core.py 92.3 KB
Newer Older
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1
2
3
4
5
6
7
8
#!/usr/bin/env
# encoding: utf-8
"""
Author:     Daniel Boeckenhoff
Mail:       daniel.boeckenhoff@ipp.mpg.de

core of tfields library
contains numpy ndarray derived bases of the tfields package
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
9
10

Notes:
dboe's avatar
dboe committed
11
12
13
    It could be worthwhile concidering `np.li.mixins.NDArrayOperatorsMixin ...
    <https://docs.scipy.org/doc/numpy-1.15.1/reference/generated/...
    ... numpy.lib.mixins.NDArrayOperatorsMixin.html>`_
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
14
15
16
17
18
19
20
21
22
23
"""
import warnings
import pathlib
from six import string_types
from contextlib import contextmanager
from collections import Counter

import numpy as np
import sympy
import scipy as sp
24
import rna
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
25
import tfields.bases
dboe's avatar
dboe committed
26
27

np.seterr(all="warn", over="raise")
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50


def rank(tensor):
    """
    Tensor rank
    """
    return len(tensor.shape) - 1


def dim(tensor):
    """
    Manifold dimension
    """
    if rank(tensor) == 0:
        return 1
    return tensor.shape[1]


class AbstractNdarray(np.ndarray):
    """
    All tensors and subclasses should derive from AbstractNdarray.
    AbstractNdarray implements all the inheritance specifics for np.ndarray
    Whene inheriting, three attributes are of interest:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
51
52

    Attributes:
53
        __slots__ (List(str)): If you want to add attributes to
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
54
55
56
57
58
            your AbstractNdarray subclass, add the attribute name to __slots__
        __slot_defaults__ (list): if __slot_defaults__ is None, the
            defaults for the attributes in __slots__ will be None
            other values will be treaded as defaults to the corresponding
            arg at the same position in the __slots__ list.
59
        __slot_dtype__ (List(dtypes)): for the conversion of the
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
60
61
            args in __slots__ to numpy arrays. None values mean no
            conversion.
62
63
64
        __slot_setters__ (List(callable)): Because __slots__ and properties are
            mutually exclusive this is a possibility to take care of proper
            attribute handling. None will be passed for 'not set'.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
65
66
67
68

    Args:
        array (array-like): input array
        **kwargs: arguments corresponding to __slots__
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
69

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
70
71
    TODO:
        equality check
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
72

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
73
    """
dboe's avatar
dboe committed
74

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
75
76
    __slots__ = []
    __slot_defaults__ = []
77
    __slot_dtypes__ = []
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
78
79
80
    __slot_setters__ = []

    def __new__(cls, array, **kwargs):  # pragma: no cover
dboe's avatar
dboe committed
81
82
83
        raise NotImplementedError(
            "{clsType} type must implement '__new__'".format(clsType=type(cls))
        )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
84
85
86
87
88
89
90
91
92
93
94
95

    def __array_finalize__(self, obj):
        if obj is None:
            return
        for attr in self._iter_slots():
            setattr(self, attr, getattr(obj, attr, None))

    def __array_wrap__(self, out_arr, context=None):
        return np.ndarray.__array_wrap__(self, out_arr, context)

    @classmethod
    def _iter_slots(cls):
dboe's avatar
dboe committed
96
        return [att for att in cls.__slots__ if att != "_cache"]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
97
98
99
100
101

    @classmethod
    def _update_slot_kwargs(cls, kwargs):
        """
        set the defaults in kwargs according to __slot_defaults__
102
        and convert the kwargs according to __slot_dtypes__
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
103
        """
104
        slot_defaults = cls.__slot_defaults__ + [None] * (
dboe's avatar
dboe committed
105
106
            len(cls.__slots__) - len(cls.__slot_defaults__)
        )
107
108
        slot_dtypes = cls.__slot_dtypes__ + [None] * (
            len(cls.__slots__) - len(cls.__slot_dtypes__)
dboe's avatar
dboe committed
109
110
        )
        for attr, default, dtype in zip(
111
            cls.__slots__, slot_defaults, slot_dtypes
dboe's avatar
dboe committed
112
113
        ):
            if attr == "_cache":
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
114
115
116
117
118
119
120
                continue
            if attr not in kwargs:
                kwargs[attr] = default
            if dtype is not None:
                try:
                    kwargs[attr] = np.array(kwargs[attr], dtype=dtype)
                except Exception as err:
dboe's avatar
dboe committed
121
122
123
                    raise ValueError(
                        str(attr) + str(dtype) + str(kwargs[attr]) + str(err)
                    )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137

    def __setattr__(self, name, value):
        if name in self.__slots__:
            index = self.__slots__.index(name)
            try:
                setter = self.__slot_setters__[index]
            except IndexError:
                setter = None
            if setter is not None:
                value = setter(value)
        super(AbstractNdarray, self).__setattr__(name, value)

    def __reduce__(self):
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
138
139
        important for pickling (see `here <https://stackoverflow.com/questions/26598109/preserve-custom-attributes-when-pickling-subclass-of-numpy-array>`_)

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
140
141
142
143
144
145
        Examples:
            >>> from tempfile import NamedTemporaryFile
            >>> import pickle
            >>> import tfields

            Build a dummy scalar field
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
146

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
147
148
149
            >>> from tfields import Tensors, TensorFields
            >>> scalars = Tensors([0, 1, 2])
            >>> vectors = Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
dboe's avatar
dboe committed
150
151
152
            >>> scalar_field = TensorFields(vectors,
            ...                             scalars,
            ...                             coord_sys='cylinder')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
153
154

            Save it and restore it
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
155

156
            >>> out_file = NamedTemporaryFile(suffix='.pickle')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
157

158
            >>> pickle.dump(scalar_field,
159
160
            ...             out_file)
            >>> _ = out_file.seek(0)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
161

162
            >>> sf = pickle.load(out_file)
163
            >>> sf.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
164
165
166
167
168
169
170
171
172
            True
            >>> sf.fields[0][2] == 2.
            True

