core.py 99.8 KB
Newer Older
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1
2
3
4
5
6
7
8
#!/usr/bin/env
# encoding: utf-8
"""
Author:     Daniel Boeckenhoff
Mail:       daniel.boeckenhoff@ipp.mpg.de

core of tfields library
contains numpy ndarray derived bases of the tfields package
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
9
10

Notes:
dboe's avatar
dboe committed
11
12
13
    It could be worthwhile concidering `np.li.mixins.NDArrayOperatorsMixin ...
    <https://docs.scipy.org/doc/numpy-1.15.1/reference/generated/...
    ... numpy.lib.mixins.NDArrayOperatorsMixin.html>`_
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
14
"""
dboe's avatar
dboe committed
15
# builtin
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
16
17
18
19
20
import warnings
import pathlib
from six import string_types
from contextlib import contextmanager
from collections import Counter
dboe's avatar
dboe committed
21
from copy import deepcopy
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
22

dboe's avatar
dboe committed
23
# 3rd party
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
24
25
26
import numpy as np
import sympy
import scipy as sp
dboe's avatar
dboe committed
27
import sortedcontainers
28
import rna
dboe's avatar
dboe committed
29

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
30
import tfields.bases
dboe's avatar
dboe committed
31
32

np.seterr(all="warn", over="raise")
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
33
34
35
36
37
38


def rank(tensor):
    """
    Tensor rank
    """
dboe's avatar
dboe committed
39
    tensor = np.asarray(tensor)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
40
41
42
43
44
45
46
    return len(tensor.shape) - 1


def dim(tensor):
    """
    Manifold dimension
    """
dboe's avatar
dboe committed
47
    tensor = np.asarray(tensor)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
48
49
50
51
52
    if rank(tensor) == 0:
        return 1
    return tensor.shape[1]


dboe's avatar
dboe committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
class AbstractObject(object):
    def save(self, path, *args, **kwargs):
        """
        Saving by redirecting to the correct save method depending on path

        Args:
            path (str or buffer)
            *args:
                forwarded to extension specific method
            **kwargs:
                extension (str): only needed if path is buffer
                ... remaining:forwarded to extension specific method
        """
        # get the extension
        if isinstance(path, (string_types, pathlib.Path)):
            extension = pathlib.Path(path).suffix.lstrip(".")
        else:
            raise ValueError("Wrong path type {0}".format(type(path)))
        path = str(path)

        # get the save method
        try:
            save_method = getattr(self, "_save_{extension}".format(**locals()))
        except:
            raise NotImplementedError(
                "Can not find save method for extension: "
                "{extension}.".format(**locals())
            )

        path = rna.path.resolve(path)
        return save_method(path, **kwargs)

    @classmethod
    def load(cls, path, *args, **kwargs):
        """
        load a file as a tensors object.

        Args:
            path (str or buffer)
            *args:
                forwarded to extension specific method
            **kwargs:
                extension (str): only needed if path is buffer
                ... remaining:forwarded to extension specific method
        """
        if isinstance(path, (string_types, pathlib.Path)):
            extension = pathlib.Path(path).suffix.lstrip(".")
            path = str(path)
            path = rna.path.resolve(path)
        else:
            extension = kwargs.pop("extension", "npz")

        try:
            load_method = getattr(cls, "_load_{e}".format(e=extension))
        except:
            raise NotImplementedError(
                "Can not find load method for extension: "
                "{extension}.".format(**locals())
            )
        return load_method(path, *args, **kwargs)

    def _save_npz(self, path, **kwargs):
        """
        Args:
            path (open file or str/unicode): destination to save file to.

        Examples:
            Build some dummies:
            >>> import tfields
            >>> from tempfile import NamedTemporaryFile
            >>> out_file = NamedTemporaryFile(suffix='.npz')
            >>> p = tfields.Points3D([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]],
            ...                      name='my_points')
            >>> scalars = tfields.Tensors([0, 1, 2], name=42)
            >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
            >>> maps = [tfields.TensorFields([[0, 1, 2], [0, 1, 2]], [42, 21]),
            ...         tfields.TensorFields([[1], [2]], [-42, -21])]
            >>> m = tfields.TensorMaps(vectors, scalars,
            ...                        maps=maps)

            Simply give the file name to save
            >>> p.save(out_file.name)
            >>> _ = out_file.seek(0)  # this is only necessary in the test
            >>> p1 = tfields.Points3D.load(out_file.name)
            >>> assert p.equal(p1)
            >>> assert p.coord_sys == p1.coord_sys

            The fully nested structure of a TensorMaps object is reconstructed
            >>> out_file_maps = NamedTemporaryFile(suffix='.npz')
            >>> m.save(out_file_maps.name)
            >>> _ = out_file_maps.seek(0)
            >>> m1 = tfields.TensorMaps.load(out_file_maps.name,
            ...                              allow_pickle=True)
            >>> assert m.equal(m1)
dboe's avatar
dboe committed
147
            >>> assert m.maps[3].dtype == m1.maps[3].dtype
dboe's avatar
dboe committed
148
149
150
151
152
153
154

            Names are preserved
            >>> assert p.name == 'my_points'
            >>> m.names
            [42]

        """
dboe's avatar
dboe committed
155
        content_dict = self._as_new_dict()
dboe's avatar
dboe committed
156
157
158
159
160
161
162
163
164
165
166
167
        np.savez(path, **content_dict)

    @classmethod
    def _load_npz(cls, path, **load_kwargs):
        """
        Factory method
        Given a path to a npz file, construct the object
        """
        # TODO: think about allow_pickle, wheter it really should be True or
        # wheter we could avoid pickling (potential security issue)
        load_kwargs.setdefault('allow_pickle', True)
        np_file = np.load(path, **load_kwargs)
dboe's avatar
dboe committed
168
        return cls._from_new_dict(dict(np_file))
dboe's avatar
dboe committed
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

    def _args(self) -> tuple:
        return tuple()

    def _kwargs(self) -> dict:
        return dict()

    _HIERARCHY_SEPARATOR = '::'

    def _as_new_dict(self):
        d = {}

        # type
        d["type"] = type(self).__name__

        # args and kwargs
        for base_attr, iterable in [
                ('args', ((str(i), arg)
                          for i, arg in enumerate(self._args()))),
                ('kwargs', self._kwargs().items())]:
            for attr, value in iterable:
                attr = base_attr + self._HIERARCHY_SEPARATOR + attr
                if hasattr(value, '_as_new_dict'):
                    part_dict = value._as_new_dict()
                    for part_attr, part_value in part_dict.items():
                        d[
                            attr + self._HIERARCHY_SEPARATOR + part_attr
                        ] = part_value
                else:
                    d[attr] = value
        return d

