core.py 70.2 KB
Newer Older
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
#!/usr/bin/env
# encoding: utf-8
"""
Author:     Daniel Boeckenhoff
Mail:       daniel.boeckenhoff@ipp.mpg.de

core of tfields library
contains numpy ndarray derived bases of the tfields package
"""
import warnings
import os
import pathlib
from six import string_types
from contextlib import contextmanager
from collections import Counter

import numpy as np
import sympy
import scipy as sp
import tfields.bases
np.seterr(all='warn', over='raise')


def rank(tensor):
    """
    Tensor rank
    """
    return len(tensor.shape) - 1


def dim(tensor):
    """
    Manifold dimension
    """
    if rank(tensor) == 0:
        return 1
    return tensor.shape[1]


class AbstractNdarray(np.ndarray):
    """
    All tensors and subclasses should derive from AbstractNdarray.
    AbstractNdarray implements all the inheritance specifics for np.ndarray
    Whene inheriting, three attributes are of interest:
        __slots__ (list of str): If you want to add attributes to
            your AbstractNdarray subclass, add the attribute name to __slots__
        __slot_defaults__ (list): if __slot_defaults__ is None, the
            defaults for the attributes in __slots__ will be None
            other values will be treaded as defaults to the corresponding
            arg at the same position in the __slots__ list.
        __slotDtype__ (list of types): for the conversion of the
            args in __slots__ to numpy arrays. None values mean no
            conversion.

    Args:
        array (array-like): input array
        **kwargs: arguments corresponding to __slots__
    TODO:
        equality check
    """
    __slots__ = []
    __slot_defaults__ = []
    __slotDtypes__ = []
    __slot_setters__ = []

    def __new__(cls, array, **kwargs):  # pragma: no cover
        raise NotImplementedError("{clsType} type must implement '__new__'"
                                  .format(clsType=type(cls)))

    def __array_finalize__(self, obj):
        if obj is None:
            return
        for attr in self._iter_slots():
            setattr(self, attr, getattr(obj, attr, None))

    def __array_wrap__(self, out_arr, context=None):
        return np.ndarray.__array_wrap__(self, out_arr, context)

    @classmethod
    def _iter_slots(cls):
        return [att for att in cls.__slots__ if att != '_cache']

    @classmethod
    def _update_slot_kwargs(cls, kwargs):
        """
        set the defaults in kwargs according to __slot_defaults__
        and convert the kwargs according to __slotDtypes__
        """
        slotDefaults = cls.__slot_defaults__ + \
            [None] * (len(cls.__slots__) - len(cls.__slot_defaults__))
        slotDtypes = cls.__slotDtypes__ + \
            [None] * (len(cls.__slots__) - len(cls.__slotDtypes__))
        for attr, default, dtype in zip(cls.__slots__, slotDefaults, slotDtypes):
            if attr == '_cache':
                continue
            if attr not in kwargs:
                kwargs[attr] = default
            if dtype is not None:
                try:
                    kwargs[attr] = np.array(kwargs[attr], dtype=dtype)
                except Exception as err:
                    raise ValueError(str(attr) + str(dtype) + str(kwargs[attr]) + str(err))

    def __setattr__(self, name, value):
        if name in self.__slots__:
            index = self.__slots__.index(name)
            try:
                setter = self.__slot_setters__[index]
            except IndexError:
                setter = None
            if setter is not None:
                value = setter(value)
        super(AbstractNdarray, self).__setattr__(name, value)

    def __reduce__(self):
        """
        important for pickling
118
119
        see https://stackoverflow.com/questions/26598109/
            preserve-custom-attributes-when-pickling-subclass-of-numpy-array
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
120
121
122
123
124
125
126
127
128
        Examples:
            >>> from tempfile import NamedTemporaryFile
            >>> import pickle
            >>> import tfields

            Build a dummy scalar field
            >>> from tfields import Tensors, TensorFields
            >>> scalars = Tensors([0, 1, 2])
            >>> vectors = Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
129
            >>> scalar_field = TensorFields(vectors, scalars, coord_sys='cylinder')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
130
131

            Save it and restore it
132
            >>> out_file = NamedTemporaryFile(suffix='.pickle')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
133

134
            >>> pickle.dump(scalar_field,
135
136
            ...             out_file)
            >>> _ = out_file.seek(0)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
137

138
            >>> sf = pickle.load(out_file)
139
            >>> sf.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
            True
            >>> sf.fields[0][2] == 2.
            True

        """
        # Get the parent's __reduce__ tuple
        pickled_state = super(AbstractNdarray, self).__reduce__()

        # Create our own tuple to pass to __setstate__
        new_state = pickled_state[2] + tuple([getattr(self, slot) for slot in
                                              self._iter_slots()])

        # Return a tuple that replaces the parent's __setstate__ tuple with our own
        return (pickled_state[0], pickled_state[1], new_state)

    def __setstate__(self, state):
        """
        important for unpickling
        """
        # Call the parent's __setstate__ with the other tuple elements.
        super(AbstractNdarray, self).__setstate__(state[0:-len(self._iter_slots())])

        # set the __slot__ attributes
        for i, slot in enumerate(reversed(self._iter_slots())):
            index = -(i + 1)
            setattr(self, slot, state[index])

    def copy(self, *args, **kwargs):
        """
        The standard ndarray copy does not copy slots. Correct for this.
        Examples:
            >>> import tfields
            >>> m = tfields.TensorMaps([[1,2,3], [3,3,3], [0,0,0], [5,6,7]],
            ...                        maps=[tfields.TensorFields([[0, 1, 2], [1, 2, 3]],
            ...                                                   [1, 2])])
            >>> mc = m.copy()
            >>> mc is m
            False
            >>> mc.maps[0].fields[0] is m.maps[0].fields[0]
            False

        TODO: This function implementation could be more general or maybe redirect to deepcopy?
        """
        inst = super(AbstractNdarray, self).copy(*args, **kwargs)
        for attr in self._iter_slots():
            value = getattr(self, attr)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
186
            if hasattr(value, 'copy') and not isinstance(value, list):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
                setattr(inst, attr, value.copy(*args, **kwargs))
            elif isinstance(value, list):
                list_copy = []
                for item in value:
                    if hasattr(item, 'copy'):
                        list_copy.append(item.copy(*args, **kwargs))
                    else:
                        list_copy.append(item)
                setattr(inst, attr, list_copy)

        return inst

    def save(self, path, *args, **kwargs):
        """
        Saving a tensors object by redirecting to the correct save method depending on path
        Args:
            path (str or buffer)
            *args:
                forwarded to extension specific method
            **kwargs:
                extension (str): only needed if path is buffer
                ... remaining:forwarded to extension specific method
        """
        # get the extension
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
211
        if isinstance(path, (string_types, pathlib.Path)):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
212
            extension = pathlib.Path(path).suffix.lstrip('.')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
213
214
215
        else:
            raise ValueError("Wrong path type {0}".format(type(path)))
        path = str(path)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
216
217
218
219
220
221
222
223
224

        # get the save method
        try:
            save_method = getattr(self,
                                  '_save_{extension}'.format(**locals()))
        except:
            raise NotImplementedError("Can not find save method for extension: "
                                      "{extension}.".format(**locals()))

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
225
        path = tfields.lib.in_out.resolve(path)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
226
227
228
229
230
231
232
233
234
235
236
237
238
239
        return save_method(path, **kwargs)

    @classmethod
    def load(cls, path, *args, **kwargs):
        """
        load a file as a tensors object.
        Args:
            path (str or buffer)
            *args:
                forwarded to extension specific method
            **kwargs:
                extension (str): only needed if path is buffer
                ... remaining:forwarded to extension specific method
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
240
        if isinstance(path, (string_types, pathlib.Path)):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
241
            extension = pathlib.Path(path).suffix.lstrip('.')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
242
243
244
245
            path = str(path)
            path = tfields.lib.in_out.resolve(path)
        else:
            extension = kwargs.pop('extension', 'npz')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
246
247
248
249
250
251
252
253
254
255
256
257
258

        try:
            load_method = getattr(cls, '_load_{e}'.format(e=extension))
        except:
            raise NotImplementedError("Can not find load method for extension: "
                                      "{extension}.".format(**locals()))
        return load_method(path, *args, **kwargs)

    def _save_npz(self, path, **kwargs):
        """
        Args:
            path (open file or str/unicode): destination to save file to.
        Examples:
259
            Build some dummies:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
260
261
            >>> import tfields
            >>> from tempfile import NamedTemporaryFile
262
            >>> out_file = NamedTemporaryFile(suffix='.npz')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
263
            >>> p = tfields.Points3D([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]])
264
265
266
267
268
269
270
271
272
273
274
275