        """
        # Get the parent's __reduce__ tuple
        pickled_state = super(AbstractNdarray, self).__reduce__()

        # Create our own tuple to pass to __setstate__
dboe's avatar
dboe committed
173
174
175
        new_state = pickled_state[2] + tuple(
            [getattr(self, slot) for slot in self._iter_slots()]
        )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
176

dboe's avatar
dboe committed
177
178
        # Return a tuple that replaces the parent's __setstate__
        # tuple with our own
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
179
180
181
182
        return (pickled_state[0], pickled_state[1], new_state)

    def __setstate__(self, state):
        """
183
        Counterpart to __reduce__. Important for unpickling.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
184
185
        """
        # Call the parent's __setstate__ with the other tuple elements.
dboe's avatar
dboe committed
186
187
188
        super(AbstractNdarray, self).__setstate__(
            state[0 : -len(self._iter_slots())]
        )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
189
190

        # set the __slot__ attributes
191
192
193
194
195
196
197
198
199
200
201
        valid_slot_attrs = list(self._iter_slots())
        added_slot_attrs = ['name']  # attributes that have been added later
                                     # have not been pickled with the full
                                     # information and thus need to be
                                     # excluded from the __setstate__
                                     # need to be in the same order as they have
                                     # been added to __slots__
        n_old = len(valid_slot_attrs) - len(state[5:])
        if n_old > 0:
            for latest_index in range(n_old):
                new_slot = added_slot_attrs[-latest_index]
202
                warnings.warn("Slots with names '{new_slot}' appears to have been "
203
204
205
206
207
208
209
210
211
                              "added after the creation of the reduced state. "
                              "No corresponding state found in __setstate__."
                              .format(**locals()))
                valid_slot_attrs.pop(valid_slot_attrs.index(new_slot))
                setattr(self, new_slot, None)

        for slot_index, slot in enumerate(valid_slot_attrs):
            state_index = 5 + slot_index
            setattr(self, slot, state[state_index])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
212

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
213
214
215
216
217
218
219
220
    @property
    def bulk(self):
        """
        The pure ndarray version of the actual state
            -> nothing attached
        """
        return np.array(self)

221
222
    @classmethod
    @contextmanager
223
    def _bypass_setters(cls, *slots, empty_means_all=True):
224
225
226
        """
        Temporarily remove the setter in __slot_setters__ corresponding to slot
        position in __slot__. You should know what you do, when using this.
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

        Args:
            *slots (str): attribute names in __slots__
            empty_means_all (bool): defines behaviour when slots is empty.
                When True: if slots is empty mute all slots in __slots__
        """
        if not slots and empty_means_all:
            slots = cls.__slots__
        slot_indices = []
        setters = []
        for slot in slots:
            slot_index = cls.__slots__.index(slot)
            if len(cls.__slot_setters__) < slot_index + 1:
                # no setter to be found
                continue
            slot_indices.append(slot_index)
            setter = cls.__slot_setters__[slot_index]
            setters.append(setter)
            cls.__slot_setters__[slot_index] = None
246
        yield
247
248
        for slot_index, setter in zip(slot_indices, setters):
            cls.__slot_setters__[slot_index] = setter
249

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
250
251
252
    def copy(self, *args, **kwargs):
        """
        The standard ndarray copy does not copy slots. Correct for this.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
253

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
254
255
        Examples:
            >>> import tfields
dboe's avatar
dboe committed
256
257
258
259
            >>> m = tfields.TensorMaps(
            ...     [[1,2,3], [3,3,3], [0,0,0], [5,6,7]],
            ...     maps=[tfields.TensorFields([[0, 1, 2], [1, 2, 3]],
            ...                                 [1, 2])])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
260
261
262
263
264
265
            >>> mc = m.copy()
            >>> mc is m
            False
            >>> mc.maps[0].fields[0] is m.maps[0].fields[0]
            False

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
266
        TODO:
dboe's avatar
dboe committed
267
268
            This function implementation could be more general or maybe
            redirect to deepcopy?
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
269
270
271
272
        """
        inst = super(AbstractNdarray, self).copy(*args, **kwargs)
        for attr in self._iter_slots():
            value = getattr(self, attr)
dboe's avatar
dboe committed
273
            if hasattr(value, "copy") and not isinstance(value, list):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
274
275
276
277
                setattr(inst, attr, value.copy(*args, **kwargs))
            elif isinstance(value, list):
                list_copy = []
                for item in value:
dboe's avatar
dboe committed
278
                    if hasattr(item, "copy"):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
279
280
281
282
283
284
285
286
287
288
                        list_copy.append(item.copy(*args, **kwargs))
                    else:
                        list_copy.append(item)
                setattr(inst, attr, list_copy)

        return inst

    def save(self, path, *args, **kwargs):
        """
        Saving a tensors object by redirecting to the correct save method depending on path
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
289

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
290
291
292
293
294
295
296
297
298
        Args:
            path (str or buffer)
            *args:
                forwarded to extension specific method
            **kwargs:
                extension (str): only needed if path is buffer
                ... remaining:forwarded to extension specific method
        """
        # get the extension
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
299
        if isinstance(path, (string_types, pathlib.Path)):
dboe's avatar
dboe committed
300
            extension = pathlib.Path(path).suffix.lstrip(".")
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
301
302
303
        else:
            raise ValueError("Wrong path type {0}".format(type(path)))
        path = str(path)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
304
305
306

        # get the save method
        try:
dboe's avatar
dboe committed
307
            save_method = getattr(self, "_save_{extension}".format(**locals()))
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
308
        except:
dboe's avatar
dboe committed
309
310
311
312
            raise NotImplementedError(
                "Can not find save method for extension: "
                "{extension}.".format(**locals())
            )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
313

314
        path = rna.path.resolve(path)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
315
316
317
318
319
320
        return save_method(path, **kwargs)