    @classmethod
    def _from_new_dict(cls, d: dict):
        d.pop('type')

        here = {}
        for string in d:  # TOO no sortelist
            value = d[string]

            attr, _, end = string.partition(cls._HIERARCHY_SEPARATOR)
            key, _, end = end.partition(cls._HIERARCHY_SEPARATOR)
            if attr not in here:
                here[attr] = {}
            if key not in here[attr]:
                here[attr][key] = {}
            here[attr][key][end] = value

        """
        Do the recursion
        """
        for attr in here:
            for key in here[attr]:
dboe's avatar
dboe committed
222
                if 'type' in here[attr][key]:
dboe's avatar
dboe committed
223
                    obj_type = here[attr][key].get("type")
dboe's avatar
dboe committed
224
225
                    if isinstance(obj_type, np.ndarray):  # happens on np.load
                        obj_type = obj_type.tolist()
dboe's avatar
dboe committed
226
227
228
229
230
231
                    if isinstance(obj_type, bytes):
                        # asthonishingly, this is not necessary under linux.
                        # Found under nt. ???
                        obj_type = obj_type.decode("UTF-8")
                    obj_type = getattr(tfields, obj_type)
                    attr_value = obj_type._from_new_dict(here[attr][key])
dboe's avatar
dboe committed
232
                else:  # if len(here[attr][key]) == 1:
dboe's avatar
dboe committed
233
                    attr_value = here[attr][key].pop('')
dboe's avatar
dboe committed
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
                here[attr][key] = attr_value

        '''
        Build the generic way
        '''
        args = here.pop('args', tuple())
        args = tuple(args[key] for key in sorted(args))
        kwargs = here.pop('kwargs', {})
        assert len(here) == 0
        obj = cls(*args, **kwargs)
        return obj

    def _as_dict(self):
        """
        Recursively walk trough all __slots__ and describe all elements
        """
        d = {}
        d["bulk"] = self.bulk
        d["bulk_type"] = self.__class__.__name__
        for attr in self._iter_slots():
            value = getattr(self, attr)

            if hasattr(value, '_as_dict'):
                value = value._as_dict()
            elif isinstance(value, (list)):  # is_iterable
                if len(value) == 0:
                    d[attr] = None
                elif hasattr(value[0], '_as_dict'):
                    for i, part in enumerate(value):
                        part_dict = part._as_dict()
                        for part_attr, part_value in part_dict.items():
                            d[
                                "{attr}::{i}::{part_attr}".format(**locals())
                            ] = part_value
                    continue
            d[attr] = value
        return d

    @classmethod
    def _from_dict(cls, **d):
        """
        legacy method - Opposite of old _as_dict method which is removed in
        favour of nested object saving under 'data'
        """
        list_dict = {}
        kwargs = {}
        """
        De-Flatten the first layer of lists
        """
        for key in sorted(list(d)):
            if "::" in key:
                splits = key.split("::")
                attr, _, end = key.partition("::")
                if attr not in list_dict:
                    list_dict[attr] = {}

                index, _, end = end.partition("::")
                if not index.isdigit():
                    raise ValueError("None digit index given")
                index = int(index)
                if index not in list_dict[attr]:
                    list_dict[attr][index] = {}
                list_dict[attr][index][end] = d[key]
            else:
                kwargs[key] = d[key]

        """
        Build the lists (recursively)
        """
        for key in list(list_dict):
            sub_dict = list_dict[key]
            list_dict[key] = []
            for index in sorted(list(sub_dict)):
                bulk_type = sub_dict[index].get("bulk_type")
                # bulk_type = bulk_type.tolist() was necessary before. no clue
                if isinstance(bulk_type, bytes):
                    # asthonishingly, this is not necessary under linux.
                    # Found under nt. ???
                    bulk_type = bulk_type.decode("UTF-8")
                bulk_type = getattr(tfields, bulk_type)
                list_dict[key].append(bulk_type._from_dict(**sub_dict[index]))

        with cls._bypass_setters('fields', demand_existence=False):
            '''
            Build the normal way
            '''
            bulk = kwargs.pop('bulk')
            bulk_type = kwargs.pop('bulk_type')
            obj = cls.__new__(cls, bulk, **kwargs)

            '''
            Set list attributes
            '''
            for attr, list_value in list_dict.items():
                setattr(obj, attr, list_value)
        return obj


class AbstractNdarray(np.ndarray, AbstractObject):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
333
334
335
336
    """
    All tensors and subclasses should derive from AbstractNdarray.
    AbstractNdarray implements all the inheritance specifics for np.ndarray
    Whene inheriting, three attributes are of interest:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
337
338

    Attributes:
339
        __slots__ (List(str)): If you want to add attributes to
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
340
341
342
343
344
            your AbstractNdarray subclass, add the attribute name to __slots__
        __slot_defaults__ (list): if __slot_defaults__ is None, the
            defaults for the attributes in __slots__ will be None
            other values will be treaded as defaults to the corresponding
            arg at the same position in the __slots__ list.
345
        __slot_dtype__ (List(dtypes)): for the conversion of the
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
346
347
            args in __slots__ to numpy arrays. None values mean no
            conversion.
348
349
350
        __slot_setters__ (List(callable)): Because __slots__ and properties are
            mutually exclusive this is a possibility to take care of proper
            attribute handling. None will be passed for 'not set'.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
351
352
353
354

    Args:
        array (array-like): input array
        **kwargs: arguments corresponding to __slots__
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
355

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
356
357
    TODO:
        equality check
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
358

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
359
    """
dboe's avatar
dboe committed
360

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
361
362
    __slots__ = []
    __slot_defaults__ = []
363
    __slot_dtypes__ = []
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
364
365
366
    __slot_setters__ = []

    def __new__(cls, array, **kwargs):  # pragma: no cover
dboe's avatar
dboe committed
367
368
369
        raise NotImplementedError(
            "{clsType} type must implement '__new__'".format(clsType=type(cls))
        )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
370
371
372
373
374
375
376
377
378
379
380
381

    def __array_finalize__(self, obj):
        if obj is None:
            return
        for attr in self._iter_slots():
            setattr(self, attr, getattr(obj, attr, None))

    def __array_wrap__(self, out_arr, context=None):
        return np.ndarray.__array_wrap__(self, out_arr, context)