            >>> scalars = tfields.Tensors([0, 1, 2])
            >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
            >>> maps = [tfields.TensorFields([[0, 1, 2], [0, 1, 2]], [42, 21]),
            ...         tfields.TensorFields([[1], [2]], [-42, -21])]
            >>> m = tfields.TensorMaps(vectors, scalars,
            ...                        maps=maps)

            Simply give the file name to save
            >>> p.save(out_file.name)
            >>> _ = out_file.seek(0)
            >>> p1 = tfields.Points3D.load(out_file.name)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
276
277
            >>> assert p.equal(p1)

278
279
280
281
282
283
            The fully nested structure of a TensorMaps object is reconstructed
            >>> out_file_maps = NamedTemporaryFile(suffix='.npz')
            >>> m.save(out_file_maps.name)
            >>> _ = out_file_maps.seek(0)
            >>> m1 = tfields.TensorMaps.load(out_file_maps.name)
            >>> assert m.equal(m1)
284
            >>> assert m.maps[0].dtype == m1.maps[0].dtype
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
285

286
        """
287
288
        content_dict = self._as_dict()
        np.savez(path, **content_dict)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
289
290
291
292
293
294
295
296

    @classmethod
    def _load_npz(cls, path, **load_kwargs):
        """
        Factory method
        Given a path to a npz file, construct the object
        """
        np_file = np.load(path, **load_kwargs)
297
298
299
300
301
302
303
        return cls._from_dict(**np_file)

    def _as_dict(self):
        """
        Recursively walk trough all __slots__ and describe all elements
        """
        d = {}
304
        d['bulk'] = self.bulk
305
306
307
308
309
310
311
312
313
314
315
        d['bulk_type'] = self.__class__.__name__
        for attr in self._iter_slots():
            value = getattr(self, attr)
            if isinstance(value, list):
                if len(value) == 0:
                    d[attr] = None
                if all([isinstance(part, AbstractNdarray) for part in value]):
                    for i, part in enumerate(value):
                        part_dict = part._as_dict()
                        for part_attr, part_value in part_dict.items():
                            d["{attr}::{i}::{part_attr}".format(**locals())] = part_value
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
316
                    continue
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
            if isinstance(value, AbstractNdarray):
                value = value._as_dict()
            d[attr] = value
        return d

    @classmethod
    def _from_dict(cls, **d):
        """
        Opposite of _as_dict
        """
        list_dict = {}
        kwargs = {}
        '''
        De-Flatten the first layer of lists
        '''
        for key in sorted(d.keys()):
            if '::' in key:
                splits = key.split('::')
                attr, _, end = key.partition('::')
                if attr not in list_dict:
                    list_dict[attr] = {}

                index, _, end = end.partition('::')
                if not index.isdigit():
                    raise ValueError("None digit index given")
                index = int(index)
                if index not in list_dict[attr]:
                    list_dict[attr][index] = {}
                list_dict[attr][index][end] = d[key]
            else:
                kwargs[key] = d[key]

        '''
        Build the lists (recursively)
        '''
        for key in list_dict.keys():
            sub_dict = list_dict[key]
            list_dict[key] = []
            for index in sorted(sub_dict.keys()):
Priyanjana Sinha's avatar
Priyanjana Sinha committed
356
357
358
359
360
                bulk_type = sub_dict[index].get('bulk_type').tolist()
                if isinstance(bulk_type, bytes):
                    # asthonishingly, this is not necessary under linux. Found under nt. ???
                    bulk_type = bulk_type.decode('UTF-8')
                bulk_type = getattr(tfields, bulk_type)
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
                list_dict[key].append(bulk_type._from_dict(**sub_dict[index]))

        '''
        Build the normal way
        '''
        bulk = kwargs.pop('bulk')
        bulk_type = kwargs.pop('bulk_type')
        obj = cls.__new__(cls, bulk, **kwargs)

        '''
        Set list attributes
        '''
        for attr, list_value in list_dict.items():
            setattr(obj, attr, list_value)
        return obj
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398


class Tensors(AbstractNdarray):
    """
    Set of tensors with the same basis.
    TODO:
        all slot args should be protected -> _base
    Args:
        tensors: np.ndarray or AbstractNdarray subclass
    Examples:
        >>> import numpy as np

        Initialize a scalar range
        >>> scalars = tfields.Tensors([0, 1, 2])
        >>> scalars.rank == 0
        True

        Initialize vectors
        >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
        >>> vectors.rank == 1
        True
        >>> vectors.dim == 3
        True
399
        >>> assert vectors.coord_sys == 'cartesian'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
400
401
402
403
404
405
406
407
408
409
410
411
412

        Initialize the Levi-Zivita Tensor
        >>> matrices = tfields.Tensors([[[0, 0, 0], [0, 0, 1], [0, -1, 0]],
        ...                     [[0, 0, -1], [0, 0, 0], [1, 0, 0]],
        ...                     [[0, 1, 0], [-1, 0, 0], [0, 0, 0]]])
        >>> matrices.shape == (3, 3, 3)
        True
        >>> matrices.rank == 2
        True
        >>> matrices.dim == 3
        True

        Initializing in different start coordinate system
413
414
        >>> cyl = tfields.Tensors([[5, np.arctan(4. / 3.), 42]], coord_sys='cylinder')
        >>> assert cyl.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
415
        >>> cyl.transform('cartesian')
416
        >>> assert cyl.coord_sys == 'cartesian'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
417
418
419
420
421
422
423
424
        >>> cart = cyl
        >>> assert round(cart[0, 0], 10) == 3.
        >>> assert round(cart[0, 1], 10) == 4.
        >>> assert cart[0, 2] == 42

        Initialize with copy constructor keeps the coordinate system
        >>> with vectors.tmp_transform('cylinder'):
        ...     vect_cyl = tfields.Tensors(vectors)
425
426
        ...     assert vect_cyl.coord_sys == vectors.coord_sys
        >>> assert vect_cyl.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444

        You can demand a special dimension.
        >>> _ = tfields.Tensors([[1, 2, 3]], dim=3)
        >>> _ = tfields.Tensors([[1, 2, 3]], dim=2)  # doctest: +ELLIPSIS
        Traceback (most recent call last):
            ...
        ValueError: Incorrect dimension: 3 given, 2 demanded.

        The dimension argument (dim) becomes necessary if you want to initialize
        an empty array
        >>> _ = tfields.Tensors([])  # doctest: +ELLIPSIS
        Traceback (most recent call last):
            ...
        ValueError: Empty tensors need dimension parameter 'dim'.
        >>> tfields.Tensors([], dim=7)
        Tensors([], shape=(0, 7), dtype=float64)

    """
445
    __slots__ = ['coord_sys']
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
446
447
448
449
450
451
452
453
454
455
456
457
    __slot_defaults__ = ['cartesian']
    __slot_setters__ = [tfields.bases.get_coord_system_name]

    def __new__(cls, tensors, **kwargs):
        dtype = kwargs.pop('dtype', None)
        order = kwargs.pop('order', None)
        dim = kwargs.pop('dim', None)

        ''' copy constructor extracts the kwargs from tensors'''
        if issubclass(type(tensors), Tensors):
            if dim is not None:
                dim = tensors.dim
458
            coord_sys = kwargs.pop('coord_sys', tensors.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
459
            tensors = tensors.copy()
460
461
            tensors.transform(coord_sys)
            kwargs['coord_sys'] = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
462
463
464
465
            if dtype is None:
                dtype = tensors.dtype
        else:
            if dtype is None:
466
467
468
469
                if hasattr(tensors, 'dtype'):
                    dtype = tensors.dtype
                else:
                    dtype = np.float64
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519

        ''' demand iterable structure '''
        try:
            len(tensors)
        except TypeError as err:
            raise TypeError("Iterable structure necessary."
                            " Got {tensors}"
                            .format(**locals()))

        ''' process empty inputs '''
        if len(tensors) == 0:
            if issubclass(type(tensors), tfields.Tensors):
                tensors = np.empty(tensors.shape, dtype=tensors.dtype)
            elif dim is not None:
                tensors = np.empty((0, dim))
            if issubclass(type(tensors), np.ndarray):
                # np.empty
                pass
            else:
                raise ValueError("Empty tensors need dimension "
                                 "parameter 'dim'.")

        tensors = np.asarray(tensors, dtype=dtype, order=order)
        obj = tensors.view(cls)