    @classmethod
    def load(cls, path, *args, **kwargs):
        """
        load a file as a tensors object.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
321

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
322
323
324
325
326
327
328
329
        Args:
            path (str or buffer)
            *args:
                forwarded to extension specific method
            **kwargs:
                extension (str): only needed if path is buffer
                ... remaining:forwarded to extension specific method
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
330
        if isinstance(path, (string_types, pathlib.Path)):
dboe's avatar
dboe committed
331
            extension = pathlib.Path(path).suffix.lstrip(".")
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
332
            path = str(path)
333
            path = rna.path.resolve(path)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
334
        else:
dboe's avatar
dboe committed
335
            extension = kwargs.pop("extension", "npz")
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
336
337

        try:
dboe's avatar
dboe committed
338
            load_method = getattr(cls, "_load_{e}".format(e=extension))
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
339
        except:
dboe's avatar
dboe committed
340
341
342
343
            raise NotImplementedError(
                "Can not find load method for extension: "
                "{extension}.".format(**locals())
            )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
344
345
346
347
348
349
        return load_method(path, *args, **kwargs)

    def _save_npz(self, path, **kwargs):
        """
        Args:
            path (open file or str/unicode): destination to save file to.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
350

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
351
        Examples:
352
            Build some dummies:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
353
354
            >>> import tfields
            >>> from tempfile import NamedTemporaryFile
355
            >>> out_file = NamedTemporaryFile(suffix='.npz')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
356
357
358
            >>> p = tfields.Points3D([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]],
            ...                      name='my_points')
            >>> scalars = tfields.Tensors([0, 1, 2], name=42)
359
360
361
362
363
364
365
366
            >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
            >>> maps = [tfields.TensorFields([[0, 1, 2], [0, 1, 2]], [42, 21]),
            ...         tfields.TensorFields([[1], [2]], [-42, -21])]
            >>> m = tfields.TensorMaps(vectors, scalars,
            ...                        maps=maps)

            Simply give the file name to save
            >>> p.save(out_file.name)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
367
            >>> _ = out_file.seek(0)  # this is only necessary in the test
368
            >>> p1 = tfields.Points3D.load(out_file.name)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
369
            >>> assert p.equal(p1)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
370
            >>> assert p.coord_sys == p1.coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
371

372
373
374
375
            The fully nested structure of a TensorMaps object is reconstructed
            >>> out_file_maps = NamedTemporaryFile(suffix='.npz')
            >>> m.save(out_file_maps.name)
            >>> _ = out_file_maps.seek(0)
dboe's avatar
dboe committed
376
377
            >>> m1 = tfields.TensorMaps.load(out_file_maps.name,
            ...                              allow_pickle=True)
378
            >>> assert m.equal(m1)
379
            >>> assert m.maps[0].dtype == m1.maps[0].dtype
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
380

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
381
382
383
384
385
            Names are preserved
            >>> assert p.name == 'my_points'
            >>> m.names
            [42]

386
        """
387
388
        content_dict = self._as_dict()
        np.savez(path, **content_dict)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
389
390
391
392
393
394
395

    @classmethod
    def _load_npz(cls, path, **load_kwargs):
        """
        Factory method
        Given a path to a npz file, construct the object
        """
dboe's avatar
dboe committed
396
397
398
        # TODO: think about allow_pickle, wheter it really should be True or
        # wheter we could avoid pickling (potential security issue)
        load_kwargs.setdefault('allow_pickle', True)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
399
        np_file = np.load(path, **load_kwargs)
400
401
402
403
404
405
406
        return cls._from_dict(**np_file)

    def _as_dict(self):
        """
        Recursively walk trough all __slots__ and describe all elements
        """
        d = {}
dboe's avatar
dboe committed
407
408
        d["bulk"] = self.bulk
        d["bulk_type"] = self.__class__.__name__
409
410
411
412
413
414
415
416
417
        for attr in self._iter_slots():
            value = getattr(self, attr)
            if isinstance(value, list):
                if len(value) == 0:
                    d[attr] = None
                if all([isinstance(part, AbstractNdarray) for part in value]):
                    for i, part in enumerate(value):
                        part_dict = part._as_dict()
                        for part_attr, part_value in part_dict.items():
dboe's avatar
dboe committed
418
419
420
                            d[
                                "{attr}::{i}::{part_attr}".format(**locals())
                            ] = part_value
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
421
                    continue
422
423
424
425
426
427
428
429
430
431
432
433
            if isinstance(value, AbstractNdarray):
                value = value._as_dict()
            d[attr] = value
        return d

    @classmethod
    def _from_dict(cls, **d):
        """
        Opposite of _as_dict
        """
        list_dict = {}
        kwargs = {}
dboe's avatar
dboe committed
434
        """
435
        De-Flatten the first layer of lists
dboe's avatar
dboe committed
436
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
437
        for key in sorted(list(d)):
dboe's avatar
dboe committed
438
439
440
            if "::" in key:
                splits = key.split("::")
                attr, _, end = key.partition("::")
441
442
443
                if attr not in list_dict:
                    list_dict[attr] = {}

dboe's avatar
dboe committed
444
                index, _, end = end.partition("::")
445
446
447
448
449
450
451
452
453
                if not index.isdigit():
                    raise ValueError("None digit index given")
                index = int(index)
                if index not in list_dict[attr]:
                    list_dict[attr][index] = {}
                list_dict[attr][index][end] = d[key]
            else:
                kwargs[key] = d[key]

dboe's avatar
dboe committed
454
        """
455
        Build the lists (recursively)
dboe's avatar
dboe committed
456
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
457
        for key in list(list_dict):
458
459
            sub_dict = list_dict[key]
            list_dict[key] = []
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
460
            for index in sorted(list(sub_dict)):
dboe's avatar
dboe committed
461
                bulk_type = sub_dict[index].get("bulk_type").tolist()
Priyanjana Sinha's avatar
Priyanjana Sinha committed
462
                if isinstance(bulk_type, bytes):
463
464
                    # asthonishingly, this is not necessary under linux.
                    # Found under nt. ???
dboe's avatar
dboe committed
465
                    bulk_type = bulk_type.decode("UTF-8")
Priyanjana Sinha's avatar
Priyanjana Sinha committed
466
                bulk_type = getattr(tfields, bulk_type)
467
468
                list_dict[key].append(bulk_type._from_dict(**sub_dict[index]))