    @classmethod
    def _iter_slots(cls):
dboe's avatar
dboe committed
382
        return [att for att in cls.__slots__ if att != "_cache"]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
383
384
385
386
387

    @classmethod
    def _update_slot_kwargs(cls, kwargs):
        """
        set the defaults in kwargs according to __slot_defaults__
388
        and convert the kwargs according to __slot_dtypes__
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
389
        """
390
        slot_defaults = cls.__slot_defaults__ + [None] * (
dboe's avatar
dboe committed
391
392
            len(cls.__slots__) - len(cls.__slot_defaults__)
        )
393
394
        slot_dtypes = cls.__slot_dtypes__ + [None] * (
            len(cls.__slots__) - len(cls.__slot_dtypes__)
dboe's avatar
dboe committed
395
396
        )
        for attr, default, dtype in zip(
397
            cls.__slots__, slot_defaults, slot_dtypes
dboe's avatar
dboe committed
398
399
        ):
            if attr == "_cache":
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
400
401
402
403
404
405
406
                continue
            if attr not in kwargs:
                kwargs[attr] = default
            if dtype is not None:
                try:
                    kwargs[attr] = np.array(kwargs[attr], dtype=dtype)
                except Exception as err:
dboe's avatar
dboe committed
407
408
409
                    raise ValueError(
                        str(attr) + str(dtype) + str(kwargs[attr]) + str(err)
                    )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
410
411
412
413
414
415
416
417
418
419
420
421

    def __setattr__(self, name, value):
        if name in self.__slots__:
            index = self.__slots__.index(name)
            try:
                setter = self.__slot_setters__[index]
            except IndexError:
                setter = None
            if setter is not None:
                value = setter(value)
        super(AbstractNdarray, self).__setattr__(name, value)

dboe's avatar
dboe committed
422
423
424
425
426
427
    def _args(self):
        return (np.array(self),)

    def _kwargs(self):
        return dict((attr, getattr(self, attr)) for attr in self._iter_slots())

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
428
429
    def __reduce__(self):
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
430
431
        important for pickling (see `here <https://stackoverflow.com/questions/26598109/preserve-custom-attributes-when-pickling-subclass-of-numpy-array>`_)

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
432
433
434
435
436
437
        Examples:
            >>> from tempfile import NamedTemporaryFile
            >>> import pickle
            >>> import tfields

            Build a dummy scalar field
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
438

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
439
440
441
            >>> from tfields import Tensors, TensorFields
            >>> scalars = Tensors([0, 1, 2])
            >>> vectors = Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
dboe's avatar
dboe committed
442
443
444
            >>> scalar_field = TensorFields(vectors,
            ...                             scalars,
            ...                             coord_sys='cylinder')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
445
446

            Save it and restore it
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
447

448
            >>> out_file = NamedTemporaryFile(suffix='.pickle')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
449

450
            >>> pickle.dump(scalar_field,
451
452
            ...             out_file)
            >>> _ = out_file.seek(0)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
453

454
            >>> sf = pickle.load(out_file)
455
            >>> sf.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
456
457
458
459
460
461
462
463
464
            True
            >>> sf.fields[0][2] == 2.
            True

        """
        # Get the parent's __reduce__ tuple
        pickled_state = super(AbstractNdarray, self).__reduce__()

        # Create our own tuple to pass to __setstate__
dboe's avatar
dboe committed
465
466
467
        new_state = pickled_state[2] + tuple(
            [getattr(self, slot) for slot in self._iter_slots()]
        )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
468

dboe's avatar
dboe committed
469
470
        # Return a tuple that replaces the parent's __setstate__
        # tuple with our own
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
471
472
473
474
        return (pickled_state[0], pickled_state[1], new_state)

    def __setstate__(self, state):
        """
475
        Counterpart to __reduce__. Important for unpickling.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
476
477
        """
        # Call the parent's __setstate__ with the other tuple elements.
dboe's avatar
dboe committed
478
        super(AbstractNdarray, self).__setstate__(
dboe's avatar
dboe committed
479
            state[0:-len(self._iter_slots())]
dboe's avatar
dboe committed
480
        )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
481
482

        # set the __slot__ attributes
483
484
485
486
487
        valid_slot_attrs = list(self._iter_slots())
        added_slot_attrs = ['name']  # attributes that have been added later
                                     # have not been pickled with the full
                                     # information and thus need to be
                                     # excluded from the __setstate__
dboe's avatar
dboe committed
488
489
                                     # need to be in the same order as they
                                     # have been added to __slots__
490
491
492
493
        n_old = len(valid_slot_attrs) - len(state[5:])
        if n_old > 0:
            for latest_index in range(n_old):
                new_slot = added_slot_attrs[-latest_index]
dboe's avatar
dboe committed
494
495
496
497
                warnings.warn("Slots with names '{new_slot}' appears to have "
                              "been added after the creation of the reduced "
                              "state. No corresponding state found in "
                              "__setstate__."
498
499
500
501
502
503
504
                              .format(**locals()))
                valid_slot_attrs.pop(valid_slot_attrs.index(new_slot))
                setattr(self, new_slot, None)

        for slot_index, slot in enumerate(valid_slot_attrs):
            state_index = 5 + slot_index
            setattr(self, slot, state[state_index])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
505

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
506
507
508
509
510
511
512
513
    @property
    def bulk(self):
        """
        The pure ndarray version of the actual state
            -> nothing attached
        """
        return np.array(self)

514
515
    @classmethod
    @contextmanager
dboe's avatar
dboe committed
516
517
518
    def _bypass_setters(cls, *slots,
                        empty_means_all=True,
                        demand_existence=False):
519
520
521
        """
        Temporarily remove the setter in __slot_setters__ corresponding to slot
        position in __slot__. You should know what you do, when using this.
522
523
524
525
526