        ''' check dimension(s) '''
        for d in obj.shape[1:]:
            if not d == obj.dim:
                raise ValueError("Dimensions are inconstistent. "
                                 "Manifold dimension is {obj.dim}, "
                                 "Found dimensions {found} in {obj}."
                                 .format(found=obj.shape[1:], **locals()))
        if dim is not None:
            if dim != obj.dim:
                raise ValueError("Incorrect dimension: {obj.dim} given,"
                                 " {dim} demanded."
                                 .format(**locals()))

        ''' update kwargs with defaults from slots '''
        cls._update_slot_kwargs(kwargs)

        ''' set kwargs to slots attributes '''
        for attr in kwargs:
            if attr not in cls._iter_slots():
                raise AttributeError("Keyword argument {attr} not accepted "
                                     "for class {cls}".format(**locals()))
            setattr(obj, attr, kwargs[attr])

        return obj

520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
    def __iter__(self):
        """
        Forwarding iterations to the bulk array. Otherwise __getitem__ would
        kick in and slow down imensely.
        Examples:
            >>> import tfields
            >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
            >>> scalar_field = tfields.TensorFields(vectors, [42, 21, 10.5], [1, 2, 3])
            >>> [(point.rank, point.dim) for point in scalar_field]
            [(0, 1), (0, 1), (0, 1)]

        """
        for index in range(len(self)):
            yield super(Tensors, self).__getitem__(index).view(Tensors)

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
535
536
537
538
539
540
541
542
543
544
545
546
547
    @classmethod
    def merged(cls, *objects, **kwargs):
        """
        Factory method
        Merges all tensor inputs to one tensor

        Examples:
            >>> import numpy as np
            >>> import tfields
            >>> import tfields.bases

            Use of most frequent coordinate system
            >>> vec_a = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
548
549
            >>> vec_b = tfields.Tensors([[5, 4, 1]], coord_sys=tfields.bases.cylinder)
            >>> vec_c = tfields.Tensors([[4, 2, 3]], coord_sys=tfields.bases.cylinder)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
550
            >>> merge = tfields.Tensors.merged(vec_a, vec_b, vec_c, [[2, 0, 1]])
551
            >>> assert merge.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
552
553
554
555
556
557
558
559
560
561
            >>> assert merge.equal([[0, 0, 0],
            ...                     [0, 0, 1],
            ...                     [1, -np.pi / 2, 0],
            ...                     [5, 4, 1],
            ...                     [4, 2, 3],
            ...                     [2, 0, 1]])

            Merge also shifts the maps to still refer to the same tensors
            >>> tm_a = tfields.TensorMaps(merge, maps=[[[0, 1, 2]]])
            >>> tm_b = tm_a.copy()
562
            >>> assert tm_a.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
563
            >>> tm_merge = tfields.TensorMaps.merged(tm_a, tm_b)
564
            >>> assert tm_merge.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
565
566
567
568
569
            >>> assert tm_merge.maps[0].equal([[0, 1, 2],
            ...                               list(range(len(merge),
            ...                                          len(merge) + 3,
            ...                                          1))])
            
570
            >>> obj_list = [tfields.Tensors([[1, 2, 3]], coord_sys=tfields.bases.CYLINDER),
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
571
572
            ...             tfields.Tensors([[3] * 3]),
            ...             tfields.Tensors([[5, 1, 3]])]
573
            >>> merge2 = tfields.Tensors.merged(*obj_list, coord_sys=tfields.bases.CARTESIAN)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
574
575
            >>> assert merge2.equal([[-0.41614684, 0.90929743, 3.],
            ...                      [3, 3, 3], [5, 1, 3]], atol=1e-8)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
576

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
577
578
        """

579
580
        ''' get most frequent coord_sys or predefined coord_sys '''
        coord_sys = kwargs.get('coord_sys', None)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
581
        dimension = kwargs.get('dim', None)
582
        if coord_sys is None:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
583
584
585
            bases = []
            for t in objects:
                try:
586
                    bases.append(t.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
587
588
589
                except AttributeError:
                    pass
            if bases:
590
591
592
                # get most frequent coord_sys
                coord_sys = sorted(bases, key=Counter(bases).get, reverse=True)[0]
                kwargs['coord_sys'] = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
593
            else:
594
595
                default = cls.__slot_defaults__[cls.__slots__.index('coord_sys')]
                kwargs['coord_sys'] = default
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
596

597
        ''' transform all raw inputs to cls type with correct coord_sys. Also
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
598
599
        automatically make a copy of those instances that are of the correct
        type already.'''
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
600
        objects = [cls.__new__(cls, t, **kwargs) for t in objects]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652

        ''' check rank and dimension equality '''
        if not len(set([t.rank for t in objects])) == 1:
            raise TypeError("Tensors must have the same rank for merging.")
        if not len(set([t.dim for t in objects])) == 1:
            raise TypeError("Tensors must have the same dimension for merging.")

        ''' merge all objects '''
        remainingObjects = objects[1:] or []
        tensors = objects[0]

        for i, obj in enumerate(remainingObjects):
            tensors = np.append(tensors, obj, axis=0)

        if len(tensors) == 0 and dimension is None:
            for obj in objects:
                kwargs['dim'] = dim(obj)

        return cls.__new__(cls, tensors, **kwargs)

    @classmethod
    def grid(cls, *base_vectors, **kwargs):
        """
        Args:
            baseVector 0 (list/np.array of base coordinates)
            baseVector 1 (list/np.array of base coordinates)
            baseVector 2 (list/np.array of base coordinates)
        Kwargs:
            iter_order (list): order in which the iteration will be done.
                Frequency rises with position in list. default is [0, 1, 2]
                iteration will be done like::
                      
                for v0 in base_vectors[iter_order[0]]:
                    for v1 in base_vectors[iter_order[1]]:
                        for v2 in base_vectors[iter_order[2]]:
                            coords0.append(locals()['v%i' % iter_order[0]])
                            coords1.append(locals()['v%i' % iter_order[1]])
                            coords2.append(locals()['v%i' % iter_order[2]])

        Examples:
            Initilaize using the mgrid notation
            >>> import tfields
            >>> mgrid = tfields.Tensors.grid((0, 1, 2j), (3, 4, 2j), (6, 7, 2j))
            >>> mgrid.equal([[0, 3, 6],
            ...              [0, 3, 7],
            ...              [0, 4, 6],
            ...              [0, 4, 7],
            ...              [1, 3, 6],
            ...              [1, 3, 7],
            ...              [1, 4, 6],
            ...              [1, 4, 7]])
            True
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
653
654
655

            Lists or arrays are accepted also.
            Furthermore, the iteration order can be changed
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
            >>> lins = tfields.Tensors.grid(np.linspace(3, 4, 2), np.linspace(0, 1, 2),
            ...                             np.linspace(6, 7, 2), iter_order=[1, 0, 2])
            >>> lins.equal([[3, 0, 6],
            ...             [3, 0, 7],
            ...             [4, 0, 6],
            ...             [4, 0, 7],
            ...             [3, 1, 6],
            ...             [3, 1, 7],
            ...             [4, 1, 6],
            ...             [4, 1, 7]])
            True
            >>> lins2 = tfields.Tensors.grid(np.linspace(0, 1, 2),
            ...                              np.linspace(3, 4, 2),
            ...                              np.linspace(6, 7, 2),
            ...                              iter_order=[2, 0, 1])
            >>> lins2.equal([[0, 3, 6],
            ...              [0, 4, 6],
            ...              [1, 3, 6],
            ...              [1, 4, 6],
            ...              [0, 3, 7],
            ...              [0, 4, 7],
            ...              [1, 3, 7],
            ...              [1, 4, 7]])
            True

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
681
682
683
684
685
686
687
688
689
690
691
            When given the coord_sys argument, the grid is performed in the
            given coorinate system:
            >>> lins3 = tfields.Tensors.grid(np.linspace(4, 9, 2),
            ...                              np.linspace(np.pi/2, np.pi/2, 1),
            ...                              np.linspace(4, 4, 1),
            ...                              iter_order=[2, 0, 1],
            ...                              coord_sys=tfields.bases.CYLINDER)
            >>> assert lins3.coord_sys == 'cylinder'
            >>> lins3.transform('cartesian')
            >>> assert np.array_equal(lins3[:, 1], [4, 9])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
692
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
693
694
695
696
        cls_kwargs = {attr: kwargs.pop(attr) for attr in list(kwargs.keys()) if attr in cls.__slots__}
        inst = cls.__new__(cls,
                           tfields.lib.grid.igrid(*base_vectors, **kwargs),
                           **cls_kwargs)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
697
698
        return inst

