core.py 96.4 KB
Newer Older
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1
2
3
4
5
6
7
8
#!/usr/bin/env
# encoding: utf-8
"""
Author:     Daniel Boeckenhoff
Mail:       daniel.boeckenhoff@ipp.mpg.de

core of tfields library
contains numpy ndarray derived bases of the tfields package
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
9
10

Notes:
dboe's avatar
dboe committed
11
12
13
    It could be worthwhile concidering `np.li.mixins.NDArrayOperatorsMixin ...
    <https://docs.scipy.org/doc/numpy-1.15.1/reference/generated/...
    ... numpy.lib.mixins.NDArrayOperatorsMixin.html>`_
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
14
"""
dboe's avatar
dboe committed
15
# builtin
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
16
17
18
19
20
import warnings
import pathlib
from six import string_types
from contextlib import contextmanager
from collections import Counter
dboe's avatar
dboe committed
21
from copy import deepcopy
dboe's avatar
dboe committed
22
import logging
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
23

dboe's avatar
dboe committed
24
# 3rd party
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
25
26
27
import numpy as np
import sympy
import scipy as sp
dboe's avatar
dboe committed
28
import sortedcontainers
29
import rna
dboe's avatar
dboe committed
30

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
31
import tfields.bases
dboe's avatar
dboe committed
32
33

np.seterr(all="warn", over="raise")
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
34
35
36
37
38
39


def rank(tensor):
    """
    Tensor rank
    """
dboe's avatar
dboe committed
40
    tensor = np.asarray(tensor)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
41
42
43
44
45
46
47
    return len(tensor.shape) - 1


def dim(tensor):
    """
    Manifold dimension
    """
dboe's avatar
dboe committed
48
    tensor = np.asarray(tensor)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
49
50
51
52
53
    if rank(tensor) == 0:
        return 1
    return tensor.shape[1]


dboe's avatar
dboe committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
class AbstractObject(object):
    def save(self, path, *args, **kwargs):
        """
        Saving by redirecting to the correct save method depending on path

        Args:
            path (str or buffer)
            *args:
                forwarded to extension specific method
            **kwargs:
                extension (str): only needed if path is buffer
                ... remaining:forwarded to extension specific method
        """
        # get the extension
        if isinstance(path, (string_types, pathlib.Path)):
            extension = pathlib.Path(path).suffix.lstrip(".")
        else:
            raise ValueError("Wrong path type {0}".format(type(path)))
        path = str(path)

        # get the save method
        try:
            save_method = getattr(self, "_save_{extension}".format(**locals()))
dboe's avatar
dboe committed
77
        except AttributeError:
dboe's avatar
dboe committed
78
79
80
81
82
83
            raise NotImplementedError(
                "Can not find save method for extension: "
                "{extension}.".format(**locals())
            )

        path = rna.path.resolve(path)
84
        rna.path.mkdir(path)
dboe's avatar
dboe committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
        return save_method(path, **kwargs)

    @classmethod
    def load(cls, path, *args, **kwargs):
        """
        load a file as a tensors object.

        Args:
            path (str or buffer)
            *args:
                forwarded to extension specific method
            **kwargs:
                extension (str): only needed if path is buffer
                ... remaining:forwarded to extension specific method
        """
        if isinstance(path, (string_types, pathlib.Path)):
            extension = pathlib.Path(path).suffix.lstrip(".")
            path = str(path)
            path = rna.path.resolve(path)
        else:
            extension = kwargs.pop("extension", "npz")

        try:
            load_method = getattr(cls, "_load_{e}".format(e=extension))
dboe's avatar
dboe committed
109
        except AttributeError:
dboe's avatar
dboe committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
            raise NotImplementedError(
                "Can not find load method for extension: "
                "{extension}.".format(**locals())
            )
        return load_method(path, *args, **kwargs)

    def _save_npz(self, path, **kwargs):
        """
        Args:
            path (open file or str/unicode): destination to save file to.