        Args:
            *slots (str): attribute names in __slots__
            empty_means_all (bool): defines behaviour when slots is empty.
                When True: if slots is empty mute all slots in __slots__
dboe's avatar
dboe committed
527
528
            demand_existence (bool): if false do not check the existence of the
                slot in __slots__ - do nothing for that slot. Handle with care!
529
530
531
532
533
534
        """
        if not slots and empty_means_all:
            slots = cls.__slots__
        slot_indices = []
        setters = []
        for slot in slots:
dboe's avatar
dboe committed
535
536
537
538
539
540
541
542
            slot_index = cls.__slots__.index(slot)\
                if slot in cls.__slots__ else None
            if slot_index is None:
                # slot not in cls.__slots__.
                if demand_existence:
                    raise ValueError(
                        "Slot {slot} not existing".format(**locals()))
                continue
543
544
545
546
547
548
549
            if len(cls.__slot_setters__) < slot_index + 1:
                # no setter to be found
                continue
            slot_indices.append(slot_index)
            setter = cls.__slot_setters__[slot_index]
            setters.append(setter)
            cls.__slot_setters__[slot_index] = None
550
        yield
551
552
        for slot_index, setter in zip(slot_indices, setters):
            cls.__slot_setters__[slot_index] = setter
553

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
554
555
556
    def copy(self, *args, **kwargs):
        """
        The standard ndarray copy does not copy slots. Correct for this.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
557

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
558
559
        Examples:
            >>> import tfields
dboe's avatar
dboe committed
560
561
            >>> m = tfields.TensorMaps(
            ...     [[1,2,3], [3,3,3], [0,0,0], [5,6,7]],
562
563
564
565
566
            ...     maps=[
            ...         ([[0, 1, 2], [1, 2, 3]], [21, 42]),
            ...          [[1]],
            ...          [[0, 1, 2, 3]]
            ...     ])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
567
            >>> mc = m.copy()
dboe's avatar
dboe committed
568
569
            >>> mc.equal(m)
            True
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
570
571
            >>> mc is m
            False
dboe's avatar
dboe committed
572
            >>> mc.maps[3].fields[0] is m.maps[3].fields[0]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
573
574
575
            False

        """
dboe's avatar
dboe committed
576
577
        # works with __reduce__ / __setstate__
        return deepcopy(self)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
578
579
580
581
582


class Tensors(AbstractNdarray):
    """
    Set of tensors with the same basis.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
583

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
584
585
    TODO:
        all slot args should be protected -> _base
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
586

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
587
588
    Args:
        tensors: np.ndarray or AbstractNdarray subclass
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
589
590
        **kwargs:
            name: optional - custom name, can be anything
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
591

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
592
593
    Examples:
        >>> import numpy as np
594
        >>> import tfields
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
595
596

        Initialize a scalar range
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
597

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
598
599
600
601
602
        >>> scalars = tfields.Tensors([0, 1, 2])
        >>> scalars.rank == 0
        True

        Initialize vectors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
603

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
604
605
606
607
608
        >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
        >>> vectors.rank == 1
        True
        >>> vectors.dim == 3
        True
609
        >>> assert vectors.coord_sys == 'cartesian'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
610
611

        Initialize the Levi-Zivita Tensor
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
612

613
614
615
616
        >>> matrices = tfields.Tensors(
        ...                     [[[0, 0, 0], [0, 0, 1], [0, -1, 0]],
        ...                      [[0, 0, -1], [0, 0, 0], [1, 0, 0]],
        ...                      [[0, 1, 0], [-1, 0, 0], [0, 0, 0]]])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
617
618
619
620
621
622
623
624
        >>> matrices.shape == (3, 3, 3)
        True
        >>> matrices.rank == 2
        True
        >>> matrices.dim == 3
        True

        Initializing in different start coordinate system
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
625

dboe's avatar
dboe committed
626
627
        >>> cyl = tfields.Tensors([[5, np.arctan(4. / 3.), 42]],
        ...                       coord_sys='cylinder')
628
        >>> assert cyl.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
629
        >>> cyl.transform('cartesian')
630
        >>> assert cyl.coord_sys == 'cartesian'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
631
632
633
634
635
636
        >>> cart = cyl
        >>> assert round(cart[0, 0], 10) == 3.
        >>> assert round(cart[0, 1], 10) == 4.
        >>> assert cart[0, 2] == 42

        Initialize with copy constructor keeps the coordinate system
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
637

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
638
639
        >>> with vectors.tmp_transform('cylinder'):
        ...     vect_cyl = tfields.Tensors(vectors)
640
641
        ...     assert vect_cyl.coord_sys == vectors.coord_sys
        >>> assert vect_cyl.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
642
643

        You can demand a special dimension.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
644

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
645
646
647
648
649
650
651
652
        >>> _ = tfields.Tensors([[1, 2, 3]], dim=3)
        >>> _ = tfields.Tensors([[1, 2, 3]], dim=2)  # doctest: +ELLIPSIS
        Traceback (most recent call last):
            ...
        ValueError: Incorrect dimension: 3 given, 2 demanded.

        The dimension argument (dim) becomes necessary if you want to initialize
        an empty array
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
653

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
654
655
656
657
658
659
660
661
        >>> _ = tfields.Tensors([])  # doctest: +ELLIPSIS
        Traceback (most recent call last):
            ...
        ValueError: Empty tensors need dimension parameter 'dim'.
        >>> tfields.Tensors([], dim=7)
        Tensors([], shape=(0, 7), dtype=float64)

    """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
662
    __slots__ = ['coord_sys', 'name']
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
663
664
665
666
    __slot_defaults__ = ['cartesian']
    __slot_setters__ = [tfields.bases.get_coord_system_name]

    def __new__(cls, tensors, **kwargs):
dboe's avatar
dboe committed
667
668
669
        dtype = kwargs.pop("dtype", None)
        order = kwargs.pop("order", None)
        dim = kwargs.pop("dim", None)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
670

dboe's avatar
dboe committed
671
        """ copy constructor extracts the kwargs from tensors"""
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
672
673
674
        if issubclass(type(tensors), Tensors):
            if dim is not None:
                dim = tensors.dim
dboe's avatar
dboe committed
675
            coord_sys = kwargs.pop("coord_sys", tensors.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
676
            tensors = tensors.copy()
677
678
            tensors.transform(coord_sys)
            kwargs['coord_sys'] = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
679
            kwargs['name'] = kwargs.pop('name', tensors.name)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
680
681
682
683
            if dtype is None:
                dtype = tensors.dtype
        else:
            if dtype is None:
dboe's avatar
dboe committed
684
                if hasattr(tensors, "dtype"):
685
686
687
                    dtype = tensors.dtype
                else:
                    dtype = np.float64
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
688

