1008
1009
1010
1011
            >>> assert t[4, 0] == 0.
            >>> assert t[4, 2] == 0.


            CARTESIAN to CYLINDER
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1012

dboe's avatar
dboe committed
1013
1014
            >>> tCart = tfields.Tensors([[3, 4, 42], [1, 0, 0], [0, 1, -1],
            ...                          [-1, 0, 1], [0, 0, 0]])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1015
1016
            >>> t_cyl = tCart.copy()
            >>> t_cyl.transform('cylinder')
1017
            >>> assert t_cyl.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1018
1019

            R
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1020

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1021
1022
1023
1024
1025
1026
            >>> assert t_cyl[0, 0] == 5
            >>> assert t_cyl[1, 0] == 1
            >>> assert t_cyl[2, 0] == 1
            >>> assert t_cyl[4, 0] == 0

            Phi
dboe's avatar
dboe committed
1027

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1028
1029
1030
1031
1032
1033
            >>> assert round(t_cyl[0, 1], 10) == round(np.arctan(4. / 3), 10)
            >>> assert t_cyl[1, 1] == 0
            >>> assert round(t_cyl[2, 1], 10) == round(np.pi / 2, 10)
            >>> assert t_cyl[1, 1] == 0

            Z
dboe's avatar
dboe committed
1034

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1035
1036
1037
1038
            >>> assert t_cyl[0, 2] == 42
            >>> assert t_cyl[2, 2] == -1

            >>> t_cyl.transform('cartesian')
1039
            >>> assert t_cyl.coord_sys == 'cartesian'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1040
1041
1042
1043
            >>> assert t_cyl[0, 0] == 3

        """
        #           scalars                 empty             already there
1044
1045
        if self.rank == 0 or self.shape[0] == 0 or self.coord_sys == coord_sys:
            self.coord_sys = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1046
1047
            return

1048
1049
1050
        tfields.bases.transform(self, self.coord_sys, coord_sys)
        # self[:] = tfields.bases.transform(self, self.coord_sys, coord_sys)
        self.coord_sys = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1051
1052

    @contextmanager
1053
    def tmp_transform(self, coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1054
        """
1055
        Temporarily change the coord_sys to another coord_sys and change it back at exit
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1056
1057
        This method is for cleaner code only.
        No speed improvements go with this.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1058

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1059
1060
        Args:
            see transform
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1061

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1062
1063
        Examples:
            >>> import tfields
1064
            >>> p = tfields.Tensors([[1,2,3]], coord_sys=tfields.bases.SPHERICAL)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1065
            >>> with p.tmp_transform(tfields.bases.CYLINDER):
1066
1067
            ...     assert p.coord_sys == tfields.bases.CYLINDER
            >>> assert p.coord_sys == tfields.bases.SPHERICAL
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1068
1069

        """
1070
1071
        baseBefore = self.coord_sys
        if baseBefore == coord_sys:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1072
1073
            yield
        else:
1074
            self.transform(coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1075
1076
1077
1078
1079
1080
1081
1082

            yield

            self.transform(baseBefore)

    def mirror(self, coordinate, condition=None):
        """
        Reflect/Mirror the entries meeting <condition> at <coordinate> = 0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1083

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1084
1085
        Args:
            coordinate (int): coordinate index
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1086

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1087
1088
1089
1090
1091
1092
        Examples:
            >>> import tfields
            >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]])
            >>> p.mirror(1)
            >>> assert p.equal([[1, -2, 3], [4, -5,  6], [1, -2, -6]])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1093
1094
            multiple coordinates can be mirrored at the same time
            i.e. a point mirrorion would be
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1095

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1096
1097
1098
1099
1100
            >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]])
            >>> p.mirror([0,2])
            >>> assert p.equal([[-1, 2, -3], [-4, 5, -6], [-1, 2., 6.]])

            You can give a condition as mask or as str.
dboe's avatar
dboe committed
1101
1102
            The mirroring will only be applied to the points meeting the
            condition.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1103

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1104
1105
            >>> import sympy
            >>> x, y, z = sympy.symbols('x y z')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1106
            >>> p.mirror([0, 2], y > 3)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
            >>> p.equal([[-1, 2, -3], [4, 5, 6], [-1, 2, 6]])
            True

        """
        if condition is None:
            condition = np.array([True for i in range(len(self))])
        elif isinstance(condition, sympy.Basic):
            condition = self.evalf(condition)
        if isinstance(coordinate, list) or isinstance(coordinate, tuple):
            for c in coordinate:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1117
                self.mirror(c, condition=condition)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1118
1119
1120
1121
1122
        elif isinstance(coordinate, int):
            self[:, coordinate][condition] *= -1
        else:
            raise TypeError()

dboe's avatar
dboe committed
1123
1124
1125
1126
1127
1128
1129
1130
1131
    def to_segment(
        self,
        segment,
        num_segments,
        coordinate,
        periodicity=2 * np.pi,
        offset=0.0,
        coord_sys=None,
    ):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1132
1133
1134
1135
1136
        """
        For circular (close into themself after
        <periodicity>) coordinates at index <coordinate> assume
        <num_segments> segments and transform all values to
        segment number <segment>
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1137

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1138
1139
1140
1141
1142
1143
        Args:
            segment (int): segment index (starting at 0)
            num_segments (int): number of segments
            coordinate (int): coordinate index
            periodicity (float): after what lenght, the coordiante repeats
            offset (float): offset in the mapping
1144
            coord_sys (str or sympy.CoordinateSystem): in which coord sys the
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1145
                transformation should be done
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1146