469
        with cls._bypass_setters('fields'):
470
471
472
473
474
475
476
477
478
479
480
481
            '''
            Build the normal way
            '''
            bulk = kwargs.pop('bulk')
            bulk_type = kwargs.pop('bulk_type')
            obj = cls.__new__(cls, bulk, **kwargs)

            '''
            Set list attributes
            '''
            for attr, list_value in list_dict.items():
                setattr(obj, attr, list_value)
482
        return obj
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
483
484
485
486
487


class Tensors(AbstractNdarray):
    """
    Set of tensors with the same basis.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
488

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
489
490
    TODO:
        all slot args should be protected -> _base
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
491

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
492
493
    Args:
        tensors: np.ndarray or AbstractNdarray subclass
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
494
495
        **kwargs:
            name: optional - custom name, can be anything
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
496

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
497
498
    Examples:
        >>> import numpy as np
499
        >>> import tfields
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
500
501

        Initialize a scalar range
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
502

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
503
504
505
506
507
        >>> scalars = tfields.Tensors([0, 1, 2])
        >>> scalars.rank == 0
        True

        Initialize vectors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
508

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
509
510
511
512
513
        >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
        >>> vectors.rank == 1
        True
        >>> vectors.dim == 3
        True
514
        >>> assert vectors.coord_sys == 'cartesian'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
515
516

        Initialize the Levi-Zivita Tensor
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
517

518
519
520
521
        >>> matrices = tfields.Tensors(
        ...                     [[[0, 0, 0], [0, 0, 1], [0, -1, 0]],
        ...                      [[0, 0, -1], [0, 0, 0], [1, 0, 0]],
        ...                      [[0, 1, 0], [-1, 0, 0], [0, 0, 0]]])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
522
523
524
525
526
527
528
529
        >>> matrices.shape == (3, 3, 3)
        True
        >>> matrices.rank == 2
        True
        >>> matrices.dim == 3
        True

        Initializing in different start coordinate system
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
530

531
532
        >>> cyl = tfields.Tensors([[5, np.arctan(4. / 3.), 42]], coord_sys='cylinder')
        >>> assert cyl.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
533
        >>> cyl.transform('cartesian')
534
        >>> assert cyl.coord_sys == 'cartesian'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
535
536
537
538
539
540
        >>> cart = cyl
        >>> assert round(cart[0, 0], 10) == 3.
        >>> assert round(cart[0, 1], 10) == 4.
        >>> assert cart[0, 2] == 42

        Initialize with copy constructor keeps the coordinate system
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
541

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
542
543
        >>> with vectors.tmp_transform('cylinder'):
        ...     vect_cyl = tfields.Tensors(vectors)
544
545
        ...     assert vect_cyl.coord_sys == vectors.coord_sys
        >>> assert vect_cyl.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
546
547

        You can demand a special dimension.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
548

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
549
550
551
552
553
554
555
556
        >>> _ = tfields.Tensors([[1, 2, 3]], dim=3)
        >>> _ = tfields.Tensors([[1, 2, 3]], dim=2)  # doctest: +ELLIPSIS
        Traceback (most recent call last):
            ...
        ValueError: Incorrect dimension: 3 given, 2 demanded.

        The dimension argument (dim) becomes necessary if you want to initialize
        an empty array
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
557

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
558
559
560
561
562
563
564
565
        >>> _ = tfields.Tensors([])  # doctest: +ELLIPSIS
        Traceback (most recent call last):
            ...
        ValueError: Empty tensors need dimension parameter 'dim'.
        >>> tfields.Tensors([], dim=7)
        Tensors([], shape=(0, 7), dtype=float64)

    """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
566
    __slots__ = ['coord_sys', 'name']
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
567
568
569
570
    __slot_defaults__ = ['cartesian']
    __slot_setters__ = [tfields.bases.get_coord_system_name]

    def __new__(cls, tensors, **kwargs):
dboe's avatar
dboe committed
571
572
573
        dtype = kwargs.pop("dtype", None)
        order = kwargs.pop("order", None)
        dim = kwargs.pop("dim", None)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
574

dboe's avatar
dboe committed
575
        """ copy constructor extracts the kwargs from tensors"""
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
576
577
578
        if issubclass(type(tensors), Tensors):
            if dim is not None:
                dim = tensors.dim
dboe's avatar
dboe committed
579
            coord_sys = kwargs.pop("coord_sys", tensors.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
580
            tensors = tensors.copy()
581
582
            tensors.transform(coord_sys)
            kwargs['coord_sys'] = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
583
            kwargs['name'] = kwargs.pop('name', tensors.name)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
584
585
586
587
            if dtype is None:
                dtype = tensors.dtype
        else:
            if dtype is None:
dboe's avatar
dboe committed
588
                if hasattr(tensors, "dtype"):
589
590
591
                    dtype = tensors.dtype
                else:
                    dtype = np.float64
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
592

dboe's avatar
dboe committed
593
        """ demand iterable structure """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
594
595
596
        try:
            len(tensors)
        except TypeError as err:
dboe's avatar
dboe committed
597
598
599
600
            raise TypeError(
                "Iterable structure necessary."
                " Got {tensors}".format(**locals())
            )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
601

dboe's avatar
dboe committed
602
        """ process empty inputs """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
603
604
605
606
607
608
609
610
611
        if len(tensors) == 0:
            if issubclass(type(tensors), tfields.Tensors):
                tensors = np.empty(tensors.shape, dtype=tensors.dtype)
            elif dim is not None:
                tensors = np.empty((0, dim))
            if issubclass(type(tensors), np.ndarray):
                # np.empty
                pass
            else:
dboe's avatar
dboe committed
612
613
614
                raise ValueError(
                    "Empty tensors need dimension " "parameter 'dim'."
                )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
615
616
617
618