699
700
701
702
703
704
705
706
    @property
    def bulk(self):
        """
        The pure ndarray version of the actual state
            -> nothing attached
        """
        return np.array(self)

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
707
708
709
710
711
712
713
714
715
716
717
718
719
720
    @property
    def rank(self):
        """
        Tensor rank
        """
        return rank(self)

    @property
    def dim(self):
        """
        Manifold dimension
        """
        return dim(self)

721
    def transform(self, coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
722
723
        """
        Args:
724
            coord_sys (str)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754

        Examples:
            >>> import numpy as np
            >>> import tfields

            CARTESIAN to SPHERICAL
            >>> t = tfields.Tensors([[1, 2, 2], [1, 0, 0], [0, 0, -1], [0, 0, 1], [0, 0, 0]])
            >>> t.transform('spherical')

            r
            >>> assert t[0, 0] == 3

            phi
            >>> assert t[1, 1] == 0.
            >>> assert t[2, 1] == 0.

            theta is 0 at (0, 0, 1) and pi / 2 at (0, 0, -1)
            >>> assert round(t[1, 2], 10) == round(0, 10)
            >>> assert t[2, 2] == -np.pi / 2
            >>> assert t[3, 2] == np.pi / 2

            theta is defined 0 for R == 0
            >>> assert t[4, 0] == 0.
            >>> assert t[4, 2] == 0.


            CARTESIAN to CYLINDER
            >>> tCart = tfields.Tensors([[3, 4, 42], [1, 0, 0], [0, 1, -1], [-1, 0, 1], [0, 0, 0]])
            >>> t_cyl = tCart.copy()
            >>> t_cyl.transform('cylinder')
755
            >>> assert t_cyl.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773

            R
            >>> assert t_cyl[0, 0] == 5
            >>> assert t_cyl[1, 0] == 1
            >>> assert t_cyl[2, 0] == 1
            >>> assert t_cyl[4, 0] == 0

            Phi
            >>> assert round(t_cyl[0, 1], 10) == round(np.arctan(4. / 3), 10)
            >>> assert t_cyl[1, 1] == 0
            >>> assert round(t_cyl[2, 1], 10) == round(np.pi / 2, 10)
            >>> assert t_cyl[1, 1] == 0

            Z
            >>> assert t_cyl[0, 2] == 42
            >>> assert t_cyl[2, 2] == -1

            >>> t_cyl.transform('cartesian')
774
            >>> assert t_cyl.coord_sys == 'cartesian'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
775
776
777
778
            >>> assert t_cyl[0, 0] == 3

        """
        #           scalars                 empty             already there
779
780
        if self.rank == 0 or self.shape[0] == 0 or self.coord_sys == coord_sys:
            self.coord_sys = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
781
782
            return

783
784
785
        tfields.bases.transform(self, self.coord_sys, coord_sys)
        # self[:] = tfields.bases.transform(self, self.coord_sys, coord_sys)
        self.coord_sys = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
786
787

    @contextmanager
788
    def tmp_transform(self, coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
789
        """
790
        Temporarily change the coord_sys to another coord_sys and change it back at exit
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
791
792
793
794
795
796
        This method is for cleaner code only.
        No speed improvements go with this.
        Args:
            see transform
        Examples:
            >>> import tfields
797
            >>> p = tfields.Tensors([[1,2,3]], coord_sys=tfields.bases.SPHERICAL)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
798
            >>> with p.tmp_transform(tfields.bases.CYLINDER):
799
800
            ...     assert p.coord_sys == tfields.bases.CYLINDER
            >>> assert p.coord_sys == tfields.bases.SPHERICAL
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
801
802

        """
803
804
        baseBefore = self.coord_sys
        if baseBefore == coord_sys:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
805
806
            yield
        else:
807
            self.transform(coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823

            yield

            self.transform(baseBefore)

    def mirror(self, coordinate, condition=None):
        """
        Reflect/Mirror the entries meeting <condition> at <coordinate> = 0
        Args:
            coordinate (int): coordinate index
        Examples:
            >>> import tfields
            >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]])
            >>> p.mirror(1)
            >>> assert p.equal([[1, -2, 3], [4, -5,  6], [1, -2, -6]])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
824
825
            multiple coordinates can be mirrored at the same time
            i.e. a point mirrorion would be
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
826
827
828
829
830
831
832
833
            >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]])
            >>> p.mirror([0,2])
            >>> assert p.equal([[-1, 2, -3], [-4, 5, -6], [-1, 2., 6.]])

            You can give a condition as mask or as str.
            The mirroring will only be applied to the points meeting the condition.
            >>> import sympy
            >>> x, y, z = sympy.symbols('x y z')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
834
            >>> p.mirror([0, 2], y > 3)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
835
836
837
838
839
840
841
842
843
844
            >>> p.equal([[-1, 2, -3], [4, 5, 6], [-1, 2, 6]])
            True

        """
        if condition is None:
            condition = np.array([True for i in range(len(self))])
        elif isinstance(condition, sympy.Basic):
            condition = self.evalf(condition)
        if isinstance(coordinate, list) or isinstance(coordinate, tuple):
            for c in coordinate:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
845
                self.mirror(c, condition=condition)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
846
847
848
849
850
851
        elif isinstance(coordinate, int):
            self[:, coordinate][condition] *= -1
        else:
            raise TypeError()

    def to_segment(self, segment, num_segments, coordinate,
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
852
                   periodicity=2 * np.pi, offset=0.,
853
                   coord_sys=None):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
854
855
856
857
858
        """
        For circular (close into themself after
        <periodicity>) coordinates at index <coordinate> assume
        <num_segments> segments and transform all values to
        segment number <segment>
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
859
860
861
862
863
864
        Args:
            segment (int): segment index (starting at 0)
            num_segments (int): number of segments
            coordinate (int): coordinate index
            periodicity (float): after what lenght, the coordiante repeats
            offset (float): offset in the mapping
865
            coord_sys (str or sympy.CoordinateSystem): in which coord sys the
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
866
                transformation should be done
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
867
868
869
870
871
        Examples:
            >>> import tfields
            >>> import numpy as np
            >>> pStart = tfields.Points3D([[6, 2 * np.pi, 1],
            ...                            [6, 2 * np.pi / 5 * 3, 1]],
872
            ...                           coord_sys='cylinder')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
873
874
875
876
877
878
879
880
881
882
883
884
            >>> p = tfields.Points3D(pStart)
            >>> p.to_segment(0, 5, 1, offset=-2 * np.pi / 10)
            >>> assert np.array_equal(p[:, 1], [0, 0])

            >>> p2 = tfields.Points3D(pStart)
            >>> p2.to_segment(1, 5, 1, offset=-2 * np.pi / 10)
            >>> assert np.array_equal(np.round(p2[:, 1], 4), [1.2566] * 2)

        """
        if segment > num_segments - 1:
            raise ValueError("Segment {0} not existent.".format(segment))

885
886
887
        if coord_sys is None:
            coord_sys = self.coord_sys
        with self.tmp_transform(coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
            # map all values to first segment
            self[:, coordinate] = \
                (self[:, coordinate] - offset) % (periodicity / num_segments) + \
                offset + segment * periodicity / num_segments

    def equal(self, other,
              rtol=None, atol=None, equal_nan=False,
              return_bool=True):
        """
        Evaluate, whether the instance has the same content as other.
        Args:
            optional:
                rtol (float)
                atol (float)
                equal_nan (bool)
            see numpy.isclose
        """
905
        if issubclass(type(other), Tensors) and self.coord_sys != other.coord_sys:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
906
            other = other.copy()
907
            other.transform(self.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
        x, y = np.asarray(self), np.asarray(other)
        if rtol is None and atol is None:
            mask = (x == y)
            if equal_nan:
                both_nan = np.isnan(x) & np.isnan(y)
                mask[both_nan] = both_nan[both_nan]
        else:
            if rtol is None:
                rtol = 0.
            if atol is None:
                atol = 0.
            mask = np.isclose(x, y, rtol=rtol, atol=atol, equal_nan=equal_nan)
        if return_bool:
            return bool(np.all(mask))
        return mask

    def contains(self, other, **kwargs):
        """
        Inspired by a speed argument @
        stackoverflow.com/questions/14766194/testing-whether-a-numpy-array-contains-a-given-row
        Examples:
            >>> import tfields
            >>> p = tfields.Tensors([[1,2,3], [4,5,6], [6,7,8]])
            >>> p.contains([4,5,6])
            True

