core.py 90.3 KB
Newer Older
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1
2
3
4
5
6
7
8
#!/usr/bin/env
# encoding: utf-8
"""
Author:     Daniel Boeckenhoff
Mail:       daniel.boeckenhoff@ipp.mpg.de

core of tfields library
contains numpy ndarray derived bases of the tfields package
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
9
10

Notes:
dboe's avatar
dboe committed
11
12
13
    It could be worthwhile concidering `np.li.mixins.NDArrayOperatorsMixin ...
    <https://docs.scipy.org/doc/numpy-1.15.1/reference/generated/...
    ... numpy.lib.mixins.NDArrayOperatorsMixin.html>`_
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
14
15
16
17
18
19
20
21
22
23
"""
import warnings
import pathlib
from six import string_types
from contextlib import contextmanager
from collections import Counter

import numpy as np
import sympy
import scipy as sp
24
import rna
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
25
import tfields.bases
dboe's avatar
dboe committed
26
27

np.seterr(all="warn", over="raise")
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50


def rank(tensor):
    """
    Tensor rank
    """
    return len(tensor.shape) - 1


def dim(tensor):
    """
    Manifold dimension
    """
    if rank(tensor) == 0:
        return 1
    return tensor.shape[1]


class AbstractNdarray(np.ndarray):
    """
    All tensors and subclasses should derive from AbstractNdarray.
    AbstractNdarray implements all the inheritance specifics for np.ndarray
    Whene inheriting, three attributes are of interest:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
51
52

    Attributes:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
53
54
55
56
57
58
59
60
61
62
63
64
65
        __slots__ (list of str): If you want to add attributes to
            your AbstractNdarray subclass, add the attribute name to __slots__
        __slot_defaults__ (list): if __slot_defaults__ is None, the
            defaults for the attributes in __slots__ will be None
            other values will be treaded as defaults to the corresponding
            arg at the same position in the __slots__ list.
        __slotDtype__ (list of types): for the conversion of the
            args in __slots__ to numpy arrays. None values mean no
            conversion.

    Args:
        array (array-like): input array
        **kwargs: arguments corresponding to __slots__
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
66

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
67
68
    TODO:
        equality check
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
69

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
70
    """
dboe's avatar
dboe committed
71

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
72
73
74
75
76
77
    __slots__ = []
    __slot_defaults__ = []
    __slotDtypes__ = []
    __slot_setters__ = []

    def __new__(cls, array, **kwargs):  # pragma: no cover
dboe's avatar
dboe committed
78
79
80
        raise NotImplementedError(
            "{clsType} type must implement '__new__'".format(clsType=type(cls))
        )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
81
82
83
84
85
86
87
88
89
90
91
92

    def __array_finalize__(self, obj):
        if obj is None:
            return
        for attr in self._iter_slots():
            setattr(self, attr, getattr(obj, attr, None))

    def __array_wrap__(self, out_arr, context=None):
        return np.ndarray.__array_wrap__(self, out_arr, context)

    @classmethod
    def _iter_slots(cls):
dboe's avatar
dboe committed
93
        return [att for att in cls.__slots__ if att != "_cache"]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
94
95
96
97
98
99
100

    @classmethod
    def _update_slot_kwargs(cls, kwargs):
        """
        set the defaults in kwargs according to __slot_defaults__
        and convert the kwargs according to __slotDtypes__
        """
dboe's avatar
dboe committed
101
102
103
104
105
106
107
108
109
110
        slotDefaults = cls.__slot_defaults__ + [None] * (
            len(cls.__slots__) - len(cls.__slot_defaults__)
        )
        slotDtypes = cls.__slotDtypes__ + [None] * (
            len(cls.__slots__) - len(cls.__slotDtypes__)
        )
        for attr, default, dtype in zip(
            cls.__slots__, slotDefaults, slotDtypes
        ):
            if attr == "_cache":
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
111
112
113
114
115
116
117
                continue
            if attr not in kwargs:
                kwargs[attr] = default
            if dtype is not None:
                try:
                    kwargs[attr] = np.array(kwargs[attr], dtype=dtype)
                except Exception as err:
dboe's avatar
dboe committed
118
119
120
                    raise ValueError(
                        str(attr) + str(dtype) + str(kwargs[attr]) + str(err)
                    )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
121
122
123
124
125
126
127
128
129
130
131
132
133
134

    def __setattr__(self, name, value):
        if name in self.__slots__:
            index = self.__slots__.index(name)
            try:
                setter = self.__slot_setters__[index]
            except IndexError:
                setter = None
            if setter is not None:
                value = setter(value)
        super(AbstractNdarray, self).__setattr__(name, value)

    def __reduce__(self):
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
135
136
        important for pickling (see `here <https://stackoverflow.com/questions/26598109/preserve-custom-attributes-when-pickling-subclass-of-numpy-array>`_)

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
137
138
139
140
141
142
        Examples:
            >>> from tempfile import NamedTemporaryFile
            >>> import pickle
            >>> import tfields

            Build a dummy scalar field
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
143

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
144
145
146
            >>> from tfields import Tensors, TensorFields
            >>> scalars = Tensors([0, 1, 2])
            >>> vectors = Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
dboe's avatar
dboe committed
147
148
149
            >>> scalar_field = TensorFields(vectors,
            ...                             scalars,
            ...                             coord_sys='cylinder')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
150
151

            Save it and restore it
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
152

153
            >>> out_file = NamedTemporaryFile(suffix='.pickle')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
154

155
            >>> pickle.dump(scalar_field,
156
157
            ...             out_file)
            >>> _ = out_file.seek(0)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
158

159
            >>> sf = pickle.load(out_file)
160
            >>> sf.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
161
162
163
164
165
166
167
168
169
            True
            >>> sf.fields[0][2] == 2.
            True

        """
        # Get the parent's __reduce__ tuple
        pickled_state = super(AbstractNdarray, self).__reduce__()

        # Create our own tuple to pass to __setstate__
dboe's avatar
dboe committed
170
171
172
        new_state = pickled_state[2] + tuple(
            [getattr(self, slot) for slot in self._iter_slots()]
        )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
173

dboe's avatar
dboe committed
174
175
        # Return a tuple that replaces the parent's __setstate__
        # tuple with our own
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
176
177
178
179
        return (pickled_state[0], pickled_state[1], new_state)

    def __setstate__(self, state):
        """
180
        Counterpart to __reduce__. Important for unpickling.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
181
182
        """
        # Call the parent's __setstate__ with the other tuple elements.
dboe's avatar
dboe committed
183
184
185
        super(AbstractNdarray, self).__setstate__(
            state[0 : -len(self._iter_slots())]
        )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
186
187