dboe's avatar
dboe committed
689
        """ demand iterable structure """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
690
691
692
        try:
            len(tensors)
        except TypeError as err:
dboe's avatar
dboe committed
693
694
695
696
            raise TypeError(
                "Iterable structure necessary."
                " Got {tensors}".format(**locals())
            )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
697

dboe's avatar
dboe committed
698
        """ process empty inputs """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
699
700
701
702
703
704
705
706
        if len(tensors) == 0:
            if issubclass(type(tensors), tfields.Tensors):
                tensors = np.empty(tensors.shape, dtype=tensors.dtype)
            elif dim is not None:
                tensors = np.empty((0, dim))
            if issubclass(type(tensors), np.ndarray):
                # np.empty
                pass
dboe's avatar
dboe committed
707
708
            elif hasattr(tensors, 'shape'):
                dim = dim(tensors)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
709
            else:
dboe's avatar
dboe committed
710
                raise ValueError(
dboe's avatar
dboe committed
711
                    "Empty tensors need dimension parameter 'dim'."
dboe's avatar
dboe committed
712
                )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
713
714
715
716

        tensors = np.asarray(tensors, dtype=dtype, order=order)
        obj = tensors.view(cls)

dboe's avatar
dboe committed
717
        """ check dimension(s) """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
718
719
        for d in obj.shape[1:]:
            if not d == obj.dim:
dboe's avatar
dboe committed
720
721
722
723
724
725
726
                raise ValueError(
                    "Dimensions are inconstistent. "
                    "Manifold dimension is {obj.dim}. "
                    "Found dimensions {found} in {obj}.".format(
                        found=obj.shape[1:], **locals()
                    )
                )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
727
728
        if dim is not None:
            if dim != obj.dim:
dboe's avatar
dboe committed
729
730
731
732
                raise ValueError(
                    "Incorrect dimension: {obj.dim} given,"
                    " {dim} demanded.".format(**locals())
                )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
733

dboe's avatar
dboe committed
734
        """ update kwargs with defaults from slots """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
735
736
        cls._update_slot_kwargs(kwargs)

dboe's avatar
dboe committed
737
        """ set kwargs to slots attributes """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
738
739
        for attr in kwargs:
            if attr not in cls._iter_slots():
dboe's avatar
dboe committed
740
741
742
743
                raise AttributeError(
                    "Keyword argument {attr} not accepted "
                    "for class {cls}".format(**locals())
                )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
744
745
746
747
            setattr(obj, attr, kwargs[attr])

        return obj

748
749
750
751
    def __iter__(self):
        """
        Forwarding iterations to the bulk array. Otherwise __getitem__ would
        kick in and slow down imensely.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
752

753
754
755
        Examples:
            >>> import tfields
            >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
dboe's avatar
dboe committed
756
757
            >>> scalar_field = tfields.TensorFields(
            ...     vectors, [42, 21, 10.5], [1, 2, 3])
758
759
760
761
762
763
764
            >>> [(point.rank, point.dim) for point in scalar_field]
            [(0, 1), (0, 1), (0, 1)]

        """
        for index in range(len(self)):
            yield super(Tensors, self).__getitem__(index).view(Tensors)

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
765
766
767
768
    @classmethod
    def merged(cls, *objects, **kwargs):
        """
        Factory method
dboe's avatar
dboe committed
769
        Merges all input arguments to one object
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
770

771
772
773
        Args:
            return_templates (bool): return the templates which can be used
                together with cut to retrieve the original objects
dboe's avatar
dboe committed
774
775
            dim (int):
            **kwargs: passed to cls
776

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
777
778
779
780
781
        Examples:
            >>> import numpy as np
            >>> import tfields
            >>> import tfields.bases

782
783
            The new object with turn out in the most frequent coordinate
            system if not specified explicitly
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
784

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
785
            >>> vec_a = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
dboe's avatar
dboe committed
786
787
788
789
790
791
            >>> vec_b = tfields.Tensors([[5, 4, 1]],
            ...     coord_sys=tfields.bases.cylinder)
            >>> vec_c = tfields.Tensors([[4, 2, 3]],
            ...     coord_sys=tfields.bases.cylinder)
            >>> merge = tfields.Tensors.merged(
            ...     vec_a, vec_b, vec_c, [[2, 0, 1]])
792
            >>> assert merge.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
793
794
795
796
797
798
799
800
            >>> assert merge.equal([[0, 0, 0],
            ...                     [0, 0, 1],
            ...                     [1, -np.pi / 2, 0],
            ...                     [5, 4, 1],
            ...                     [4, 2, 3],
            ...                     [2, 0, 1]])

            Merge also shifts the maps to still refer to the same tensors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
801

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
802
803
            >>> tm_a = tfields.TensorMaps(merge, maps=[[[0, 1, 2]]])
            >>> tm_b = tm_a.copy()
804
            >>> assert tm_a.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
805
            >>> tm_merge = tfields.TensorMaps.merged(tm_a, tm_b)
806
            >>> assert tm_merge.coord_sys == 'cylinder'
dboe's avatar
dboe committed
807
            >>> assert tm_merge.maps[3].equal([[0, 1, 2],
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
808
809
810
            ...                               list(range(len(merge),
            ...                                          len(merge) + 3,
            ...                                          1))])
dboe's avatar
dboe committed
811

812
813
            >>> obj_list = [tfields.Tensors([[1, 2, 3]],
            ...             coord_sys=tfields.bases.CYLINDER),
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
814
815
            ...             tfields.Tensors([[3] * 3]),
            ...             tfields.Tensors([[5, 1, 3]])]
816
817
            >>> merge2 = tfields.Tensors.merged(
            ...     *obj_list, coord_sys=tfields.bases.CARTESIAN)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
818
819
            >>> assert merge2.equal([[-0.41614684, 0.90929743, 3.],
            ...                      [3, 3, 3], [5, 1, 3]], atol=1e-8)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
820

821
822
823
824
825
826
827
828
829
            The return_templates argument allows to retrieve a template which
            can be used with the cut method.