        tensors = np.asarray(tensors, dtype=dtype, order=order)
        obj = tensors.view(cls)

dboe's avatar
dboe committed
619
        """ check dimension(s) """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
620
621
        for d in obj.shape[1:]:
            if not d == obj.dim:
dboe's avatar
dboe committed
622
623
624
625
626
627
628
                raise ValueError(
                    "Dimensions are inconstistent. "
                    "Manifold dimension is {obj.dim}. "
                    "Found dimensions {found} in {obj}.".format(
                        found=obj.shape[1:], **locals()
                    )
                )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
629
630
        if dim is not None:
            if dim != obj.dim:
dboe's avatar
dboe committed
631
632
633
634
                raise ValueError(
                    "Incorrect dimension: {obj.dim} given,"
                    " {dim} demanded.".format(**locals())
                )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
635

dboe's avatar
dboe committed
636
        """ update kwargs with defaults from slots """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
637
638
        cls._update_slot_kwargs(kwargs)

dboe's avatar
dboe committed
639
        """ set kwargs to slots attributes """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
640
641
        for attr in kwargs:
            if attr not in cls._iter_slots():
dboe's avatar
dboe committed
642
643
644
645
                raise AttributeError(
                    "Keyword argument {attr} not accepted "
                    "for class {cls}".format(**locals())
                )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
646
647
648
649
            setattr(obj, attr, kwargs[attr])

        return obj

650
651
652
653
    def __iter__(self):
        """
        Forwarding iterations to the bulk array. Otherwise __getitem__ would
        kick in and slow down imensely.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
654

655
656
657
658
659
660
661
662
663
664
665
        Examples:
            >>> import tfields
            >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
            >>> scalar_field = tfields.TensorFields(vectors, [42, 21, 10.5], [1, 2, 3])
            >>> [(point.rank, point.dim) for point in scalar_field]
            [(0, 1), (0, 1), (0, 1)]

        """
        for index in range(len(self)):
            yield super(Tensors, self).__getitem__(index).view(Tensors)

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
666
667
668
669
670
671
    @classmethod
    def merged(cls, *objects, **kwargs):
        """
        Factory method
        Merges all tensor inputs to one tensor

672
673
674
675
676
677
        Args:
            **kwargs: passed to cls
            dim (int):
            return_templates (bool): return the templates which can be used
                together with cut to retrieve the original objects

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
678
679
680
681
682
        Examples:
            >>> import numpy as np
            >>> import tfields
            >>> import tfields.bases

683
684
            The new object with turn out in the most frequent coordinate
            system if not specified explicitly
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
685

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
686
            >>> vec_a = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
687
688
            >>> vec_b = tfields.Tensors([[5, 4, 1]], coord_sys=tfields.bases.cylinder)
            >>> vec_c = tfields.Tensors([[4, 2, 3]], coord_sys=tfields.bases.cylinder)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
689
            >>> merge = tfields.Tensors.merged(vec_a, vec_b, vec_c, [[2, 0, 1]])
690
            >>> assert merge.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
691
692
693
694
695
696
697
698
            >>> assert merge.equal([[0, 0, 0],
            ...                     [0, 0, 1],
            ...                     [1, -np.pi / 2, 0],
            ...                     [5, 4, 1],
            ...                     [4, 2, 3],
            ...                     [2, 0, 1]])

            Merge also shifts the maps to still refer to the same tensors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
699

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
700
701
            >>> tm_a = tfields.TensorMaps(merge, maps=[[[0, 1, 2]]])
            >>> tm_b = tm_a.copy()
702
            >>> assert tm_a.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
703
            >>> tm_merge = tfields.TensorMaps.merged(tm_a, tm_b)
704
            >>> assert tm_merge.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
705
706
707
708
            >>> assert tm_merge.maps[0].equal([[0, 1, 2],
            ...                               list(range(len(merge),
            ...                                          len(merge) + 3,
            ...                                          1))])
dboe's avatar
dboe committed
709

710
711
            >>> obj_list = [tfields.Tensors([[1, 2, 3]],
            ...             coord_sys=tfields.bases.CYLINDER),
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
712
713
            ...             tfields.Tensors([[3] * 3]),
            ...             tfields.Tensors([[5, 1, 3]])]
714
715
            >>> merge2 = tfields.Tensors.merged(
            ...     *obj_list, coord_sys=tfields.bases.CARTESIAN)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
716
717
            >>> assert merge2.equal([[-0.41614684, 0.90929743, 3.],
            ...                      [3, 3, 3], [5, 1, 3]], atol=1e-8)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
718

719
720
721
722
723
724
725
726
727
            The return_templates argument allows to retrieve a template which
            can be used with the cut method.

            >>> merge, templates = tfields.Tensors.merged(
            ...     vec_a, vec_b, vec_c, return_templates=True)
            >>> assert merge.cut(templates[0]).equal(vec_a)
            >>> assert merge.cut(templates[1]).equal(vec_b)
            >>> assert merge.cut(templates[2]).equal(vec_c)