        # set the __slot__ attributes
188
189
190
191
192
193
194
195
196
197
198
        valid_slot_attrs = list(self._iter_slots())
        added_slot_attrs = ['name']  # attributes that have been added later
                                     # have not been pickled with the full
                                     # information and thus need to be
                                     # excluded from the __setstate__
                                     # need to be in the same order as they have
                                     # been added to __slots__
        n_old = len(valid_slot_attrs) - len(state[5:])
        if n_old > 0:
            for latest_index in range(n_old):
                new_slot = added_slot_attrs[-latest_index]
199
                warnings.warn("Slots with names '{new_slot}' appears to have been "
200
201
202
203
204
205
206
207
208
                              "added after the creation of the reduced state. "
                              "No corresponding state found in __setstate__."
                              .format(**locals()))
                valid_slot_attrs.pop(valid_slot_attrs.index(new_slot))
                setattr(self, new_slot, None)

        for slot_index, slot in enumerate(valid_slot_attrs):
            state_index = 5 + slot_index
            setattr(self, slot, state[state_index])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
209

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
210
211
212
213
214
215
216
217
    @property
    def bulk(self):
        """
        The pure ndarray version of the actual state
            -> nothing attached
        """
        return np.array(self)

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
    @classmethod
    @contextmanager
    def _bypass_setter(cls, slot, demand_existence=False):
        """
        Temporarily remove the setter in __slot_setters__ corresponding to slot
        position in __slot__. You should know what you do, when using this.
        """
        slot_index = cls.__slots__.index(slot) if slot in cls.__slots__ else None
        if slot_index is None:
            if demand_existence:
                raise ValueError("Slot {slot} not existing".format(**locals()))
            else:
                yield
                return
        setter = cls.__slot_setters__[slot_index]
        cls.__slot_setters__[slot_index] = None
        yield
        cls.__slot_setters__[slot_index] = setter

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
237
238
239
    def copy(self, *args, **kwargs):
        """
        The standard ndarray copy does not copy slots. Correct for this.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
240

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
241
242
        Examples:
            >>> import tfields
dboe's avatar
dboe committed
243
244
245
246
            >>> m = tfields.TensorMaps(
            ...     [[1,2,3], [3,3,3], [0,0,0], [5,6,7]],
            ...     maps=[tfields.TensorFields([[0, 1, 2], [1, 2, 3]],
            ...                                 [1, 2])])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
247
248
249
250
251
252
            >>> mc = m.copy()
            >>> mc is m
            False
            >>> mc.maps[0].fields[0] is m.maps[0].fields[0]
            False

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
253
        TODO:
dboe's avatar
dboe committed
254
255
            This function implementation could be more general or maybe
            redirect to deepcopy?
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
256
257
258
259
        """
        inst = super(AbstractNdarray, self).copy(*args, **kwargs)
        for attr in self._iter_slots():
            value = getattr(self, attr)
dboe's avatar
dboe committed
260
            if hasattr(value, "copy") and not isinstance(value, list):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
261
262
263
264
                setattr(inst, attr, value.copy(*args, **kwargs))
            elif isinstance(value, list):
                list_copy = []
                for item in value:
dboe's avatar
dboe committed
265
                    if hasattr(item, "copy"):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
266
267
268
269
270
271
272
273
274
275
                        list_copy.append(item.copy(*args, **kwargs))
                    else:
                        list_copy.append(item)
                setattr(inst, attr, list_copy)

        return inst

    def save(self, path, *args, **kwargs):
        """
        Saving a tensors object by redirecting to the correct save method depending on path
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
276

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
277
278
279
280
281
282
283
284
285
        Args:
            path (str or buffer)
            *args:
                forwarded to extension specific method
            **kwargs:
                extension (str): only needed if path is buffer
                ... remaining:forwarded to extension specific method
        """
        # get the extension
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
286
        if isinstance(path, (string_types, pathlib.Path)):
dboe's avatar
dboe committed
287
            extension = pathlib.Path(path).suffix.lstrip(".")
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
288
289
290
        else:
            raise ValueError("Wrong path type {0}".format(type(path)))
        path = str(path)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
291
292
293

        # get the save method
        try:
dboe's avatar
dboe committed
294
            save_method = getattr(self, "_save_{extension}".format(**locals()))
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
295
        except:
dboe's avatar
dboe committed
296
297
298
299
            raise NotImplementedError(
                "Can not find save method for extension: "
                "{extension}.".format(**locals())
            )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
300

301
        path = rna.path.resolve(path)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
302
303
304
305
306
307
        return save_method(path, **kwargs)

    @classmethod
    def load(cls, path, *args, **kwargs):
        """
        load a file as a tensors object.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
308

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
309
310
311
312
313
314
315
316
        Args:
            path (str or buffer)
            *args:
                forwarded to extension specific method
            **kwargs:
                extension (str): only needed if path is buffer
                ... remaining:forwarded to extension specific method
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
317
        if isinstance(path, (string_types, pathlib.Path)):
dboe's avatar
dboe committed
318
            extension = pathlib.Path(path).suffix.lstrip(".")
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
319
            path = str(path)
320
            path = rna.path.resolve(path)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
321
        else:
dboe's avatar
dboe committed
322
            extension = kwargs.pop("extension", "npz")
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
323
324

        try:
dboe's avatar
dboe committed
325
            load_method = getattr(cls, "_load_{e}".format(e=extension))
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
326
        except:
dboe's avatar
dboe committed
327
328
329
330
            raise NotImplementedError(
                "Can not find load method for extension: "
                "{extension}.".format(**locals())
            )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
331
332
333
334
335
336
        return load_method(path, *args, **kwargs)

    def _save_npz(self, path, **kwargs):
        """
        Args:
            path (open file or str/unicode): destination to save file to.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
337