            >>> merge, templates = tfields.Tensors.merged(
            ...     vec_a, vec_b, vec_c, return_templates=True)
            >>> assert merge.cut(templates[0]).equal(vec_a)
            >>> assert merge.cut(templates[1]).equal(vec_b)
            >>> assert merge.cut(templates[2]).equal(vec_c)

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
830
831
        """

dboe's avatar
dboe committed
832
833
        """ get most frequent coord_sys or predefined coord_sys """
        coord_sys = kwargs.get("coord_sys", None)
834
        return_templates = kwargs.pop("return_templates", False)
835
        if coord_sys is None:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
836
837
838
            bases = []
            for t in objects:
                try:
839
                    bases.append(t.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
840
841
842
                except AttributeError:
                    pass
            if bases:
843
                # get most frequent coord_sys
dboe's avatar
dboe committed
844
845
846
                coord_sys = sorted(
                    bases, key=Counter(bases).get, reverse=True
                )[0]
dboe's avatar
dboe committed
847
                kwargs["coord_sys"] = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
848
            else:
dboe's avatar
dboe committed
849
850
851
852
                default = cls.__slot_defaults__[
                    cls.__slots__.index("coord_sys")
                ]
                kwargs["coord_sys"] = default
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
853

dboe's avatar
dboe committed
854
        """ transform all raw inputs to cls type with correct coord_sys. Also
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
855
        automatically make a copy of those instances that are of the correct
dboe's avatar
dboe committed
856
        type already."""
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
857
        objects = [cls.__new__(cls, t, **kwargs) for t in objects]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
858

dboe's avatar
dboe committed
859
        """ check rank and dimension equality """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
860
861
862
863
864
        if not len(set([t.rank for t in objects])) == 1:
            raise TypeError("Tensors must have the same rank for merging.")
        if not len(set([t.dim for t in objects])) == 1:
            raise TypeError("Tensors must have the same dimension for merging.")

dboe's avatar
dboe committed
865
        """ merge all objects """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
866
867
868
869
870
871
        remainingObjects = objects[1:] or []
        tensors = objects[0]

        for i, obj in enumerate(remainingObjects):
            tensors = np.append(tensors, obj, axis=0)

dboe's avatar
dboe committed
872
        if len(tensors) == 0 and not kwargs.get('dim', None):
873
874
            # if you can not determine the tensor dimension, search for the
            # first object with some entries
dboe's avatar
dboe committed
875
            kwargs['dim'] = dim(objects[0])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
876

877
878
879
880
881
882
883
884
885
886
887
888
        if not return_templates:
            return cls.__new__(cls, tensors, **kwargs)
        else:
            tensor_lengths = [len(o) for o in objects]
            cum_tensor_lengths = [sum(tensor_lengths[:i])
                                  for i in range(len(objects))]
            templates = [
                tfields.TensorFields(
                    obj,
                    np.arange(tensor_lengths[i]) + cum_tensor_lengths[i])
                for i, obj in enumerate(objects)]
            return cls.__new__(cls, tensors, **kwargs), templates
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
889
890
891
892
893

    @classmethod
    def grid(cls, *base_vectors, **kwargs):
        """
        Args:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
894
895
896
897
898
899
900
            *base_vectors (Iterable): base coordinates. The amount of base
                vectors defines the dimension

            **kwargs:
                iter_order (list): order in which the iteration will be done.
                    Frequency rises with position in list. default is [0, 1, 2]
                    iteration will be done like::
dboe's avatar
dboe committed
901

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
902
903
904
905
906
907
                    for v0 in base_vectors[iter_order[0]]:
                        for v1 in base_vectors[iter_order[1]]:
                            for v2 in base_vectors[iter_order[2]]:
                                coords0.append(locals()['v%i' % iter_order[0]])
                                coords1.append(locals()['v%i' % iter_order[1]])
                                coords2.append(locals()['v%i' % iter_order[2]])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
908
909
910

        Examples:
            Initilaize using the mgrid notation
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
911

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
912
913
914
915
916
917
918
919
920
921
922
            >>> import tfields
            >>> mgrid = tfields.Tensors.grid((0, 1, 2j), (3, 4, 2j), (6, 7, 2j))
            >>> mgrid.equal([[0, 3, 6],
            ...              [0, 3, 7],
            ...              [0, 4, 6],
            ...              [0, 4, 7],
            ...              [1, 3, 6],
            ...              [1, 3, 7],
            ...              [1, 4, 6],
            ...              [1, 4, 7]])
            True
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
923
924
925

            Lists or arrays are accepted also.
            Furthermore, the iteration order can be changed
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
926

dboe's avatar
dboe committed
927
928
929
            >>> lins = tfields.Tensors.grid(
            ...     np.linspace(3, 4, 2), np.linspace(0, 1, 2),
            ...     np.linspace(6, 7, 2), iter_order=[1, 0, 2])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
            >>> lins.equal([[3, 0, 6],
            ...             [3, 0, 7],
            ...             [4, 0, 6],
            ...             [4, 0, 7],
            ...             [3, 1, 6],
            ...             [3, 1, 7],
            ...             [4, 1, 6],
            ...             [4, 1, 7]])
            True
            >>> lins2 = tfields.Tensors.grid(np.linspace(0, 1, 2),
            ...                              np.linspace(3, 4, 2),
            ...                              np.linspace(6, 7, 2),
            ...                              iter_order=[2, 0, 1])
            >>> lins2.equal([[0, 3, 6],
            ...              [0, 4, 6],
            ...              [1, 3, 6],
            ...              [1, 4, 6],
            ...              [0, 3, 7],
            ...              [0, 4, 7],
            ...              [1, 3, 7],
            ...              [1, 4, 7]])
            True

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
953
954
            When given the coord_sys argument, the grid is performed in the
            given coorinate system:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
955

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
956
957
958
959
960
961
962
963
964
            >>> lins3 = tfields.Tensors.grid(np.linspace(4, 9, 2),
            ...                              np.linspace(np.pi/2, np.pi/2, 1),
            ...                              np.linspace(4, 4, 1),
            ...                              iter_order=[2, 0, 1],
            ...                              coord_sys=tfields.bases.CYLINDER)
            >>> assert lins3.coord_sys == 'cylinder'
            >>> lins3.transform('cartesian')
            >>> assert np.array_equal(lins3[:, 1], [4, 9])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
965
        """
dboe's avatar
dboe committed
966
967
968
969
970
971
972
973
        cls_kwargs = {
            attr: kwargs.pop(attr)
            for attr in list(kwargs)
            if attr in cls.__slots__
        }
        inst = cls.__new__(
            cls, tfields.lib.grid.igrid(*base_vectors, **kwargs), **cls_kwargs
        )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
        return inst