        """
        return any(self.equal(other, return_bool=False).all(1))

    def indices(self, tensor):
        """
        Returns:
            list of int: indices of tensor occuring
        """
        indices = []
        for i, p in enumerate(self):
            if all(p == tensor):
                indices.append(i)
        return indices

    def index(self, tensor):
        """
        Args:
            tensor
        Returns:
            int: index of tensor occuring
        """
        indices = self.indices(tensor)
        if not indices:
            return None
        if len(indices) == 1:
            return indices[0]
        raise ValueError("Multiple occurences of value {}"
                         .format(tensor))

    def moments(self, moment):
        """
        Returns:
            Moments of the distribution.
        Note:
            The first moment is given as the mean,
            second as variance etc. Not 0 as it is mathematicaly correct.
        Args:
            moment (int): n-th moment
        """
        return tfields.lib.stats.moments(self, moment)

    def closest(self, other, **kwargs):
        """
        Args:
            other (Tensors): closest points to what? -> other
            **kwargs: forwarded to scipy.spatial.cKDTree.query
        Returns:
            array shape(len(self)): Indices of other points that are closest to own points
        Examples:
            >>> import tfields
            >>> m = tfields.Tensors([[1,0,0], [0,1,0], [1,1,0], [0,0,1],
            ...                      [1,0,1]])
            >>> p = tfields.Tensors([[1.1,1,0], [0,0.1,1], [1,0,1.1]])
            >>> p.closest(m)
            array([2, 3, 4])

        """
991
        with other.tmp_transform(self.coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
992
993
994
995
996
997
998
999
            # balanced_tree option gives huge speedup!
            kd_tree = sp.spatial.cKDTree(other, 1000,
                                         balanced_tree=False)
            res = kd_tree.query(self, **kwargs)
            array = res[1]

        return array

1000
    def evalf(self, expression=None, coord_sys=None):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1001
1002
1003
        """
        Args:
            expression (sympy logical expression)
1004
            coord_sys (str): coord_sys to evalfuate the expression in.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
        Returns:
            np.ndarray: mask of dtype bool with lenght of number of points in self.
                 This array is True, where expression evalfuates True.
        Examples:
            >>> import tfields
            >>> import numpy
            >>> import sympy
            >>> x, y, z = sympy.symbols('x y z')
            >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6],
            ...                      [-5, -5, -5], [1,0,-1], [0,1,-1]])
            >>> np.array_equal(p.evalf(x > 0),
            ...                [True, True, True, False, True, False])
            True
            >>> np.array_equal(p.evalf(x >= 0),
            ...                [True, True, True, False, True, True])
            True

            And combination
            >>> np.array_equal(p.evalf((x > 0) & (y < 3)),
            ...                [True, False, True, False, True, False])
            True

            Or combination
            >>> np.array_equal(p.evalf((x > 0) | (y > 3)),
            ...                [True, True, True, False, True, False])
            True

        """
        coords = sympy.symbols('x y z')
1034
        with self.tmp_transform(coord_sys or self.coord_sys):
1035
            mask = tfields.evalf(np.array(self), expression, coords=coords)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1036
1037
        return mask

1038
    def cut(self, expression, coord_sys=None):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1039
1040
1041
1042
1043
        """
        Default cut method for Points3D. Works on a copy.
        Args:
            expression (sympy logical expression): logical expression which will be evalfuated.
                             use symbols x, y and z
1044
            coord_sys (str): coord_sys to evalfuate the expression in.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
        Examples:
            >>> import tfields
            >>> import sympy
            >>> x, y, z = sympy.symbols('x y z')
            >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6],
            ...                      [-5, -5, -5], [1,0,-1], [0,1,-1]])
            >>> p.cut(x > 0).equal([[1, 2, 3],
            ...                     [4, 5, 6],
            ...                     [1, 2, -6],
            ...                     [1, 0, -1]])
            True

            combinations of cuts
            >>> p.cut((x > 0) & (z < 0)).equal([[1, 2, -6], [1, 0, -1]])
            True

        Returns:
            copy of self with cut applied

        """
        if len(self) == 0:
            return self.copy()
1067
        mask = self.evalf(expression, coord_sys=coord_sys or self.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
        mask.astype(bool)
        inst = self[mask].copy()
        return inst

    def distances(self, other, **kwargs):
        """
        Args:
            other(array)
            **kwargs:
                ... is forwarded to sp.spatial.distance.cdist
        Examples:
            >>> import tfields
            >>> p = tfields.Tensors.grid((0, 2, 3j),
            ...                          (0, 2, 3j),
            ...                          (0, 0, 1j))
            >>> p[4,2] = 1
            >>> p.distances(p)[0,0]
            0.0
            >>> p.distances(p)[5,1]
            1.4142135623730951
            >>> p.distances([[0,1,2]])[-1][0] == 3
            True

        """
1092
        if issubclass(type(other), Tensors) and self.coord_sys != other.coord_sys:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1093
            other = other.copy()
1094
            other.transform(self.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
        return sp.spatial.distance.cdist(self, other, **kwargs)

    def min_dists(self, other=None, **kwargs):
        """
        Args:
            other(array | None): if None: closest distance to self
            **kwargs:
                memory_saving (bool): for very large array comparisons
                    default False
                ... rest is forwarded to sp.spatial.distance.cdist

        Returns:
            np.array: minimal distances of self to other


        Examples:
            >>> import tfields
            >>> import numpy as np
            >>> p = tfields.Tensors.grid((0, 2, 3),
            ...                          (0, 2, 3),
            ...                          (0, 0, 1))
            >>> p[4,2] = 1
            >>> dMin = p.min_dists()
            >>> expected = [1] * 9
            >>> expected[4] = np.sqrt(2)
            >>> np.array_equal(dMin, expected)
            True

            >>> dMin2 = p.min_dists(memory_saving=True)
            >>> bool((dMin2 == dMin).all())
            True

        """
        memory_saving = kwargs.pop('memory_saving', False)

        if other is None:
            other = self
        else:
            raise NotImplementedError("Should be easy but make shure not to remove diagonal")

        try:
            if memory_saving:
                raise MemoryError()
            d = self.distances(other, **kwargs)
            return d[d > 0].reshape(d.shape[0], - 1).min(axis=1)
        except MemoryError:
            min_dists = np.empty(self.shape[0])
1142
            for i, point in enumerate(np.array(other)):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
                d = self.distances([point], **kwargs)
                min_dists[i] = d[d > 0].reshape(-1).min()
            return min_dists

    def epsilon_neighbourhood(self, epsilon):
        """
        Returns:
            indices for those sets of points that lie within epsilon around the other
        Examples:
            Create mesh grid with one extra point that will have 8 neighbours
            within epsilon
            >>> import tfields
            >>> p = tfields.Tensors.grid((0, 1, 2j),
            ...                          (0, 1, 2j),
            ...                          (0, 1, 2j))
            >>> p = tfields.Tensors.merged(p, [[0.5, 0.5, 0.5]])
            >>> [len(en) for en in p.epsilon_neighbourhood(0.9)]
            [2, 2, 2, 2, 2, 2, 2, 2, 9]

        """
        indices = np.arange(self.shape[0])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1164
        dists = self.distances(self)  # this takes long
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1165
        distsInEpsilon = dists <= epsilon
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1166
1167
        indices = [indices[die] for die in distsInEpsilon]  # this takes long
        return indices
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222

    def _weights(self, weights, rigid=True):
        """
        transformer method for weights inputs.
        Args:
            weights (np.ndarray | None):
                If weights is None, use np.ones
                Otherwise just pass the weights.
            rigid (bool): demand equal weights and tensor length
        Returns:
            weight array
        """
        # set weights to 1.0 if weights is None
        if weights is None:
            weights = np.ones(len(self))
        if rigid:
            if not len(weights) == len(self):
                raise ValueError("Equal number of weights as tensors demanded.")
        return weights

    def cov_eig(self, weights=None):
        """
        Calculate the covariance eigenvectors with lenghts of eigenvalues
        Args:
            weights (np.array | int | None): index to scalars to weight with
        """
        # weights = self.getNormedWeightedAreas(weights=weights)
        weights = self._weights(weights)
        cov = np.cov(self.T,
                     ddof=0,
                     aweights=weights)
        # calculate eigenvalues and eigenvectors of covariance
        evalfs, evecs = np.linalg.eigh(cov)
        idx = evalfs.argsort()[::-1]
        evalfs = evalfs[idx]
        evecs = evecs[:, idx]
        e = np.concatenate((evecs, evalfs.reshape(1, 3)))
        return e.T.reshape(12, )

    def main_axes(self, weights=None):
        """
        Returns:
            Main Axes eigen-vectors
        """
        # weights = self.getNormedWeightedAreas(weights=weights)
        weights = self._weights(weights)
        mean = self.moments(1)
        relative_coords = self - mean
        cov = np.cov(relative_coords.T,
                     ddof=0,
                     aweights=weights)
        # calculate eigenvalues and eigenvectors of covariance
        evalfs, evecs = np.linalg.eigh(cov)
        return (evecs * evalfs.T).T