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
338
        Examples:
339
            Build some dummies:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
340
341
            >>> import tfields
            >>> from tempfile import NamedTemporaryFile
342
            >>> out_file = NamedTemporaryFile(suffix='.npz')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
343
344
345
            >>> p = tfields.Points3D([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]],
            ...                      name='my_points')
            >>> scalars = tfields.Tensors([0, 1, 2], name=42)
346
347
348
349
350
351
352
353
            >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
            >>> maps = [tfields.TensorFields([[0, 1, 2], [0, 1, 2]], [42, 21]),
            ...         tfields.TensorFields([[1], [2]], [-42, -21])]
            >>> m = tfields.TensorMaps(vectors, scalars,
            ...                        maps=maps)

            Simply give the file name to save
            >>> p.save(out_file.name)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
354
            >>> _ = out_file.seek(0)  # this is only necessary in the test
355
            >>> p1 = tfields.Points3D.load(out_file.name)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
356
            >>> assert p.equal(p1)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
357
            >>> assert p.coord_sys == p1.coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
358

359
360
361
362
            The fully nested structure of a TensorMaps object is reconstructed
            >>> out_file_maps = NamedTemporaryFile(suffix='.npz')
            >>> m.save(out_file_maps.name)
            >>> _ = out_file_maps.seek(0)
dboe's avatar
dboe committed
363
364
            >>> m1 = tfields.TensorMaps.load(out_file_maps.name,
            ...                              allow_pickle=True)
365
            >>> assert m.equal(m1)
366
            >>> assert m.maps[0].dtype == m1.maps[0].dtype
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
367

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
368
369
370
371
372
            Names are preserved
            >>> assert p.name == 'my_points'
            >>> m.names
            [42]

373
        """
374
375
        content_dict = self._as_dict()
        np.savez(path, **content_dict)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
376
377
378
379
380
381
382

    @classmethod
    def _load_npz(cls, path, **load_kwargs):
        """
        Factory method
        Given a path to a npz file, construct the object
        """
dboe's avatar
dboe committed
383
384
385
        # TODO: think about allow_pickle, wheter it really should be True or
        # wheter we could avoid pickling (potential security issue)
        load_kwargs.setdefault('allow_pickle', True)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
386
        np_file = np.load(path, **load_kwargs)
387
388
389
390
391
392
393
        return cls._from_dict(**np_file)

    def _as_dict(self):
        """
        Recursively walk trough all __slots__ and describe all elements
        """
        d = {}
dboe's avatar
dboe committed
394
395
        d["bulk"] = self.bulk
        d["bulk_type"] = self.__class__.__name__
396
397
398
399
400
401
402
403
404
        for attr in self._iter_slots():
            value = getattr(self, attr)
            if isinstance(value, list):
                if len(value) == 0:
                    d[attr] = None
                if all([isinstance(part, AbstractNdarray) for part in value]):
                    for i, part in enumerate(value):
                        part_dict = part._as_dict()
                        for part_attr, part_value in part_dict.items():
dboe's avatar
dboe committed
405
406
407
                            d[
                                "{attr}::{i}::{part_attr}".format(**locals())
                            ] = part_value
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
408
                    continue
409
410
411
412
413
414
415
416
417
418
419
420
            if isinstance(value, AbstractNdarray):
                value = value._as_dict()
            d[attr] = value
        return d

    @classmethod
    def _from_dict(cls, **d):
        """
        Opposite of _as_dict
        """
        list_dict = {}
        kwargs = {}
dboe's avatar
dboe committed
421
        """
422
        De-Flatten the first layer of lists
dboe's avatar
dboe committed
423
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
424
        for key in sorted(list(d)):
dboe's avatar
dboe committed
425
426
427
            if "::" in key:
                splits = key.split("::")
                attr, _, end = key.partition("::")
428
429
430
                if attr not in list_dict:
                    list_dict[attr] = {}

dboe's avatar
dboe committed
431
                index, _, end = end.partition("::")
432
433
434
435
436
437
438
439
440
                if not index.isdigit():
                    raise ValueError("None digit index given")
                index = int(index)
                if index not in list_dict[attr]:
                    list_dict[attr][index] = {}
                list_dict[attr][index][end] = d[key]
            else:
                kwargs[key] = d[key]

dboe's avatar
dboe committed
441
        """
442
        Build the lists (recursively)
dboe's avatar
dboe committed
443
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
444
        for key in list(list_dict):
445
446
            sub_dict = list_dict[key]
            list_dict[key] = []
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
447
            for index in sorted(list(sub_dict)):
dboe's avatar
dboe committed
448
                bulk_type = sub_dict[index].get("bulk_type").tolist()
Priyanjana Sinha's avatar
Priyanjana Sinha committed
449
450
                if isinstance(bulk_type, bytes):
                    # asthonishingly, this is not necessary under linux. Found under nt. ???
dboe's avatar
dboe committed
451
                    bulk_type = bulk_type.decode("UTF-8")
Priyanjana Sinha's avatar
Priyanjana Sinha committed
452
                bulk_type = getattr(tfields, bulk_type)
453
454
                list_dict[key].append(bulk_type._from_dict(**sub_dict[index]))

455
456
457
458
459
460
461
462
463
464
465
466
467
        with cls._bypass_setter('fields'):
            '''
            Build the normal way
            '''
            bulk = kwargs.pop('bulk')
            bulk_type = kwargs.pop('bulk_type')
            obj = cls.__new__(cls, bulk, **kwargs)

            '''
            Set list attributes
            '''
            for attr, list_value in list_dict.items():
                setattr(obj, attr, list_value)
468
        return obj
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
469
470
471
472
473


class Tensors(AbstractNdarray):
    """
    Set of tensors with the same basis.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
474

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
475
476
    TODO:
        all slot args should be protected -> _base
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
477

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
478
479
    Args:
        tensors: np.ndarray or AbstractNdarray subclass
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
480
481
        **kwargs:
            name: optional - custom name, can be anything
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
482

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
483
484
    Examples:
        >>> import numpy as np
485
        >>> import tfields
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
486
487

        Initialize a scalar range
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
488

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
489
490
491
492
493
        >>> scalars = tfields.Tensors([0, 1, 2])
        >>> scalars.rank == 0
        True

        Initialize vectors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
494

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
495
496
497
498
499
        >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
        >>> vectors.rank == 1
        True
        >>> vectors.dim == 3
        True
500
        >>> assert vectors.coord_sys == 'cartesian'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
501
502

        Initialize the Levi-Zivita Tensor
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
503