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
728
729
        """

dboe's avatar
dboe committed
730
731
        """ get most frequent coord_sys or predefined coord_sys """
        coord_sys = kwargs.get("coord_sys", None)
732
        return_templates = kwargs.pop("return_templates", False)
733
        if coord_sys is None:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
734
735
736
            bases = []
            for t in objects:
                try:
737
                    bases.append(t.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
738
739
740
                except AttributeError:
                    pass
            if bases:
741
                # get most frequent coord_sys
dboe's avatar
dboe committed
742
743
744
745
                coord_sys = sorted(bases, key=Counter(bases).get, reverse=True)[
                    0
                ]
                kwargs["coord_sys"] = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
746
            else:
dboe's avatar
dboe committed
747
748
749
750
                default = cls.__slot_defaults__[
                    cls.__slots__.index("coord_sys")
                ]
                kwargs["coord_sys"] = default
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
751

dboe's avatar
dboe committed
752
        """ transform all raw inputs to cls type with correct coord_sys. Also
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
753
        automatically make a copy of those instances that are of the correct
dboe's avatar
dboe committed
754
        type already."""
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
755
        objects = [cls.__new__(cls, t, **kwargs) for t in objects]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
756

dboe's avatar
dboe committed
757
        """ check rank and dimension equality """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
758
759
760
761
762
        if not len(set([t.rank for t in objects])) == 1:
            raise TypeError("Tensors must have the same rank for merging.")
        if not len(set([t.dim for t in objects])) == 1:
            raise TypeError("Tensors must have the same dimension for merging.")

dboe's avatar
dboe committed
763
        """ merge all objects """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
764
765
766
767
768
769
        remainingObjects = objects[1:] or []
        tensors = objects[0]

        for i, obj in enumerate(remainingObjects):
            tensors = np.append(tensors, obj, axis=0)

dboe's avatar
dboe committed
770
        if len(tensors) == 0 and 'dim' not in kwargs:
771
772
            # if you can not determine the tensor dimension, search for the
            # first object with some entries
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
773
            for obj in objects:
774
775
776
                if len(obj) != 0:
                    kwargs['dim'] = dim(obj)
                    break
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
777

778
779
780
781
782
783
784
785
786
787
788
789
        if not return_templates:
            return cls.__new__(cls, tensors, **kwargs)
        else:
            tensor_lengths = [len(o) for o in objects]
            cum_tensor_lengths = [sum(tensor_lengths[:i])
                                  for i in range(len(objects))]
            templates = [
                tfields.TensorFields(
                    obj,
                    np.arange(tensor_lengths[i]) + cum_tensor_lengths[i])
                for i, obj in enumerate(objects)]
            return cls.__new__(cls, tensors, **kwargs), templates
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
790
791
792
793
794

    @classmethod
    def grid(cls, *base_vectors, **kwargs):
        """
        Args:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
795
796
797
798
799
800
801
            *base_vectors (Iterable): base coordinates. The amount of base
                vectors defines the dimension

            **kwargs:
                iter_order (list): order in which the iteration will be done.
                    Frequency rises with position in list. default is [0, 1, 2]
                    iteration will be done like::
dboe's avatar
dboe committed
802

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
803
804
805
806
807
808
                    for v0 in base_vectors[iter_order[0]]:
                        for v1 in base_vectors[iter_order[1]]:
                            for v2 in base_vectors[iter_order[2]]:
                                coords0.append(locals()['v%i' % iter_order[0]])
                                coords1.append(locals()['v%i' % iter_order[1]])
                                coords2.append(locals()['v%i' % iter_order[2]])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
809
810
811

        Examples:
            Initilaize using the mgrid notation
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
812

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
813
814
815
816
817
818
819
820
821
822
823
            >>> import tfields
            >>> mgrid = tfields.Tensors.grid((0, 1, 2j), (3, 4, 2j), (6, 7, 2j))
            >>> mgrid.equal([[0, 3, 6],
            ...              [0, 3, 7],
            ...              [0, 4, 6],
            ...              [0, 4, 7],
            ...              [1, 3, 6],
            ...              [1, 3, 7],
            ...              [1, 4, 6],
            ...              [1, 4, 7]])
            True
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
824
825
826

            Lists or arrays are accepted also.
            Furthermore, the iteration order can be changed
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
827

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
            >>> lins = tfields.Tensors.grid(np.linspace(3, 4, 2), np.linspace(0, 1, 2),
            ...                             np.linspace(6, 7, 2), iter_order=[1, 0, 2])
            >>> lins.equal([[3, 0, 6],
            ...             [3, 0, 7],
            ...             [4, 0, 6],
            ...             [4, 0, 7],
            ...             [3, 1, 6],
            ...             [3, 1, 7],
            ...             [4, 1, 6],
            ...             [4, 1, 7]])
            True
            >>> lins2 = tfields.Tensors.grid(np.linspace(0, 1, 2),
            ...                              np.linspace(3, 4, 2),
            ...                              np.linspace(6, 7, 2),
            ...                              iter_order=[2, 0, 1])
            >>> lins2.equal([[0, 3, 6],
            ...              [0, 4, 6],
            ...              [1, 3, 6],
            ...              [1, 4, 6],
            ...              [0, 3, 7],
            ...              [0, 4, 7],
            ...              [1, 3, 7],
            ...              [1, 4, 7]])
            True

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
853
854
            When given the coord_sys argument, the grid is performed in the
            given coorinate system:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
855

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
856
857
858
859
860
861
862
863
864
            >>> lins3 = tfields.Tensors.grid(np.linspace(4, 9, 2),
            ...                              np.linspace(np.pi/2, np.pi/2, 1),
            ...                              np.linspace(4, 4, 1),
            ...                              iter_order=[2, 0, 1],
            ...                              coord_sys=tfields.bases.CYLINDER)
            >>> assert lins3.coord_sys == 'cylinder'
            >>> lins3.transform('cartesian')
            >>> assert np.array_equal(lins3[:, 1], [4, 9])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
865
        """
dboe's avatar
dboe committed
866
867
868
869
870
871
872
873
        cls_kwargs = {
            attr: kwargs.pop(attr)
            for attr in list(kwargs)
            if attr in cls.__slots__
        }
        inst = cls.__new__(
            cls, tfields.lib.grid.igrid(*base_vectors, **kwargs), **cls_kwargs
        )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
        return inst

    @property
    def rank(self):
        """
        Tensor rank
        """
        return rank(self)

    @property
    def dim(self):
        """
        Manifold dimension
        """
        return dim(self)

890
    def transform(self, coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
891
892
        """
        Args:
893
            coord_sys (str)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
894
895
896
897
898
899
900
901
902
903