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1223
1224
1225
1226
1227
1228
1229
    def plot(self, **kwargs):
        """
        Forwarding to tfields.lib.plotting.plotArray
        """
        artist = tfields.plotting.plot_array(self, **kwargs)
        return artist

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246

class TensorFields(Tensors):
    """
    Discrete Tensor Field

    Args:
        tensors (array): base tensors
        *fields (array): multiple fields assigned to one base tensor. Fields
            themself are also of type tensor
        **kwargs:
            rigid (bool): demand equal field and tensor lenght
            ... : see tfields.Tensors

    Examples:
        >>> from tfields import Tensors, TensorFields
        >>> scalars = Tensors([0, 1, 2])
        >>> vectors = Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
1247
1248
        >>> scalar_field = TensorFields(vectors, scalars)
        >>> scalar_field.rank
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1249
        1
1250
        >>> scalar_field.fields[0].rank
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
        0
        >>> vectorField = TensorFields(vectors, vectors)
        >>> vectorField.fields[0].rank
        1
        >>> vectorField.fields[0].dim
        3
        >>> multiField = TensorFields(vectors, scalars, vectors)
        >>> multiField.fields[0].dim
        1
        >>> multiField.fields[1].dim
        3

        Empty initialization
        >>> empty_field = TensorFields([], dim=3)
        >>> assert empty_field.shape == (0, 3)
        >>> assert empty_field.fields == []

        Directly initializing with lists or arrays
        >>> vec_field_raw = tfields.TensorFields([[0, 1, 2], [3, 4, 5]],
        ...                                       [1, 6], [2, 7])
        >>> assert len(vec_field_raw.fields) == 2

        Copying
        >>> cp = TensorFields(vectorField)
        >>> assert vectorField.equal(cp)

1277
        Copying takes care of coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1278
1279
        >>> cp.transform(tfields.bases.CYLINDER)
        >>> cp_cyl = TensorFields(cp)
1280
        >>> assert cp_cyl.coord_sys == tfields.bases.CYLINDER
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299

        Copying with changing type
        >>> tcp = TensorFields(vectorField, dtype=int)
        >>> assert vectorField.equal(tcp)
        >>> assert tcp.dtype == int

    Raises:
        TypeError:
        >>> import tfields
        >>> tfields.TensorFields([1, 2, 3], [3])  # doctest: +ELLIPSIS
        Traceback (most recent call last):
        ...
        ValueError: Length of base (3) should be the same as the length of all fields ([1]).

        This error can be suppressed by setting rigid=False
        >>> loose = tfields.TensorFields([1, 2, 3], [3], rigid=False)
        >>> assert len(loose) != 1

    """
1300
    __slots__ = ['coord_sys', 'fields']
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331

    def __new__(cls, tensors, *fields, **kwargs):
        rigid = kwargs.pop('rigid', True)

        obj = super(TensorFields, cls).__new__(cls, tensors, **kwargs)
        if issubclass(type(tensors), TensorFields):
            if tensors.fields is None:
                raise ValueError("Tensor fields were None")
            obj.fields = [Tensors(field) for field in tensors.fields]
        elif not fields:
            obj.fields = []
        if fields:
            # (over)write fields
            obj.fields = [Tensors(field) for field in fields]

        if rigid:
            olen = len(obj)
            field_lengths = [len(f) for f in obj.fields]
            if not all([flen == olen for flen in field_lengths]):
                raise ValueError("Length of base ({olen}) should be the same as"
                                 " the length of all fields ({field_lengths})."
                                 .format(**locals()))
        return obj

    def __getitem__(self, index):
        """
        In addition to the usual, also slice fields
        Examples:
            >>> import tfields
            >>> import numpy as np
            >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
1332
            >>> scalar_field = tfields.TensorFields(vectors, [42, 21, 10.5], [1, 2, 3])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1333
1334

            Slicing
1335
            >>> sliced = scalar_field[2:]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1336
1337
1338
1339
1340
            >>> assert isinstance(sliced, tfields.TensorFields)
            >>> assert isinstance(sliced.fields[0], tfields.Tensors)
            >>> assert sliced.fields[0].equal([10.5])

            Picking
1341
            >>> picked = scalar_field[1]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1342
1343
1344
            >>> assert np.array_equal(picked, [0, 0, 1])

            Masking
1345
            >>> masked = scalar_field[[True, False, True]]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1346
1347
1348
1349
1350
            >>> assert masked.equal([[0, 0, 0], [0, -1, 0]])
            >>> assert masked.fields[0].equal([42, 10.5])
            >>> assert masked.fields[1].equal([1, 3])

            Iteration
1351
            >>> _ = [point for point in scalar_field]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417

        """
        item = super(TensorFields, self).__getitem__(index)
        try:
            if issubclass(type(item), TensorFields):
                if isinstance(index, tuple):
                    index = index[0]
                if item.fields:
                    item.fields = [field.__getitem__(index) for field in item.fields]
        except IndexError as err:
            warnings.warn("Index error occured for field.__getitem__. Error "
                          "message: {err}".format(**locals()))

        return item

    def __setitem__(self, index, item):
        """
        In addition to the usual, also slice fields
        Examples:
            >>> import tfields
            >>> import numpy as np
            >>> original = tfields.TensorFields([[0, 0, 0], [0, 0, 1], [0, -1, 0]],
            ...                                  [42, 21, 10.5], [1, 2, 3])
            >>> obj = tfields.TensorFields([[0, 0, 0], [0, 0, np.nan], [0, -1, 0]],
            ...                             [42, 22, 10.5], [1, -1, 3])
            >>> slice_obj = obj.copy()
            >>> assert not obj.equal(original)
            >>> obj[1] = original[1]
            >>> assert obj[:2].equal(original[:2])

            >>> assert not slice_obj.equal(original)
            >>> slice_obj[:] = original[:]
            >>> assert slice_obj.equal(original)

        """
        super(TensorFields, self).__setitem__(index, item)
        if issubclass(type(item), TensorFields):
            if isinstance(index, slice):
                for i, field in enumerate(item.fields):
                    self.fields[i].__setitem__(index, field)
            elif isinstance(index, tuple):
                for i, field in enumerate(item.fields):
                    self.fields[i].__setitem__(index[0], field)
            else:
                for i, field in enumerate(item.fields):
                    self.fields[i].__setitem__(index, field)

    @classmethod
    def merged(cls, *objects, **kwargs):
        if not all([isinstance(o, cls) for o in objects]):
            # TODO: could allow if all faceScalars are none
            raise TypeError("Merge constructor only accepts {cls} instances."
                            .format(**locals()))

        inst = super(TensorFields, cls).merged(*objects, **kwargs)
        
        fields = []
        if all([len(obj.fields) == len(objects[0].fields)
                for obj in objects]):
            for fld_idx in range(len(objects[0].fields)):
                field = tfields.Tensors.merged(*[obj.fields[fld_idx]
                                                 for obj in objects])
                fields.append(field)
        inst = cls.__new__(cls, inst, *fields)
        return inst

1418
1419
1420
1421
    # def transform(self, coord_sys):
    #     super(TensorFields, self).transform(coord_sys)
    #     # for field in self.fields:
    #     #     field.transform(coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433

    def equal(self, other, **kwargs):
        """
        Test, whether the instance has the same content as other.
        Args:
            other (iterable)
            optional:
                see Tensors.equal
        """
        if not issubclass(type(other), Tensors):
            return super(TensorFields, self).equal(other, **kwargs)
        else:
1434
            with other.tmp_transform(self.coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
                mask = super(TensorFields, self).equal(other, **kwargs)
                if issubclass(type(other), TensorFields):
                    if len(self.fields) != len(other.fields):
                        mask &= False
                    else:
                        for i, field in enumerate(self.fields):
                            mask &= field.equal(other.fields[i], **kwargs)
                return mask

    def _weights(self, weights, rigid=True):
        """
        Expansion of Tensors._weights with integer inputs
        Args:
            weights (np.ndarray | int | None):
                if weights is int: use field at index <weights>
                else: see Tensors._weights
        """
        if isinstance(weights, int):
            weights = self.fields[weights]
        return super(TensorFields, self)._weights(weights, rigid=rigid)


class TensorMaps(TensorFields):
    """
    Args:
        tensors: see Tensors class
        *fields (Tensors): see TensorFields class
        **kwargs:
1463
            coord_sys ('str'): see Tensors class
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
            maps (array-like): indices indicating a connection between the
                tensors at the respective index positions
    Examples:
        >>> import tfields
        >>> import numpy as np
        >>> scalars = tfields.Tensors([0, 1, 2])
        >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
        >>> maps = [tfields.TensorFields([[0, 1, 2], [0, 1, 2]], [42, 21]),
        ...         tfields.TensorFields([[1], [2]], [-42, -21])]
        >>> mesh = tfields.TensorMaps(vectors, scalars,
        ...                           maps=maps)
        >>> assert isinstance(mesh.maps, list)
        >>> assert len(mesh.maps) == 2