504
505
506
507
        >>> matrices = tfields.Tensors(
        ...                     [[[0, 0, 0], [0, 0, 1], [0, -1, 0]],
        ...                      [[0, 0, -1], [0, 0, 0], [1, 0, 0]],
        ...                      [[0, 1, 0], [-1, 0, 0], [0, 0, 0]]])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
508
509
510
511
512
513
514
515
        >>> matrices.shape == (3, 3, 3)
        True
        >>> matrices.rank == 2
        True
        >>> matrices.dim == 3
        True

        Initializing in different start coordinate system
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
516

517
518
        >>> cyl = tfields.Tensors([[5, np.arctan(4. / 3.), 42]], coord_sys='cylinder')
        >>> assert cyl.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
519
        >>> cyl.transform('cartesian')
520
        >>> assert cyl.coord_sys == 'cartesian'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
521
522
523
524
525
526
        >>> cart = cyl
        >>> assert round(cart[0, 0], 10) == 3.
        >>> assert round(cart[0, 1], 10) == 4.
        >>> assert cart[0, 2] == 42

        Initialize with copy constructor keeps the coordinate system
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
527

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
528
529
        >>> with vectors.tmp_transform('cylinder'):
        ...     vect_cyl = tfields.Tensors(vectors)
530
531
        ...     assert vect_cyl.coord_sys == vectors.coord_sys
        >>> assert vect_cyl.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
532
533

        You can demand a special dimension.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
534

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
535
536
537
538
539
540
541
542
        >>> _ = tfields.Tensors([[1, 2, 3]], dim=3)
        >>> _ = tfields.Tensors([[1, 2, 3]], dim=2)  # doctest: +ELLIPSIS
        Traceback (most recent call last):
            ...
        ValueError: Incorrect dimension: 3 given, 2 demanded.

        The dimension argument (dim) becomes necessary if you want to initialize
        an empty array
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
543

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
544
545
546
547
548
549
550
551
        >>> _ = tfields.Tensors([])  # doctest: +ELLIPSIS
        Traceback (most recent call last):
            ...
        ValueError: Empty tensors need dimension parameter 'dim'.
        >>> tfields.Tensors([], dim=7)
        Tensors([], shape=(0, 7), dtype=float64)

    """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
552
    __slots__ = ['coord_sys', 'name']
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
553
554
555
556
    __slot_defaults__ = ['cartesian']
    __slot_setters__ = [tfields.bases.get_coord_system_name]

    def __new__(cls, tensors, **kwargs):
dboe's avatar
dboe committed
557
558
559
        dtype = kwargs.pop("dtype", None)
        order = kwargs.pop("order", None)
        dim = kwargs.pop("dim", None)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
560

dboe's avatar
dboe committed
561
        """ copy constructor extracts the kwargs from tensors"""
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
562
563
564
        if issubclass(type(tensors), Tensors):
            if dim is not None:
                dim = tensors.dim
dboe's avatar
dboe committed
565
            coord_sys = kwargs.pop("coord_sys", tensors.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
566
            tensors = tensors.copy()
567
568
            tensors.transform(coord_sys)
            kwargs['coord_sys'] = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
569
            kwargs['name'] = kwargs.pop('name', tensors.name)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
570
571
572
573
            if dtype is None:
                dtype = tensors.dtype
        else:
            if dtype is None:
dboe's avatar
dboe committed
574
                if hasattr(tensors, "dtype"):
575
576
577
                    dtype = tensors.dtype
                else:
                    dtype = np.float64
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
578

dboe's avatar
dboe committed
579
        """ demand iterable structure """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
580
581
582
        try:
            len(tensors)
        except TypeError as err:
dboe's avatar
dboe committed
583
584
585
586
            raise TypeError(
                "Iterable structure necessary."
                " Got {tensors}".format(**locals())
            )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
587

dboe's avatar
dboe committed
588
        """ process empty inputs """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
589
590
591
592
593
594
595
596
597
        if len(tensors) == 0:
            if issubclass(type(tensors), tfields.Tensors):
                tensors = np.empty(tensors.shape, dtype=tensors.dtype)
            elif dim is not None:
                tensors = np.empty((0, dim))
            if issubclass(type(tensors), np.ndarray):
                # np.empty
                pass
            else:
dboe's avatar
dboe committed
598
599
600
                raise ValueError(
                    "Empty tensors need dimension " "parameter 'dim'."
                )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
601
602
603
604

        tensors = np.asarray(tensors, dtype=dtype, order=order)
        obj = tensors.view(cls)

dboe's avatar
dboe committed
605
        """ check dimension(s) """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
606
607
        for d in obj.shape[1:]:
            if not d == obj.dim:
dboe's avatar
dboe committed
608
609
610
611
612
613
614
                raise ValueError(
                    "Dimensions are inconstistent. "
                    "Manifold dimension is {obj.dim}. "
                    "Found dimensions {found} in {obj}.".format(
                        found=obj.shape[1:], **locals()
                    )
                )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
615
616
        if dim is not None:
            if dim != obj.dim:
dboe's avatar
dboe committed
617
618
619
620
                raise ValueError(
                    "Incorrect dimension: {obj.dim} given,"
                    " {dim} demanded.".format(**locals())
                )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
621

dboe's avatar
dboe committed
622
        """ update kwargs with defaults from slots """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
623
624
        cls._update_slot_kwargs(kwargs)

dboe's avatar
dboe committed
625
        """ set kwargs to slots attributes """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
626
627
        for attr in kwargs:
            if attr not in cls._iter_slots():
dboe's avatar
dboe committed
628
629
630
631
                raise AttributeError(
                    "Keyword argument {attr} not accepted "
                    "for class {cls}".format(**locals())
                )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
632
633
634
635
            setattr(obj, attr, kwargs[attr])

        return obj

636
637
638
639
    def __iter__(self):
        """
        Forwarding iterations to the bulk array. Otherwise __getitem__ would
        kick in and slow down imensely.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
640

641
642
643
644
645
646
647
648
649
650
651
        Examples:
            >>> import tfields
            >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
            >>> scalar_field = tfields.TensorFields(vectors, [42, 21, 10.5], [1, 2, 3])
            >>> [(point.rank, point.dim) for point in scalar_field]
            [(0, 1), (0, 1), (0, 1)]