    @property
    def rank(self):
        """
        Tensor rank
        """
        return rank(self)

    @property
    def dim(self):
        """
        Manifold dimension
        """
        return dim(self)

990
    def transform(self, coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
991
992
        """
        Args:
993
            coord_sys (str)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
994
995
996
997
998
999

        Examples:
            >>> import numpy as np
            >>> import tfields

            CARTESIAN to SPHERICAL
dboe's avatar
dboe committed
1000
1001
            >>> t = tfields.Tensors([[1, 2, 2], [1, 0, 0], [0, 0, -1],
            ...                      [0, 0, 1], [0, 0, 0]])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1002
1003
1004
            >>> t.transform('spherical')

            r
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1005

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1006
1007
1008
            >>> assert t[0, 0] == 3

            phi
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1009

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1010
1011
1012
1013
            >>> assert t[1, 1] == 0.
            >>> assert t[2, 1] == 0.

            theta is 0 at (0, 0, 1) and pi / 2 at (0, 0, -1)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1014

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1015
1016
1017
1018
1019
            >>> assert round(t[1, 2], 10) == round(0, 10)
            >>> assert t[2, 2] == -np.pi / 2
            >>> assert t[3, 2] == np.pi / 2

            theta is defined 0 for R == 0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1020

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1021
1022
1023
1024
1025
            >>> assert t[4, 0] == 0.
            >>> assert t[4, 2] == 0.


            CARTESIAN to CYLINDER
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1026

dboe's avatar
dboe committed
1027
1028
            >>> tCart = tfields.Tensors([[3, 4, 42], [1, 0, 0], [0, 1, -1],
            ...                          [-1, 0, 1], [0, 0, 0]])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1029
1030
            >>> t_cyl = tCart.copy()
            >>> t_cyl.transform('cylinder')
1031
            >>> assert t_cyl.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1032
1033

            R
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1034

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1035
1036
1037
1038
1039
1040
            >>> assert t_cyl[0, 0] == 5
            >>> assert t_cyl[1, 0] == 1
            >>> assert t_cyl[2, 0] == 1
            >>> assert t_cyl[4, 0] == 0

            Phi
dboe's avatar
dboe committed
1041

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1042
1043
1044
1045
1046
1047
            >>> assert round(t_cyl[0, 1], 10) == round(np.arctan(4. / 3), 10)
            >>> assert t_cyl[1, 1] == 0
            >>> assert round(t_cyl[2, 1], 10) == round(np.pi / 2, 10)
            >>> assert t_cyl[1, 1] == 0

            Z
dboe's avatar
dboe committed
1048

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1049
1050
1051
1052
            >>> assert t_cyl[0, 2] == 42
            >>> assert t_cyl[2, 2] == -1

            >>> t_cyl.transform('cartesian')
1053
            >>> assert t_cyl.coord_sys == 'cartesian'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1054
1055
1056
1057
            >>> assert t_cyl[0, 0] == 3

        """
        #           scalars                 empty             already there
1058
1059
        if self.rank == 0 or self.shape[0] == 0 or self.coord_sys == coord_sys:
            self.coord_sys = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1060
1061
            return

1062
1063
1064
        tfields.bases.transform(self, self.coord_sys, coord_sys)
        # self[:] = tfields.bases.transform(self, self.coord_sys, coord_sys)
        self.coord_sys = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1065
1066

    @contextmanager
1067
    def tmp_transform(self, coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1068
        """
1069
        Temporarily change the coord_sys to another coord_sys and change it back at exit
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1070
1071
        This method is for cleaner code only.
        No speed improvements go with this.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1072

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1073
1074
        Args:
            see transform
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1075

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1076
1077
        Examples:
            >>> import tfields
1078
            >>> p = tfields.Tensors([[1,2,3]], coord_sys=tfields.bases.SPHERICAL)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1079
            >>> with p.tmp_transform(tfields.bases.CYLINDER):
1080
1081
            ...     assert p.coord_sys == tfields.bases.CYLINDER
            >>> assert p.coord_sys == tfields.bases.SPHERICAL
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1082
1083

        """
1084
1085
        baseBefore = self.coord_sys
        if baseBefore == coord_sys:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1086
1087
            yield
        else:
1088
            self.transform(coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1089
1090
1091
1092
1093
1094
1095
1096

            yield

            self.transform(baseBefore)

    def mirror(self, coordinate, condition=None):
        """
        Reflect/Mirror the entries meeting <condition> at <coordinate> = 0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1097

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1098
1099
        Args:
            coordinate (int): coordinate index
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1100

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1101
1102
1103
1104
1105
1106
        Examples:
            >>> import tfields
            >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]])
            >>> p.mirror(1)
            >>> assert p.equal([[1, -2, 3], [4, -5,  6], [1, -2, -6]])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1107
1108
            multiple coordinates can be mirrored at the same time
            i.e. a point mirrorion would be
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1109

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1110
1111
1112
1113
1114
            >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]])
            >>> p.mirror([0,2])
            >>> assert p.equal([[-1, 2, -3], [-4, 5, -6], [-1, 2., 6.]])

            You can give a condition as mask or as str.
dboe's avatar
dboe committed
1115
1116
            The mirroring will only be applied to the points meeting the
            condition.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1117

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1118
1119
            >>> import sympy
            >>> x, y, z = sympy.symbols('x y z')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1120
            >>> p.mirror([0, 2], y > 3)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
            >>> p.equal([[-1, 2, -3], [4, 5, 6], [-1, 2, 6]])
            True

        """
        if condition is None:
            condition = np.array([True for i in range(len(self))])
        elif isinstance(condition, sympy.Basic):
            condition = self.evalf(condition)
        if isinstance(coordinate, list) or isinstance(coordinate, tuple):
            for c in coordinate:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1131
                self.mirror(c, condition=condition)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1132
1133
1134
1135
1136
        elif isinstance(coordinate, int):
            self[:, coordinate][condition] *= -1
        else:
            raise TypeError()

dboe's avatar
dboe committed
1137
1138
1139
1140
1141
1142
1143
1144
1145
    def to_segment(
        self,
        segment,
        num_segments,
        coordinate,
        periodicity=2 * np.pi,
        offset=0.0,
        coord_sys=None,
    ):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1146
1147
1148
1149
1150
        """
        For circular (close into themself after
        <periodicity>) coordinates at index <coordinate> assume
        <num_segments> segments and transform all values to
        segment number <segment>
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1151