        >>> assert mesh.equal(tfields.TensorFields(vectors, scalars))
        >>> assert mesh.maps[0].fields[0].equal(maps[0].fields[0])

        Copy constructor
        >>> mesh_copy = tfields.TensorMaps(mesh)

1484
        Copying takes care of coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1485
1486
        >>> mesh_copy.transform(tfields.bases.CYLINDER)
        >>> mesh_cp_cyl = tfields.TensorMaps(mesh_copy)
1487
        >>> assert mesh_cp_cyl.coord_sys == tfields.bases.CYLINDER
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1488
1489
1490
1491
1492
1493
1494
1495
1496

    Raises:
        >>> import tfields
        >>> tfields.TensorMaps([1] * 4, dim=3, maps=[[1, 2, 3]])  # +doctest: ELLIPSIS
        Traceback (most recent call last):
        ...
        ValueError: Incorrect map rank 0

    """
1497
    __slots__ = ['coord_sys', 'fields', 'maps']
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

    def __new__(cls, tensors, *fields, **kwargs):
        maps = kwargs.pop('maps', [])
        maps_cp = []
        for mp in maps:
            mp = TensorFields(mp, dtype=int)
            if not mp.rank == 1:
                raise ValueError("Incorrect map rank {mp.rank}"
                                 .format(**locals()))
            maps_cp.append(mp)
        maps = maps_cp
        obj = super(TensorMaps, cls).__new__(cls, tensors, *fields, **kwargs)
        obj.maps = maps
        return obj

    def __getitem__(self, index):
        """
        In addition to the usual, also slice fields

        Examples:
            >>> import tfields
            >>> import numpy as np
            >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0],
            ...                            [1, 1, 1], [-1, -1, -1]])
            >>> maps=[tfields.TensorFields([[0, 1, 2], [0, 1, 3], [2, 3, 4]],
            ...                            [[1, 2], [3, 4], [5, 6]]),
            ...       tfields.TensorFields([[0], [1], [2], [3], [4]])]
            >>> mesh = tfields.TensorMaps(vectors,
            ...                           [42, 21, 10.5, 1, 1],
            ...                           [1, 2, 3, 3, 3],
            ...                           maps=maps)

            Slicing
            >>> sliced = mesh[2:]
            >>> assert isinstance(sliced, tfields.TensorMaps)
            >>> assert isinstance(sliced.fields[0], tfields.Tensors)
            >>> assert isinstance(sliced.maps[0], tfields.TensorFields)
            >>> assert sliced.fields[0].equal([10.5, 1, 1])
            >>> assert sliced.maps[0].equal([[0, 1, 2]])
            >>> assert sliced.maps[0].fields[0].equal([[5, 6]])

            Picking
            >>> picked = mesh[1]
            >>> assert np.array_equal(picked, [0, 0, 1])
            >>> assert np.array_equal(picked.maps[0], np.empty((0, 3)))
            >>> assert np.array_equal(picked.maps[1], [[0]])

            Masking
            >>> masked = mesh[[True, False, True, True, True]]
            >>> assert masked.equal([[0, 0, 0], [0, -1, 0], [1, 1, 1], [-1, -1, -1]])
            >>> assert masked.fields[0].equal([42, 10.5, 1, 1])
            >>> assert masked.fields[1].equal([1, 3, 3, 3])
            >>> assert masked.maps[0].equal([[1, 2, 3]])
            >>> assert masked.maps[1].equal([[0], [1], [2], [3]])

            Iteration
            >>> _ = [vertex for vertex in mesh]

        """
        item = super(TensorMaps, self).__getitem__(index)
        try:
            if issubclass(type(item), TensorMaps):
                if isinstance(index, tuple):
                    index = index[0]
                if item.maps:
                    item.maps = [mp.copy() for mp in item.maps]
                    indices = np.array(range(len(self)))
                    keep_indices = indices[index]
1566
                    if isinstance(keep_indices, (int, np.int64)):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
                        keep_indices = [keep_indices]
                    delete_indices = set(indices).difference(set(keep_indices))

                    # correct all maps that contain deleted indices
                    for mp_idx in range(len(self.maps)):
                        # build mask, where the map should be deleted
                        map_delete_mask = np.full((len(self.maps[mp_idx]),), False, dtype=bool)
                        for i, mp in enumerate(self.maps[mp_idx]):
                            for index in mp:
                                if index in delete_indices:
                                    map_delete_mask[i] = True
                                    break
                        map_mask = ~map_delete_mask

                        # build the correction counters
                        move_up_counter = np.zeros(self.maps[mp_idx].shape, dtype=int)
                        for p in delete_indices:
                            move_up_counter[self.maps[mp_idx] > p] -= 1

                        item.maps[mp_idx] = (self.maps[mp_idx] + move_up_counter)[map_mask]
        except IndexError as err:
            warnings.warn("Index error occured for field.__getitem__. Error "
                          "message: {err}".format(**locals()))

        return item

    @classmethod
    def merged(cls, *objects, **kwargs):
        if not all([isinstance(o, cls) for o in objects]):
            # TODO: could allow if all faceScalars are none
            raise TypeError("Merge constructor only accepts {cls} instances."
                            .format(**locals()))
        tensor_lengths = [len(o) for o in objects]
        cum_tensor_lengths = [sum(tensor_lengths[:i]) for i in range(len(objects))]

        maps = []
        dims = []
        for i, o in enumerate(objects):
            for map_field in o.maps:
                map_field = map_field + cum_tensor_lengths[i]
                try:
                    mp_idx = dims.index(map_field.dim)
                except ValueError:
                    maps.append(map_field)
                    dims.append(map_field.dim)
                else:
                    maps[mp_idx] = TensorFields.merged(maps[mp_idx], map_field)
        # kwargs['maps'] = maps

        inst = super(TensorMaps, cls).merged(*objects, **kwargs)
        inst = cls.__new__(cls, inst, maps=maps)
        return inst

    def equal(self, other, **kwargs):
        """
        Test, whether the instance has the same content as other.
        Args:
            other (iterable)
            optional:
                see TensorFields.equal
        Examples:
            >>> import tfields
            >>> maps = [tfields.TensorFields([[1]], [42])]
            >>> tm = tfields.TensorMaps(maps[0], maps=maps)

            # >>> assert tm.equal(tm)
            >>> cp = tm.copy()

            # >>> assert tm.equal(cp)
            >>> cp.maps[0].fields[0] = -42
            >>> assert tm.maps[0].fields[0] == 42
            >>> assert not tm.equal(cp)

        """
        if not issubclass(type(other), Tensors):
            return super(TensorMaps, self).equal(other, **kwargs)
        else:
1644
            with other.tmp_transform(self.coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
                mask = super(TensorMaps, self).equal(other, **kwargs)
                if issubclass(type(other), TensorMaps):
                    if len(self.maps) != len(other.maps):
                        mask &= False
                    else:
                        for i, mp in enumerate(self.maps):
                            mask &= mp.equal(other.maps[i], **kwargs)
                return mask

    def stale(self):
        """
        Returns:
            Mask for all vertices that are stale i.e. are not refered by maps
        Examples:
            >>> import tfields
            >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0], [4, 4, 4]])
            >>> tm = tfields.TensorMaps(vectors, maps=[[[0, 1, 2], [0, 1, 2]],
            ...                                       [[1, 1], [2, 2]]])
            >>> assert np.array_equal(tm.stale(), [False, False, False, True])

        """
        staleMask = np.full(self.shape[0], False, dtype=bool)
        used = set([ind for mp in self.maps for ind in mp.flatten()])
        for i in range(self.shape[0]):
            if i not in used:
                staleMask[i] = True
        return staleMask

    def cleaned(self, stale=True, duplicates=True):
        """
        Args:
            stale (bool): remove stale vertices
            duplicates (bool): replace duplicate vertices by originals
        Examples:
            >>> import tfields
            >>> mp1 = tfields.TensorFields([[0, 1, 2], [3, 4, 5]],
            ...                            *zip([1,2,3,4,5], [6,7,8,9,0]))
            >>> mp2 = tfields.TensorFields([[0], [3]])