        """
        for index in range(len(self)):
            yield super(Tensors, self).__getitem__(index).view(Tensors)

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
652
653
654
655
656
657
    @classmethod
    def merged(cls, *objects, **kwargs):
        """
        Factory method
        Merges all tensor inputs to one tensor

658
659
660
661
662
663
        Args:
            **kwargs: passed to cls
            dim (int):
            return_templates (bool): return the templates which can be used
                together with cut to retrieve the original objects

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
664
665
666
667
668
        Examples:
            >>> import numpy as np
            >>> import tfields
            >>> import tfields.bases

669
670
            The new object with turn out in the most frequent coordinate
            system if not specified explicitly
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
671

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
672
            >>> vec_a = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
673
674
            >>> vec_b = tfields.Tensors([[5, 4, 1]], coord_sys=tfields.bases.cylinder)
            >>> vec_c = tfields.Tensors([[4, 2, 3]], coord_sys=tfields.bases.cylinder)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
675
            >>> merge = tfields.Tensors.merged(vec_a, vec_b, vec_c, [[2, 0, 1]])
676
            >>> assert merge.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
677
678
679
680
681
682
683
684
            >>> assert merge.equal([[0, 0, 0],
            ...                     [0, 0, 1],
            ...                     [1, -np.pi / 2, 0],
            ...                     [5, 4, 1],
            ...                     [4, 2, 3],
            ...                     [2, 0, 1]])

            Merge also shifts the maps to still refer to the same tensors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
685

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
686
687
            >>> tm_a = tfields.TensorMaps(merge, maps=[[[0, 1, 2]]])
            >>> tm_b = tm_a.copy()
688
            >>> assert tm_a.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
689
            >>> tm_merge = tfields.TensorMaps.merged(tm_a, tm_b)
690
            >>> assert tm_merge.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
691
692
693
694
            >>> assert tm_merge.maps[0].equal([[0, 1, 2],
            ...                               list(range(len(merge),
            ...                                          len(merge) + 3,
            ...                                          1))])
dboe's avatar
dboe committed
695

696
697
            >>> obj_list = [tfields.Tensors([[1, 2, 3]],
            ...             coord_sys=tfields.bases.CYLINDER),
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
698
699
            ...             tfields.Tensors([[3] * 3]),
            ...             tfields.Tensors([[5, 1, 3]])]
700
701
            >>> merge2 = tfields.Tensors.merged(
            ...     *obj_list, coord_sys=tfields.bases.CARTESIAN)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
702
703
            >>> assert merge2.equal([[-0.41614684, 0.90929743, 3.],
            ...                      [3, 3, 3], [5, 1, 3]], atol=1e-8)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
704

705
706
707
708
709
710
711
712
713
            The return_templates argument allows to retrieve a template which
            can be used with the cut method.

            >>> merge, templates = tfields.Tensors.merged(
            ...     vec_a, vec_b, vec_c, return_templates=True)
            >>> assert merge.cut(templates[0]).equal(vec_a)
            >>> assert merge.cut(templates[1]).equal(vec_b)
            >>> assert merge.cut(templates[2]).equal(vec_c)

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
714
715
        """

dboe's avatar
dboe committed
716
717
        """ get most frequent coord_sys or predefined coord_sys """
        coord_sys = kwargs.get("coord_sys", None)
718
        return_templates = kwargs.pop("return_templates", False)
719
        if coord_sys is None:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
720
721
722
            bases = []
            for t in objects:
                try:
723
                    bases.append(t.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
724
725
726
                except AttributeError:
                    pass
            if bases:
727
                # get most frequent coord_sys
dboe's avatar
dboe committed
728
729
730
731
                coord_sys = sorted(bases, key=Counter(bases).get, reverse=True)[
                    0
                ]
                kwargs["coord_sys"] = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
732
            else:
dboe's avatar
dboe committed
733
734
735
736
                default = cls.__slot_defaults__[
                    cls.__slots__.index("coord_sys")
                ]
                kwargs["coord_sys"] = default
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
737

dboe's avatar
dboe committed
738
        """ transform all raw inputs to cls type with correct coord_sys. Also
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
739
        automatically make a copy of those instances that are of the correct
dboe's avatar
dboe committed
740
        type already."""
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
741
        objects = [cls.__new__(cls, t, **kwargs) for t in objects]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
742

dboe's avatar
dboe committed
743
        """ check rank and dimension equality """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
744
745
746
747
748
        if not len(set([t.rank for t in objects])) == 1:
            raise TypeError("Tensors must have the same rank for merging.")
        if not len(set([t.dim for t in objects])) == 1:
            raise TypeError("Tensors must have the same dimension for merging.")

dboe's avatar
dboe committed
749
        """ merge all objects """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
750
751
752
753
754
755
        remainingObjects = objects[1:] or []
        tensors = objects[0]

        for i, obj in enumerate(remainingObjects):
            tensors = np.append(tensors, obj, axis=0)

756
757
758
        if len(tensors) == 0 and not 'dim' in kwargs:
            # if you can not determine the tensor dimension, search for the
            # first object with some entries
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
759
            for obj in objects:
760
761
762
                if len(obj) != 0:
                    kwargs['dim'] = dim(obj)
                    break
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
763

764
765
766
767
768
769
770
771
772
773
774
775
        if not return_templates:
            return cls.__new__(cls, tensors, **kwargs)
        else:
            tensor_lengths = [len(o) for o in objects]
            cum_tensor_lengths = [sum(tensor_lengths[:i])
                                  for i in range(len(objects))]
            templates = [
                tfields.TensorFields(
                    obj,
                    np.arange(tensor_lengths[i]) + cum_tensor_lengths[i])
                for i, obj in enumerate(objects)]
            return cls.__new__(cls, tensors, **kwargs), templates
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
776
777
778
779
780

    @classmethod
    def grid(cls, *base_vectors, **kwargs):
        """
        Args:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
781
782
783
784
785
786
787
            *base_vectors (Iterable): base coordinates. The amount of base
                vectors defines the dimension

            **kwargs:
                iter_order (list): order in which the iteration will be done.
                    Frequency rises with position in list. default is [0, 1, 2]
                    iteration will be done like::
dboe's avatar
dboe committed
788