        Examples:
            Build some dummies:
            >>> import tfields
            >>> from tempfile import NamedTemporaryFile
            >>> out_file = NamedTemporaryFile(suffix='.npz')
            >>> p = tfields.Points3D([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]],
            ...                      name='my_points')
            >>> scalars = tfields.Tensors([0, 1, 2], name=42)
            >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
            >>> maps = [tfields.TensorFields([[0, 1, 2], [0, 1, 2]], [42, 21]),
            ...         tfields.TensorFields([[1], [2]], [-42, -21])]
            >>> m = tfields.TensorMaps(vectors, scalars,
            ...                        maps=maps)

            Simply give the file name to save
            >>> p.save(out_file.name)
            >>> _ = out_file.seek(0)  # this is only necessary in the test
            >>> p1 = tfields.Points3D.load(out_file.name)
            >>> assert p.equal(p1)
            >>> assert p.coord_sys == p1.coord_sys

            The fully nested structure of a TensorMaps object is reconstructed
            >>> out_file_maps = NamedTemporaryFile(suffix='.npz')
            >>> m.save(out_file_maps.name)
            >>> _ = out_file_maps.seek(0)
            >>> m1 = tfields.TensorMaps.load(out_file_maps.name,
            ...                              allow_pickle=True)
            >>> assert m.equal(m1)
dboe's avatar
dboe committed
149
            >>> assert m.maps[3].dtype == m1.maps[3].dtype
dboe's avatar
dboe committed
150
151
152
153
154
155
156

            Names are preserved
            >>> assert p.name == 'my_points'
            >>> m.names
            [42]

        """
dboe's avatar
dboe committed
157
        content_dict = self._as_dict()
158
        content_dict["tfields_version"] = tfields.__version__
dboe's avatar
dboe committed
159
160
161
162
163
164
165
166
167
168
        np.savez(path, **content_dict)

    @classmethod
    def _load_npz(cls, path, **load_kwargs):
        """
        Factory method
        Given a path to a npz file, construct the object
        """
        # TODO: think about allow_pickle, wheter it really should be True or
        # wheter we could avoid pickling (potential security issue)
169
        load_kwargs.setdefault("allow_pickle", True)
dboe's avatar
dboe committed
170
        np_file = np.load(path, **load_kwargs)
dboe's avatar
dboe committed
171
        d = dict(np_file)
172
        d.pop("tfields_version", None)
dboe's avatar
dboe committed
173
        return cls._from_dict(d)
dboe's avatar
dboe committed
174
175
176
177
178
179
180

    def _args(self) -> tuple:
        return tuple()

    def _kwargs(self) -> dict:
        return dict()

181
    _HIERARCHY_SEPARATOR = "::"
dboe's avatar
dboe committed
182

dboe's avatar
dboe committed
183
    def _as_dict(self):
dboe's avatar
dboe committed
184
185
186
187
188
189
190
        d = {}

        # type
        d["type"] = type(self).__name__

        # args and kwargs
        for base_attr, iterable in [
191
192
193
            ("args", ((str(i), arg) for i, arg in enumerate(self._args()))),
            ("kwargs", self._kwargs().items()),
        ]:
dboe's avatar
dboe committed
194
195
            for attr, value in iterable:
                attr = base_attr + self._HIERARCHY_SEPARATOR + attr
196
                if hasattr(value, "_as_dict"):
dboe's avatar
dboe committed
197
                    part_dict = value._as_dict()
dboe's avatar
dboe committed
198
                    for part_attr, part_value in part_dict.items():
199
                        d[attr + self._HIERARCHY_SEPARATOR + part_attr] = part_value
dboe's avatar
dboe committed
200
201
202
203
204
                else:
                    d[attr] = value
        return d

    @classmethod
dboe's avatar
dboe committed
205
206
    def _from_dict(cls, d: dict):
        try:
207
            d.pop("type")
dboe's avatar
dboe committed
208
209
210
        except KeyError:
            # legacy
            return cls._from_dict_legacy(**d)
dboe's avatar
dboe committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

        here = {}
        for string in d:  # TOO no sortelist
            value = d[string]

            attr, _, end = string.partition(cls._HIERARCHY_SEPARATOR)
            key, _, end = end.partition(cls._HIERARCHY_SEPARATOR)
            if attr not in here:
                here[attr] = {}
            if key not in here[attr]:
                here[attr][key] = {}
            here[attr][key][end] = value