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1152
1153
1154
1155
1156
1157
        Args:
            segment (int): segment index (starting at 0)
            num_segments (int): number of segments
            coordinate (int): coordinate index
            periodicity (float): after what lenght, the coordiante repeats
            offset (float): offset in the mapping
1158
            coord_sys (str or sympy.CoordinateSystem): in which coord sys the
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1159
                transformation should be done
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1160

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1161
1162
1163
1164
1165
        Examples:
            >>> import tfields
            >>> import numpy as np
            >>> pStart = tfields.Points3D([[6, 2 * np.pi, 1],
            ...                            [6, 2 * np.pi / 5 * 3, 1]],
1166
            ...                           coord_sys='cylinder')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
            >>> p = tfields.Points3D(pStart)
            >>> p.to_segment(0, 5, 1, offset=-2 * np.pi / 10)
            >>> assert np.array_equal(p[:, 1], [0, 0])

            >>> p2 = tfields.Points3D(pStart)
            >>> p2.to_segment(1, 5, 1, offset=-2 * np.pi / 10)
            >>> assert np.array_equal(np.round(p2[:, 1], 4), [1.2566] * 2)

        """
        if segment > num_segments - 1:
            raise ValueError("Segment {0} not existent.".format(segment))

1179
1180
1181
        if coord_sys is None:
            coord_sys = self.coord_sys
        with self.tmp_transform(coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1182
            # map all values to first segment
dboe's avatar
dboe committed
1183
1184
1185
1186
1187
            self[:, coordinate] = (
                (self[:, coordinate] - offset) % (periodicity / num_segments)
                + offset
                + segment * periodicity / num_segments
            )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1188

dboe's avatar
dboe committed
1189
1190
1191
    def equal(
        self, other, rtol=None, atol=None, equal_nan=False, return_bool=True
    ):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1192
1193
        """
        Evaluate, whether the instance has the same content as other.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1194

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1195
1196
1197
1198
1199
1200
1201
        Args:
            optional:
                rtol (float)
                atol (float)
                equal_nan (bool)
            see numpy.isclose
        """
dboe's avatar
dboe committed
1202
1203
1204
1205
        if (
            issubclass(type(other), Tensors)
            and self.coord_sys != other.coord_sys
        ):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1206
            other = other.copy()
1207
            other.transform(self.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1208
1209
        x, y = np.asarray(self), np.asarray(other)
        if rtol is None and atol is None:
dboe's avatar
dboe committed
1210
            mask = x == y
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1211
1212
1213
1214
1215
            if equal_nan:
                both_nan = np.isnan(x) & np.isnan(y)
                mask[both_nan] = both_nan[both_nan]
        else:
            if rtol is None:
dboe's avatar
dboe committed
1216
                rtol = 0.0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1217
            if atol is None:
dboe's avatar
dboe committed
1218
                atol = 0.0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1219
1220
1221
1222
1223
1224
1225
1226
1227
            mask = np.isclose(x, y, rtol=rtol, atol=atol, equal_nan=equal_nan)
        if return_bool:
            return bool(np.all(mask))
        return mask

    def contains(self, other, **kwargs):
        """
        Inspired by a speed argument @
        stackoverflow.com/questions/14766194/testing-whether-a-numpy-array-contains-a-given-row
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1228

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1229
1230
1231
1232
1233
1234
1235
1236
1237
        Examples:
            >>> import tfields
            >>> p = tfields.Tensors([[1,2,3], [4,5,6], [6,7,8]])
            >>> p.contains([4,5,6])
            True

        """
        return any(self.equal(other, return_bool=False).all(1))

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1238
    def indices(self, tensor, rtol=None, atol=None):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1239
1240
1241
        """
        Returns:
            list of int: indices of tensor occuring
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1242

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1243
        Examples:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1244
            Rank 1 Tensors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1245

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1246
1247
1248
1249
1250
1251
1252
1253
            >>> import tfields
            >>> p = tfields.Tensors([[1,2,3], [4,5,6], [6,7,8], [4,5,6],
            ...                      [4.1, 5, 6]])
            >>> p.indices([4,5,6])
            array([1, 3])
            >>> p.indices([4,5,6.1], rtol=1e-5, atol=1e-1)
            array([1, 3, 4])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1254
            Rank 0 Tensors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1255

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1256
1257
1258
1259
1260
1261
            >>> p = tfields.Tensors([2, 3, 6, 3.01])
            >>> p.indices(3)
            array([1])
            >>> p.indices(3, rtol=1e-5, atol=1e-1)
            array([1, 3])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1262
        """
1263
1264
        x, y = np.asarray(self), np.asarray(tensor)
        if rtol is None and atol is None:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1265
            equal_method = np.equal
1266
1267
        else:
            equal_method = lambda a, b: np.isclose(a, b, rtol=rtol, atol=atol)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1268
1269

        # inspired by https://stackoverflow.com/questions/19228295/find-ordered-vector-in-numpy-array
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1270
        if self.rank == 0:
dboe's avatar
dboe committed
1271
            indices = np.where(equal_method((x - y), 0))[0]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1272
        elif self.rank == 1:
dboe's avatar
dboe committed
1273
            indices = np.where(np.all(equal_method((x - y), 0), axis=1))[0]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1274
1275
        else:
            raise NotImplementedError()
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1276
1277
        return indices

1278
    def index(self, tensor, **kwargs):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1279
1280
1281
        """
        Args:
            tensor
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1282

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1283
1284
1285
        Returns:
            int: index of tensor occuring
        """
1286
        indices = self.indices(tensor, **kwargs)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1287
1288
1289
1290
        if not indices:
            return None
        if len(indices) == 1:
            return indices[0]
dboe's avatar
dboe committed
1291
        raise ValueError("Multiple occurences of value {}".format(tensor))
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1292

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1293
    def moment(self, moment, weights=None):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1294
1295
1296
        """
        Returns:
            Moments of the distribution.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1297

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1298
1299
        Args:
            moment (int): n-th moment
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1300

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1301
1302
        Examples:
            >>> import tfields
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1303
            >>> import numpy as np
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1304
1305

            Skalars