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1147
1148
1149
1150
1151
        Examples:
            >>> import tfields
            >>> import numpy as np
            >>> pStart = tfields.Points3D([[6, 2 * np.pi, 1],
            ...                            [6, 2 * np.pi / 5 * 3, 1]],
1152
            ...                           coord_sys='cylinder')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
            >>> p = tfields.Points3D(pStart)
            >>> p.to_segment(0, 5, 1, offset=-2 * np.pi / 10)
            >>> assert np.array_equal(p[:, 1], [0, 0])

            >>> p2 = tfields.Points3D(pStart)
            >>> p2.to_segment(1, 5, 1, offset=-2 * np.pi / 10)
            >>> assert np.array_equal(np.round(p2[:, 1], 4), [1.2566] * 2)

        """
        if segment > num_segments - 1:
            raise ValueError("Segment {0} not existent.".format(segment))

1165
1166
1167
        if coord_sys is None:
            coord_sys = self.coord_sys
        with self.tmp_transform(coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1168
            # map all values to first segment
dboe's avatar
dboe committed
1169
1170
1171
1172
1173
            self[:, coordinate] = (
                (self[:, coordinate] - offset) % (periodicity / num_segments)
                + offset
                + segment * periodicity / num_segments
            )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1174

dboe's avatar
dboe committed
1175
1176
1177
    def equal(
        self, other, rtol=None, atol=None, equal_nan=False, return_bool=True
    ):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1178
1179
        """
        Evaluate, whether the instance has the same content as other.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1180

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1181
1182
1183
1184
1185
1186
1187
        Args:
            optional:
                rtol (float)
                atol (float)
                equal_nan (bool)
            see numpy.isclose
        """
dboe's avatar
dboe committed
1188
1189
1190
1191
        if (
            issubclass(type(other), Tensors)
            and self.coord_sys != other.coord_sys
        ):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1192
            other = other.copy()
1193
            other.transform(self.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1194
1195
        x, y = np.asarray(self), np.asarray(other)
        if rtol is None and atol is None:
dboe's avatar
dboe committed
1196
            mask = x == y
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1197
1198
1199
1200
1201
            if equal_nan:
                both_nan = np.isnan(x) & np.isnan(y)
                mask[both_nan] = both_nan[both_nan]
        else:
            if rtol is None:
dboe's avatar
dboe committed
1202
                rtol = 0.0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1203
            if atol is None:
dboe's avatar
dboe committed
1204
                atol = 0.0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1205
1206
1207
1208
1209
1210
1211
1212
1213
            mask = np.isclose(x, y, rtol=rtol, atol=atol, equal_nan=equal_nan)
        if return_bool:
            return bool(np.all(mask))
        return mask

    def contains(self, other, **kwargs):
        """
        Inspired by a speed argument @
        stackoverflow.com/questions/14766194/testing-whether-a-numpy-array-contains-a-given-row
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1214

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1215
1216
1217
1218
1219
1220
1221
1222
1223
        Examples:
            >>> import tfields
            >>> p = tfields.Tensors([[1,2,3], [4,5,6], [6,7,8]])
            >>> p.contains([4,5,6])
            True

        """
        return any(self.equal(other, return_bool=False).all(1))

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1224
    def indices(self, tensor, rtol=None, atol=None):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1225
1226
1227
        """
        Returns:
            list of int: indices of tensor occuring
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1228

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1229
        Examples:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1230
            Rank 1 Tensors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1231

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1232
1233
1234
1235
1236
1237
1238
1239
            >>> import tfields
            >>> p = tfields.Tensors([[1,2,3], [4,5,6], [6,7,8], [4,5,6],
            ...                      [4.1, 5, 6]])
            >>> p.indices([4,5,6])
            array([1, 3])
            >>> p.indices([4,5,6.1], rtol=1e-5, atol=1e-1)
            array([1, 3, 4])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1240
            Rank 0 Tensors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1241

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1242
1243
1244
1245
1246
1247
            >>> p = tfields.Tensors([2, 3, 6, 3.01])
            >>> p.indices(3)
            array([1])
            >>> p.indices(3, rtol=1e-5, atol=1e-1)
            array([1, 3])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1248
        """
1249
1250
        x, y = np.asarray(self), np.asarray(tensor)
        if rtol is None and atol is None:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1251
            equal_method = np.equal
1252
1253
        else:
            equal_method = lambda a, b: np.isclose(a, b, rtol=rtol, atol=atol)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1254
1255

        # inspired by https://stackoverflow.com/questions/19228295/find-ordered-vector-in-numpy-array
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1256
        if self.rank == 0:
dboe's avatar
dboe committed
1257
            indices = np.where(equal_method((x - y), 0))[0]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1258
        elif self.rank == 1:
dboe's avatar
dboe committed
1259
            indices = np.where(np.all(equal_method((x - y), 0), axis=1))[0]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1260
1261
        else:
            raise NotImplementedError()
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1262
1263
        return indices

1264
    def index(self, tensor, **kwargs):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1265
1266
1267
        """
        Args:
            tensor
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1268

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1269
1270
1271
        Returns:
            int: index of tensor occuring
        """
1272
        indices = self.indices(tensor, **kwargs)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1273
1274
1275
1276
        if not indices:
            return None
        if len(indices) == 1:
            return indices[0]
dboe's avatar
dboe committed
1277
        raise ValueError("Multiple occurences of value {}".format(tensor))
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1278

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1279
    def moment(self, moment, weights=None):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1280
1281
1282
        """
        Returns:
            Moments of the distribution.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1283

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1284
1285
        Args:
            moment (int): n-th moment
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1286

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1287
1288
        Examples:
            >>> import tfields
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1289
            >>> import numpy as np
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1290
1291

            Skalars
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1292

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1293
            >>> t = tfields.Tensors(range(1, 6))