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
789
790
791
792
793
794
                    for v0 in base_vectors[iter_order[0]]:
                        for v1 in base_vectors[iter_order[1]]:
                            for v2 in base_vectors[iter_order[2]]:
                                coords0.append(locals()['v%i' % iter_order[0]])
                                coords1.append(locals()['v%i' % iter_order[1]])
                                coords2.append(locals()['v%i' % iter_order[2]])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
795
796
797

        Examples:
            Initilaize using the mgrid notation
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
798

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
799
800
801
802
803
804
805
806
807
808
809
            >>> import tfields
            >>> mgrid = tfields.Tensors.grid((0, 1, 2j), (3, 4, 2j), (6, 7, 2j))
            >>> mgrid.equal([[0, 3, 6],
            ...              [0, 3, 7],
            ...              [0, 4, 6],
            ...              [0, 4, 7],
            ...              [1, 3, 6],
            ...              [1, 3, 7],
            ...              [1, 4, 6],
            ...              [1, 4, 7]])
            True
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
810
811
812

            Lists or arrays are accepted also.
            Furthermore, the iteration order can be changed
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
813

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
            >>> lins = tfields.Tensors.grid(np.linspace(3, 4, 2), np.linspace(0, 1, 2),
            ...                             np.linspace(6, 7, 2), iter_order=[1, 0, 2])
            >>> lins.equal([[3, 0, 6],
            ...             [3, 0, 7],
            ...             [4, 0, 6],
            ...             [4, 0, 7],
            ...             [3, 1, 6],
            ...             [3, 1, 7],
            ...             [4, 1, 6],
            ...             [4, 1, 7]])
            True
            >>> lins2 = tfields.Tensors.grid(np.linspace(0, 1, 2),
            ...                              np.linspace(3, 4, 2),
            ...                              np.linspace(6, 7, 2),
            ...                              iter_order=[2, 0, 1])
            >>> lins2.equal([[0, 3, 6],
            ...              [0, 4, 6],
            ...              [1, 3, 6],
            ...              [1, 4, 6],
            ...              [0, 3, 7],
            ...              [0, 4, 7],
            ...              [1, 3, 7],
            ...              [1, 4, 7]])
            True

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
839
840
            When given the coord_sys argument, the grid is performed in the
            given coorinate system:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
841

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
842
843
844
845
846
847
848
849
850
            >>> lins3 = tfields.Tensors.grid(np.linspace(4, 9, 2),
            ...                              np.linspace(np.pi/2, np.pi/2, 1),
            ...                              np.linspace(4, 4, 1),
            ...                              iter_order=[2, 0, 1],
            ...                              coord_sys=tfields.bases.CYLINDER)
            >>> assert lins3.coord_sys == 'cylinder'
            >>> lins3.transform('cartesian')
            >>> assert np.array_equal(lins3[:, 1], [4, 9])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
851
        """
dboe's avatar
dboe committed
852
853
854
855
856
857
858
859
        cls_kwargs = {
            attr: kwargs.pop(attr)
            for attr in list(kwargs)
            if attr in cls.__slots__
        }
        inst = cls.__new__(
            cls, tfields.lib.grid.igrid(*base_vectors, **kwargs), **cls_kwargs
        )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
        return inst

    @property
    def rank(self):
        """
        Tensor rank
        """
        return rank(self)

    @property
    def dim(self):
        """
        Manifold dimension
        """
        return dim(self)

876
    def transform(self, coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
877
878
        """
        Args:
879
            coord_sys (str)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
880
881
882
883
884
885
886
887
888
889

        Examples:
            >>> import numpy as np
            >>> import tfields

            CARTESIAN to SPHERICAL
            >>> t = tfields.Tensors([[1, 2, 2], [1, 0, 0], [0, 0, -1], [0, 0, 1], [0, 0, 0]])
            >>> t.transform('spherical')

            r
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
890

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
891
892
893
            >>> assert t[0, 0] == 3

            phi
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
894

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
895
896
897
898
            >>> assert t[1, 1] == 0.
            >>> assert t[2, 1] == 0.

            theta is 0 at (0, 0, 1) and pi / 2 at (0, 0, -1)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
899

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
900
901
902
903
904
            >>> assert round(t[1, 2], 10) == round(0, 10)
            >>> assert t[2, 2] == -np.pi / 2
            >>> assert t[3, 2] == np.pi / 2

            theta is defined 0 for R == 0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
905

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
906
907
908
909
910
            >>> assert t[4, 0] == 0.
            >>> assert t[4, 2] == 0.


            CARTESIAN to CYLINDER
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
911

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
912
913
914
            >>> tCart = tfields.Tensors([[3, 4, 42], [1, 0, 0], [0, 1, -1], [-1, 0, 1], [0, 0, 0]])
            >>> t_cyl = tCart.copy()
            >>> t_cyl.transform('cylinder')
915
            >>> assert t_cyl.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
916
917

            R
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
918

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
919
920
921
922
923
924
            >>> assert t_cyl[0, 0] == 5
            >>> assert t_cyl[1, 0] == 1
            >>> assert t_cyl[2, 0] == 1
            >>> assert t_cyl[4, 0] == 0

            Phi
dboe's avatar
dboe committed
925

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
926
927
928
929
930
931
            >>> assert round(t_cyl[0, 1], 10) == round(np.arctan(4. / 3), 10)
            >>> assert t_cyl[1, 1] == 0
            >>> assert round(t_cyl[2, 1], 10) == round(np.pi / 2, 10)
            >>> assert t_cyl[1, 1] == 0

            Z
dboe's avatar
dboe committed
932

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
933
934
935
936
            >>> assert t_cyl[0, 2] == 42
            >>> assert t_cyl[2, 2] == -1

            >>> t_cyl.transform('cartesian')
937
            >>> assert t_cyl.coord_sys == 'cartesian'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
938
939
940
941
            >>> assert t_cyl[0, 0] == 3

        """
        #           scalars                 empty             already there
942
943
        if self.rank == 0 or self.shape[0] == 0 or self.coord_sys == coord_sys:
            self.coord_sys = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
944
945
            return

946
947
948
        tfields.bases.transform(self, self.coord_sys, coord_sys)
        # self[:] = tfields.bases.transform(self, self.coord_sys, coord_sys)
        self.coord_sys = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
949
950

    @contextmanager
951
    def tmp_transform(self, coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
952
        """
953
        Temporarily change the coord_sys to another coord_sys and change it back at exit
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
954
955
        This method is for cleaner code only.
        No speed improvements go with this.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
956