        Examples:
            >>> import numpy as np
            >>> import tfields

            CARTESIAN to SPHERICAL
            >>> t = tfields.Tensors([[1, 2, 2], [1, 0, 0], [0, 0, -1], [0, 0, 1], [0, 0, 0]])
            >>> t.transform('spherical')

            r
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
904

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
905
906
907
            >>> assert t[0, 0] == 3

            phi
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
908

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
909
910
911
912
            >>> assert t[1, 1] == 0.
            >>> assert t[2, 1] == 0.

            theta is 0 at (0, 0, 1) and pi / 2 at (0, 0, -1)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
913

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
914
915
916
917
918
            >>> assert round(t[1, 2], 10) == round(0, 10)
            >>> assert t[2, 2] == -np.pi / 2
            >>> assert t[3, 2] == np.pi / 2

            theta is defined 0 for R == 0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
919

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
920
921
922
923
924
            >>> assert t[4, 0] == 0.
            >>> assert t[4, 2] == 0.


            CARTESIAN to CYLINDER
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
925

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
926
927
928
            >>> tCart = tfields.Tensors([[3, 4, 42], [1, 0, 0], [0, 1, -1], [-1, 0, 1], [0, 0, 0]])
            >>> t_cyl = tCart.copy()
            >>> t_cyl.transform('cylinder')
929
            >>> assert t_cyl.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
930
931

            R
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
932

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
933
934
935
936
937
938
            >>> assert t_cyl[0, 0] == 5
            >>> assert t_cyl[1, 0] == 1
            >>> assert t_cyl[2, 0] == 1
            >>> assert t_cyl[4, 0] == 0

            Phi
dboe's avatar
dboe committed
939

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
940
941
942
943
944
945
            >>> assert round(t_cyl[0, 1], 10) == round(np.arctan(4. / 3), 10)
            >>> assert t_cyl[1, 1] == 0
            >>> assert round(t_cyl[2, 1], 10) == round(np.pi / 2, 10)
            >>> assert t_cyl[1, 1] == 0

            Z
dboe's avatar
dboe committed
946

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
947
948
949
950
            >>> assert t_cyl[0, 2] == 42
            >>> assert t_cyl[2, 2] == -1

            >>> t_cyl.transform('cartesian')
951
            >>> assert t_cyl.coord_sys == 'cartesian'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
952
953
954
955
            >>> assert t_cyl[0, 0] == 3

        """
        #           scalars                 empty             already there
956
957
        if self.rank == 0 or self.shape[0] == 0 or self.coord_sys == coord_sys:
            self.coord_sys = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
958
959
            return

960
961
962
        tfields.bases.transform(self, self.coord_sys, coord_sys)
        # self[:] = tfields.bases.transform(self, self.coord_sys, coord_sys)
        self.coord_sys = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
963
964

    @contextmanager
965
    def tmp_transform(self, coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
966
        """
967
        Temporarily change the coord_sys to another coord_sys and change it back at exit
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
968
969
        This method is for cleaner code only.
        No speed improvements go with this.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
970

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
971
972
        Args:
            see transform
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
973

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
974
975
        Examples:
            >>> import tfields
976
            >>> p = tfields.Tensors([[1,2,3]], coord_sys=tfields.bases.SPHERICAL)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
977
            >>> with p.tmp_transform(tfields.bases.CYLINDER):
978
979
            ...     assert p.coord_sys == tfields.bases.CYLINDER
            >>> assert p.coord_sys == tfields.bases.SPHERICAL
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
980
981

        """
982
983
        baseBefore = self.coord_sys
        if baseBefore == coord_sys:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
984
985
            yield
        else:
986
            self.transform(coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
987
988
989
990
991
992
993
994

            yield

            self.transform(baseBefore)

    def mirror(self, coordinate, condition=None):
        """
        Reflect/Mirror the entries meeting <condition> at <coordinate> = 0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
995

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
996
997
        Args:
            coordinate (int): coordinate index
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
998

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
999
1000
1001
1002
1003
1004
        Examples:
            >>> import tfields
            >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]])
            >>> p.mirror(1)
            >>> assert p.equal([[1, -2, 3], [4, -5,  6], [1, -2, -6]])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1005
1006
            multiple coordinates can be mirrored at the same time
            i.e. a point mirrorion would be
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1007

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1008
1009
1010
1011
1012
1013
            >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]])
            >>> p.mirror([0,2])
            >>> assert p.equal([[-1, 2, -3], [-4, 5, -6], [-1, 2., 6.]])

            You can give a condition as mask or as str.
            The mirroring will only be applied to the points meeting the condition.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1014

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1015
1016
            >>> import sympy
            >>> x, y, z = sympy.symbols('x y z')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1017
            >>> p.mirror([0, 2], y > 3)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
            >>> p.equal([[-1, 2, -3], [4, 5, 6], [-1, 2, 6]])
            True

        """
        if condition is None:
            condition = np.array([True for i in range(len(self))])
        elif isinstance(condition, sympy.Basic):
            condition = self.evalf(condition)
        if isinstance(coordinate, list) or isinstance(coordinate, tuple):
            for c in coordinate:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1028
                self.mirror(c, condition=condition)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1029
1030
1031
1032
1033
        elif isinstance(coordinate, int):
            self[:, coordinate][condition] *= -1
        else:
            raise TypeError()

dboe's avatar
dboe committed
1034
1035
1036
1037
1038
1039
1040
1041
1042
    def to_segment(
        self,
        segment,
        num_segments,
        coordinate,
        periodicity=2 * np.pi,
        offset=0.0,
        coord_sys=None,
    ):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1043
1044
1045
1046
1047
        """
        For circular (close into themself after
        <periodicity>) coordinates at index <coordinate> assume
        <num_segments> segments and transform all values to
        segment number <segment>
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1048