            >>> tm = tfields.TensorMaps([[0,0,0], [1,1,1], [2,2,2], [0,0,0],
            ...                          [3,3,3], [4,4,4], [5,6,7]],
            ...                         maps=[mp1, mp2])

            >>> c = tm.cleaned()
            >>> assert c.equal([[0., 0., 0.],
            ...                 [1., 1., 1.],
            ...                 [2., 2., 2.],
            ...                 [3., 3., 3.],
            ...                 [4., 4., 4.]])
            >>> assert np.array_equal(c.maps[0], [[0, 1, 2], [0, 3, 4]])
            >>> assert np.array_equal(c.maps[1], [[0], [0]])


        Returns:
            copy of self without stale vertices and duplicat points (depending on arguments)
        """
        # remove stale vertices
        if stale:
            stale_mask = self.stale()
        else:
            stale_mask = np.full(self.shape[0], False, dtype=bool)
        # remove duplicates in order to not have any artificial separations
        inst = self
        if duplicates:
            inst = self.copy()
            duplicates = tfields.duplicates(self, axis=0)
            for tensor_index, duplicate_index in zip(range(self.shape[0]), duplicates):
                if duplicate_index != tensor_index:
                    stale_mask[tensor_index] = True
                    # redirect maps
                    for mp_idx in range(len(self.maps)):
                        for f in range(len(self.maps[mp_idx])):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1717
1718
1719
                            mp = np.array(self.maps[mp_idx], dtype=int)
                            if tensor_index in mp[f]:
                                index = tfields.index(mp[f], tensor_index)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
                                inst.maps[mp_idx][f][index] = duplicate_index

        return inst.removed(stale_mask)

    def removed(self, remove_condition):
        """
        Return copy of self without vertices where remove_condition is True
        Copy because self is immutable

        Examples:
            >>> import tfields
            >>> m = tfields.TensorMaps([[0,0,0], [1,1,1], [2,2,2], [0,0,0],
            ...                         [3,3,3], [4,4,4], [5,5,5]],
            ...                        maps=[tfields.TensorFields([[0, 1, 2], [0, 1, 3],
            ...                                                    [3, 4, 5], [3, 4, 1],
            ...                                                    [3, 4, 6]],
            ...                                                   [1, 3, 5, 7, 9],
            ...                                                   [2, 4, 6, 8, 0])])
            >>> c = m.keep([False, False, False, True, True, True, True])
            >>> c.equal([[0, 0, 0],
            ...          [3, 3, 3],
            ...          [4, 4, 4],
            ...          [5, 5, 5]])
            True
            >>> c.maps[0]
            TensorFields([[0, 1, 2],
                          [0, 1, 3]])
            >>> assert c.maps[0].fields[0].equal([5, 9])
            >>> assert c.maps[0].fields[1].equal([6, 0])

        """
        remove_condition = np.array(remove_condition)
        # # built instance that only contains the vaild points
        # inst = self[~remove_condition].copy()
        # delete_indices = np.arange(self.shape[0])[remove_condition]
        # face_keep_masks = self.to_maps_masks(~remove_condition)

        # for mp_idx, face_keep_mask in enumerate(face_keep_masks):
        #     move_up_counter = np.zeros(self.maps[mp_idx].shape, dtype=int)

        #     # correct map:
        #     for p in delete_indices:
        #         move_up_counter[self.maps[mp_idx] > p] -= 1

        #     inst.maps[mp_idx] = (self.maps[mp_idx] + move_up_counter)[face_keep_mask]
        # return inst
        return self[~remove_condition]

    def keep(self, keep_condition):
        """
        Return copy of self with vertices where keep_condition is True
        Copy because self is immutable

        Examples:
            >>> import tfields
            >>> m = tfields.TensorMaps([[0,0,0], [1,1,1], [2,2,2], [0,0,0],
            ...                         [3,3,3], [4,4,4], [5,5,5]],
            ...                        maps=[tfields.TensorFields([[0, 1, 2], [0, 1, 3],
            ...                                                    [3, 4, 5], [3, 4, 1],
            ...                                                    [3, 4, 6]],
            ...                                                   [1, 3, 5, 7, 9],
            ...                                                   [2, 4, 6, 8, 0])])
            >>> c = m.removed([True, True, True, False, False, False, False])
            >>> c.equal([[0, 0, 0],
            ...          [3, 3, 3],
            ...          [4, 4, 4],
            ...          [5, 5, 5]])
            True
            >>> c.maps[0]
            TensorFields([[0, 1, 2],
                          [0, 1, 3]])
            >>> assert c.maps[0].fields[0].equal([5, 9])
            >>> assert c.maps[0].fields[1].equal([6, 0])

        """
        keep_condition = np.array(keep_condition)
        return self[keep_condition]

    def to_maps_masks(self, mask):
        """
        Examples:
            >>> from tfields import TensorMaps
            >>> import numpy as np
            >>> m = TensorMaps([[1,2,3], [3,3,3], [0,0,0], [5,6,7]],
            ...                maps=[[[0, 1, 2], [1, 2, 3]],
            ...                      [[0], [3]]])
            >>> from sympy.abc import x,y,z
            >>> vertexMask = m.evalf(z < 6)
            >>> faceMask = m.to_maps_masks(vertexMask)
            >>> assert np.array_equal(faceMask, [[True, False], [True, False]])
            >>> index_face_mask = m.to_maps_masks(0)
            >>> assert np.array_equal(index_face_mask, [[False, False], [True, False]])

        Returns:
            masks of maps with all vertices in mask
        """
        indices = np.array(range(len(self)))
        keep_indices = indices[mask]
        if isinstance(keep_indices, int):
1819
            keep_indices = np.array([keep_indices])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1820
        delete_indices = set(indices.flat).difference(set(keep_indices.flat))
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888

        masks = []
        for mp_idx in range(len(self.maps)):
            map_delete_mask = np.full((len(self.maps[mp_idx]),), False, dtype=bool)
            for i, mp in enumerate(self.maps[mp_idx]):
                for index in mp:
                    if index in delete_indices:
                        map_delete_mask[i] = True
                        break
            masks.append(~map_delete_mask)
        return masks

    def parts(self, *map_descriptions):
        """
        Args:
            *map_descriptions (tuple): tuples of
                map_pos_idx (int): reference to map position
                    used like: self.maps[map_pos_idx]
                map_indices_list (list of list of int): each int refers
                    to index in a map.
        """
        # raise ValueError(map_descriptions)
        parts = []
        for map_description in map_descriptions:
            map_pos_idx, map_indices_list = map_description
            for map_indices in map_indices_list:
                obj = self.copy()
                map_indices = set(map_indices)  # for speed up
                map_delete_mask = np.array(
                    [True if i not in map_indices else False
                     for i in range(len(self.maps[map_pos_idx]))])
                obj.maps[map_pos_idx] = obj.maps[map_pos_idx][~map_delete_mask]
                obj = obj.cleaned(duplicates=False)
                parts.append(obj)
        return parts

    def disjoint_map(self, mp_idx):
        """
        Find the disjoint sets of map = self.maps[mp_idx]
        Args:
            mp_idx (int): reference to map position
                used like: self.maps[mp_idx]
        Returns:
            map description(tuple): see self.parts

        Examples:
            >>> import tfields
            >>> a = tfields.TensorMaps([[0, 0, 0], [1, 0, 0], [1, 1, 0], [0, 1, 0]],
            ...                        maps=[[[0, 1, 2], [0, 2, 3]]])
            >>> b = a.copy()

            >>> b[:, 0] += 2
            >>> m = tfields.TensorMaps.merged(a, b)
            >>> mp_description = m.disjoint_map(0)
            >>> parts = m.parts(mp_description)
            >>> aa, ba = parts
            >>> assert aa.maps[0].equal(ba.maps[0])
            >>> assert aa.equal(a)
            >>> assert ba.equal(b)

        """
        maps_list = tfields.lib.sets.disjoint_group_indices(self.maps[mp_idx])
        return (0, maps_list)


if __name__ == '__main__':  # pragma: no cover
    import doctest
    doctest.testmod()
1889
    # doctest.run_docstring_examples(Tensors._save_npz, globals())
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1890
    # doctest.run_docstring_examples(TensorMaps.cut, globals())
1891
    # doctest.run_docstring_examples(AbstractNdarray._save_npz, globals())