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
957
958
        Args:
            see transform
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
959

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
960
961
        Examples:
            >>> import tfields
962
            >>> p = tfields.Tensors([[1,2,3]], coord_sys=tfields.bases.SPHERICAL)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
963
            >>> with p.tmp_transform(tfields.bases.CYLINDER):
964
965
            ...     assert p.coord_sys == tfields.bases.CYLINDER
            >>> assert p.coord_sys == tfields.bases.SPHERICAL
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
966
967

        """
968
969
        baseBefore = self.coord_sys
        if baseBefore == coord_sys:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
970
971
            yield
        else:
972
            self.transform(coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
973
974
975
976
977
978
979
980

            yield

            self.transform(baseBefore)

    def mirror(self, coordinate, condition=None):
        """
        Reflect/Mirror the entries meeting <condition> at <coordinate> = 0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
981

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
982
983
        Args:
            coordinate (int): coordinate index
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
984

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
985
986
987
988
989
990
        Examples:
            >>> import tfields
            >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]])
            >>> p.mirror(1)
            >>> assert p.equal([[1, -2, 3], [4, -5,  6], [1, -2, -6]])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
991
992
            multiple coordinates can be mirrored at the same time
            i.e. a point mirrorion would be
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
993

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
994
995
996
997
998
999
            >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]])
            >>> p.mirror([0,2])
            >>> assert p.equal([[-1, 2, -3], [-4, 5, -6], [-1, 2., 6.]])

            You can give a condition as mask or as str.
            The mirroring will only be applied to the points meeting the condition.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1000

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1001
1002
            >>> import sympy
            >>> x, y, z = sympy.symbols('x y z')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1003
            >>> p.mirror([0, 2], y > 3)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
            >>> p.equal([[-1, 2, -3], [4, 5, 6], [-1, 2, 6]])
            True

        """
        if condition is None:
            condition = np.array([True for i in range(len(self))])
        elif isinstance(condition, sympy.Basic):
            condition = self.evalf(condition)
        if isinstance(coordinate, list) or isinstance(coordinate, tuple):
            for c in coordinate:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1014
                self.mirror(c, condition=condition)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1015
1016
1017
1018
1019
        elif isinstance(coordinate, int):
            self[:, coordinate][condition] *= -1
        else:
            raise TypeError()

dboe's avatar
dboe committed
1020
1021
1022
1023
1024
1025
1026
1027
1028
    def to_segment(
        self,
        segment,
        num_segments,
        coordinate,
        periodicity=2 * np.pi,
        offset=0.0,
        coord_sys=None,
    ):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1029
1030
1031
1032
1033
        """
        For circular (close into themself after
        <periodicity>) coordinates at index <coordinate> assume
        <num_segments> segments and transform all values to
        segment number <segment>
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1034

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1035
1036
1037
1038
1039
1040
        Args:
            segment (int): segment index (starting at 0)
            num_segments (int): number of segments
            coordinate (int): coordinate index
            periodicity (float): after what lenght, the coordiante repeats
            offset (float): offset in the mapping
1041
            coord_sys (str or sympy.CoordinateSystem): in which coord sys the
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1042
                transformation should be done
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1043

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1044
1045
1046
1047
1048
        Examples:
            >>> import tfields
            >>> import numpy as np
            >>> pStart = tfields.Points3D([[6, 2 * np.pi, 1],
            ...                            [6, 2 * np.pi / 5 * 3, 1]],
1049
            ...                           coord_sys='cylinder')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
            >>> p = tfields.Points3D(pStart)
            >>> p.to_segment(0, 5, 1, offset=-2 * np.pi / 10)
            >>> assert np.array_equal(p[:, 1], [0, 0])

            >>> p2 = tfields.Points3D(pStart)
            >>> p2.to_segment(1, 5, 1, offset=-2 * np.pi / 10)
            >>> assert np.array_equal(np.round(p2[:, 1], 4), [1.2566] * 2)

        """
        if segment > num_segments - 1:
            raise ValueError("Segment {0} not existent.".format(segment))

1062
1063
1064
        if coord_sys is None:
            coord_sys = self.coord_sys
        with self.tmp_transform(coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1065
            # map all values to first segment
dboe's avatar
dboe committed
1066
1067
1068
1069
1070
            self[:, coordinate] = (
                (self[:, coordinate] - offset) % (periodicity / num_segments)
                + offset
                + segment * periodicity / num_segments
            )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1071

dboe's avatar
dboe committed
1072
1073
1074
    def equal(
        self, other, rtol=None, atol=None, equal_nan=False, return_bool=True
    ):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1075
1076
        """
        Evaluate, whether the instance has the same content as other.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1077

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1078
1079
1080
1081
1082
1083
1084
        Args:
            optional:
                rtol (float)
                atol (float)
                equal_nan (bool)
            see numpy.isclose
        """
dboe's avatar
dboe committed
1085
1086
1087
1088
        if (
            issubclass(type(other), Tensors)
            and self.coord_sys != other.coord_sys
        ):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1089
            other = other.copy()
1090
            other.transform(self.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1091
1092
        x, y = np.asarray(self), np.asarray(other)
        if rtol is None and atol is None:
dboe's avatar
dboe committed
1093
            mask = x == y
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1094
1095
1096
1097
1098
            if equal_nan:
                both_nan = np.isnan(x) & np.isnan(y)
                mask[both_nan] = both_nan[both_nan]
        else:
            if rtol is None:
dboe's avatar
dboe committed
1099
                rtol = 0.0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1100
            if atol is None:
dboe's avatar
dboe committed
1101
                atol = 0.0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1102
1103
1104
1105
1106
1107
1108
1109
1110
            mask = np.isclose(x, y, rtol=rtol, atol=atol, equal_nan=equal_nan)
        if return_bool:
            return bool(np.all(mask))
        return mask

    def contains(self, other, **kwargs):
        """
        Inspired by a speed argument @
        stackoverflow.com/questions/14766194/testing-whether-a-numpy-array-contains-a-given-row
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1111

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1112
1113
1114
1115
1116
1117
1118
1119
1120
        Examples:
            >>> import tfields
            >>> p = tfields.Tensors([[1,2,3], [4,5,6], [6,7,8]])
            >>> p.contains([4,5,6])
            True