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1049
1050
1051
1052
1053
1054
        Args:
            segment (int): segment index (starting at 0)
            num_segments (int): number of segments
            coordinate (int): coordinate index
            periodicity (float): after what lenght, the coordiante repeats
            offset (float): offset in the mapping
1055
            coord_sys (str or sympy.CoordinateSystem): in which coord sys the
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1056
                transformation should be done
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1057

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1058
1059
1060
1061
1062
        Examples:
            >>> import tfields
            >>> import numpy as np
            >>> pStart = tfields.Points3D([[6, 2 * np.pi, 1],
            ...                            [6, 2 * np.pi / 5 * 3, 1]],
1063
            ...                           coord_sys='cylinder')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
            >>> p = tfields.Points3D(pStart)
            >>> p.to_segment(0, 5, 1, offset=-2 * np.pi / 10)
            >>> assert np.array_equal(p[:, 1], [0, 0])

            >>> p2 = tfields.Points3D(pStart)
            >>> p2.to_segment(1, 5, 1, offset=-2 * np.pi / 10)
            >>> assert np.array_equal(np.round(p2[:, 1], 4), [1.2566] * 2)

        """
        if segment > num_segments - 1:
            raise ValueError("Segment {0} not existent.".format(segment))

1076
1077
1078
        if coord_sys is None:
            coord_sys = self.coord_sys
        with self.tmp_transform(coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1079
            # map all values to first segment
dboe's avatar
dboe committed
1080
1081
1082
1083
1084
            self[:, coordinate] = (
                (self[:, coordinate] - offset) % (periodicity / num_segments)
                + offset
                + segment * periodicity / num_segments
            )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1085

dboe's avatar
dboe committed
1086
1087
1088
    def equal(
        self, other, rtol=None, atol=None, equal_nan=False, return_bool=True
    ):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1089
1090
        """
        Evaluate, whether the instance has the same content as other.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1091

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1092
1093
1094
1095
1096
1097
1098
        Args:
            optional:
                rtol (float)
                atol (float)
                equal_nan (bool)
            see numpy.isclose
        """
dboe's avatar
dboe committed
1099
1100
1101
1102
        if (
            issubclass(type(other), Tensors)
            and self.coord_sys != other.coord_sys
        ):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1103
            other = other.copy()
1104
            other.transform(self.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1105
1106
        x, y = np.asarray(self), np.asarray(other)
        if rtol is None and atol is None:
dboe's avatar
dboe committed
1107
            mask = x == y
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1108
1109
1110
1111
1112
            if equal_nan:
                both_nan = np.isnan(x) & np.isnan(y)
                mask[both_nan] = both_nan[both_nan]
        else:
            if rtol is None:
dboe's avatar
dboe committed
1113
                rtol = 0.0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1114
            if atol is None:
dboe's avatar
dboe committed
1115
                atol = 0.0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1116
1117
1118
1119
1120
1121
1122
1123
1124
            mask = np.isclose(x, y, rtol=rtol, atol=atol, equal_nan=equal_nan)
        if return_bool:
            return bool(np.all(mask))
        return mask

    def contains(self, other, **kwargs):
        """
        Inspired by a speed argument @
        stackoverflow.com/questions/14766194/testing-whether-a-numpy-array-contains-a-given-row
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1125

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1126
1127
1128
1129
1130
1131
1132
1133
1134
        Examples:
            >>> import tfields
            >>> p = tfields.Tensors([[1,2,3], [4,5,6], [6,7,8]])
            >>> p.contains([4,5,6])
            True

        """
        return any(self.equal(other, return_bool=False).all(1))

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1135
    def indices(self, tensor, rtol=None, atol=None):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1136
1137
1138
        """
        Returns:
            list of int: indices of tensor occuring
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1139

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1140
        Examples:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1141
            Rank 1 Tensors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1142

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1143
1144
1145
1146
1147
1148
1149
1150
            >>> import tfields
            >>> p = tfields.Tensors([[1,2,3], [4,5,6], [6,7,8], [4,5,6],
            ...                      [4.1, 5, 6]])
            >>> p.indices([4,5,6])
            array([1, 3])
            >>> p.indices([4,5,6.1], rtol=1e-5, atol=1e-1)
            array([1, 3, 4])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1151
            Rank 0 Tensors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1152

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1153
1154
1155
1156
1157
1158
            >>> p = tfields.Tensors([2, 3, 6, 3.01])
            >>> p.indices(3)
            array([1])
            >>> p.indices(3, rtol=1e-5, atol=1e-1)
            array([1, 3])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1159
        """
1160
1161
        x, y = np.asarray(self), np.asarray(tensor)
        if rtol is None and atol is None:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1162
            equal_method = np.equal
1163
1164
        else:
            equal_method = lambda a, b: np.isclose(a, b, rtol=rtol, atol=atol)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1165
1166

        # inspired by https://stackoverflow.com/questions/19228295/find-ordered-vector-in-numpy-array
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1167
        if self.rank == 0:
dboe's avatar
dboe committed
1168
            indices = np.where(equal_method((x - y), 0))[0]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1169
        elif self.rank == 1:
dboe's avatar
dboe committed
1170
            indices = np.where(np.all(equal_method((x - y), 0), axis=1))[0]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1171
1172
        else:
            raise NotImplementedError()
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1173
1174
        return indices

1175
    def index(self, tensor, **kwargs):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1176
1177
1178
        """
        Args:
            tensor
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1179

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1180
1181
1182
        Returns:
            int: index of tensor occuring
        """
1183
        indices = self.indices(tensor, **kwargs)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1184
1185
1186
1187
        if not indices:
            return None
        if len(indices) == 1:
            return indices[0]
dboe's avatar
dboe committed
1188
        raise ValueError("Multiple occurences of value {}".format(tensor))
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1189

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1190
    def moment(self, moment, weights=None):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1191
1192
1193
        """
        Returns:
            Moments of the distribution.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1194

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1195
1196
        Args:
            moment (int): n-th moment
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1197

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1198
1199
        Examples:
            >>> import tfields