        """
        return any(self.equal(other, return_bool=False).all(1))

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1121
    def indices(self, tensor, rtol=None, atol=None):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1122
1123
1124
        """
        Returns:
            list of int: indices of tensor occuring
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1125

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1126
        Examples:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1127
            Rank 1 Tensors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1128

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1129
1130
1131
1132
1133
1134
1135
1136
            >>> import tfields
            >>> p = tfields.Tensors([[1,2,3], [4,5,6], [6,7,8], [4,5,6],
            ...                      [4.1, 5, 6]])
            >>> p.indices([4,5,6])
            array([1, 3])
            >>> p.indices([4,5,6.1], rtol=1e-5, atol=1e-1)
            array([1, 3, 4])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1137
            Rank 0 Tensors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1138

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1139
1140
1141
1142
1143
1144
            >>> p = tfields.Tensors([2, 3, 6, 3.01])
            >>> p.indices(3)
            array([1])
            >>> p.indices(3, rtol=1e-5, atol=1e-1)
            array([1, 3])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1145
        """
1146
1147
        x, y = np.asarray(self), np.asarray(tensor)
        if rtol is None and atol is None:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1148
            equal_method = np.equal
1149
1150
        else:
            equal_method = lambda a, b: np.isclose(a, b, rtol=rtol, atol=atol)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1151
1152

        # inspired by https://stackoverflow.com/questions/19228295/find-ordered-vector-in-numpy-array
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1153
        if self.rank == 0:
dboe's avatar
dboe committed
1154
            indices = np.where(equal_method((x - y), 0))[0]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1155
        elif self.rank == 1:
dboe's avatar
dboe committed
1156
            indices = np.where(np.all(equal_method((x - y), 0), axis=1))[0]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1157
1158
        else:
            raise NotImplementedError()
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1159
1160
        return indices

1161
    def index(self, tensor, **kwargs):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1162
1163
1164
        """
        Args:
            tensor
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1165

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1166
1167
1168
        Returns:
            int: index of tensor occuring
        """
1169
        indices = self.indices(tensor, **kwargs)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1170
1171
1172
1173
        if not indices:
            return None
        if len(indices) == 1:
            return indices[0]
dboe's avatar
dboe committed
1174
        raise ValueError("Multiple occurences of value {}".format(tensor))
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1175

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1176
    def moment(self, moment, weights=None):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1177
1178
1179
        """
        Returns:
            Moments of the distribution.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1180

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1181
1182
        Args:
            moment (int): n-th moment
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1183

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1184
1185
        Examples:
            >>> import tfields
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1186
            >>> import numpy as np
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1187
1188

            Skalars
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1189

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1190
            >>> t = tfields.Tensors(range(1, 6))
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1191
            >>> assert t.moment(1) == 0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1192
1193
1194
1195
            >>> assert t.moment(1, weights=[-2, -1, 20, 1, 2]) == 0.5
            >>> assert t.moment(2, weights=[0.25, 1, 17.5, 1, 0.25]) == 0.2

            Vectors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1196

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1197
            >>> t = tfields.Tensors(list(zip(range(1, 6), range(1, 6))))
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1198
1199
1200
1201
            >>> assert Tensors([0.5, 0.5]).equal(t.moment(1, weights=[-2, -1, 20, 1, 2]))
            >>> assert Tensors([1. , 0.5]).equal(
            ...     t.moment(1, weights=list(zip([-2, -1, 10, 1, 2],
            ...                                  [-2, -1, 20, 1, 2]))))
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1202

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1203
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1204
1205
1206
1207
        array = tfields.lib.stats.moment(self, moment, weights=weights)
        if self.rank == 0:  # scalar
            array = [array]
        return Tensors(array, coord_sys=self.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1208
1209
1210
1211
1212
1213

    def closest(self, other, **kwargs):
        """
        Args:
            other (Tensors): closest points to what? -> other
            **kwargs: forwarded to scipy.spatial.cKDTree.query
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1214

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1215
1216
        Returns:
            array shape(len(self)): Indices of other points that are closest to own points
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1217

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1218
1219
1220
1221
1222
1223
1224
1225
1226
        Examples:
            >>> import tfields
            >>> m = tfields.Tensors([[1,0,0], [0,1,0], [1,1,0], [0,0,1],
            ...                      [1,0,1]])
            >>> p = tfields.Tensors([[1.1,1,0], [0,0.1,1], [1,0,1.1]])
            >>> p.closest(m)
            array([2, 3, 4])

        """
1227
        with other.tmp_transform(self.coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1228
            # balanced_tree option gives huge speedup!
dboe's avatar
dboe committed
1229
            kd_tree = sp.spatial.cKDTree(other, 1000, balanced_tree=False)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1230
1231
1232
1233
1234
            res = kd_tree.query(self, **kwargs)
            array = res[1]

        return array

1235
    def evalf(self, expression=None, coord_sys=None):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1236
1237
1238
        """
        Args:
            expression (sympy logical expression)
1239
            coord_sys (str): coord_sys to evalfuate the expression in.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1240

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1241
1242
1243
        Returns:
            np.ndarray: mask of dtype bool with lenght of number of points in self.
                 This array is True, where expression evalfuates True.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1244

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
        Examples:
            >>> import tfields
            >>> import numpy
            >>> import sympy
            >>> x, y, z = sympy.symbols('x y z')
            >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6],
            ...                      [-5, -5, -5], [1,0,-1], [0,1,-1]])
            >>> np.array_equal(p.evalf(x > 0),
            ...                [True, True, True, False, True, False])
            True
            >>> np.array_equal(p.evalf(x >= 0),
            ...                [True, True, True, False, True, True])
            True

            And combination
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1260

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1261
1262
1263
1264
1265
            >>> np.array_equal(p.evalf((x > 0) & (y < 3)),
            ...                [True, False, True, False, True, False])
            True

            Or combination
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1266

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1267
1268
1269
1270
1271
            >>> np.array_equal(p.evalf((x > 0) | (y > 3)),
            ...                [True, True, True, False, True, False])
            True

        """
dboe's avatar
dboe committed
1272
        coords = sympy.symbols("x y z")
1273
        with self.tmp_transform(coord_sys or self.coord_sys):
1274
            mask = tfields.evalf(np.array(self), expression, coords=coords)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1275
1276
        return mask

1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295