        """
        Do the recursion
        """
        for attr in here:
            for key in here[attr]:
229
                if "type" in here[attr][key]:
dboe's avatar
dboe committed
230
                    obj_type = here[attr][key].get("type")
dboe's avatar
dboe committed
231
232
                    if isinstance(obj_type, np.ndarray):  # happens on np.load
                        obj_type = obj_type.tolist()
dboe's avatar
dboe committed
233
234
235
236
237
                    if isinstance(obj_type, bytes):
                        # asthonishingly, this is not necessary under linux.
                        # Found under nt. ???
                        obj_type = obj_type.decode("UTF-8")
                    obj_type = getattr(tfields, obj_type)
dboe's avatar
dboe committed
238
                    attr_value = obj_type._from_dict(here[attr][key])
dboe's avatar
dboe committed
239
                else:  # if len(here[attr][key]) == 1:
240
                    attr_value = here[attr][key].pop("")
dboe's avatar
dboe committed
241
242
                here[attr][key] = attr_value

243
        """
dboe's avatar
dboe committed
244
        Build the generic way
245
246
        """
        args = here.pop("args", tuple())
dboe's avatar
dboe committed
247
        args = tuple(args[key] for key in sorted(args))
248
        kwargs = here.pop("kwargs", {})
dboe's avatar
dboe committed
249
250
251
252
253
        assert len(here) == 0
        obj = cls(*args, **kwargs)
        return obj

    @classmethod
dboe's avatar
dboe committed
254
    def _from_dict_legacy(cls, **d):
dboe's avatar
dboe committed
255
        """
dboe's avatar
dboe committed
256
257
        legacy method of _from_dict - Opposite of old _as_dict method
        which is overridden in this version
dboe's avatar
dboe committed
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
        """
        list_dict = {}
        kwargs = {}
        """
        De-Flatten the first layer of lists
        """
        for key in sorted(list(d)):
            if "::" in key:
                attr, _, end = key.partition("::")
                if attr not in list_dict:
                    list_dict[attr] = {}

                index, _, end = end.partition("::")
                if not index.isdigit():
                    raise ValueError("None digit index given")
                index = int(index)
                if index not in list_dict[attr]:
                    list_dict[attr][index] = {}
                list_dict[attr][index][end] = d[key]
            else:
                kwargs[key] = d[key]

        """
        Build the lists (recursively)
        """
        for key in list(list_dict):
            sub_dict = list_dict[key]
            list_dict[key] = []
            for index in sorted(list(sub_dict)):
                bulk_type = sub_dict[index].get("bulk_type")
dboe's avatar
dboe committed
288
                bulk_type = bulk_type.tolist()
dboe's avatar
dboe committed
289
290
291
292
293
                if isinstance(bulk_type, bytes):
                    # asthonishingly, this is not necessary under linux.
                    # Found under nt. ???
                    bulk_type = bulk_type.decode("UTF-8")
                bulk_type = getattr(tfields, bulk_type)
dboe's avatar
dboe committed
294
                list_dict[key].append(bulk_type._from_dict_legacy(**sub_dict[index]))
dboe's avatar
dboe committed
295

296
297
        with cls._bypass_setters("fields", demand_existence=False):
            """
dboe's avatar
dboe committed
298
            Build the normal way
299
300
301
            """
            bulk = kwargs.pop("bulk")
            bulk_type = kwargs.pop("bulk_type")
dboe's avatar
dboe committed
302
303
            obj = cls.__new__(cls, bulk, **kwargs)

304
            """
dboe's avatar
dboe committed
305
            Set list attributes
306
            """
dboe's avatar
dboe committed
307
308
309
310
311
312
            for attr, list_value in list_dict.items():
                setattr(obj, attr, list_value)
        return obj


class AbstractNdarray(np.ndarray, AbstractObject):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
313
314
315
316
    """
    All tensors and subclasses should derive from AbstractNdarray.
    AbstractNdarray implements all the inheritance specifics for np.ndarray
    Whene inheriting, three attributes are of interest:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
317
318

    Attributes:
319
        __slots__ (List(str)): If you want to add attributes to
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
320
321
322
323
324
            your AbstractNdarray subclass, add the attribute name to __slots__
        __slot_defaults__ (list): if __slot_defaults__ is None, the
            defaults for the attributes in __slots__ will be None
            other values will be treaded as defaults to the corresponding
            arg at the same position in the __slots__ list.
325
        __slot_dtype__ (List(dtypes)): for the conversion of the
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
326
327
            args in __slots__ to numpy arrays. None values mean no
            conversion.
328
329
330
        __slot_setters__ (List(callable)): Because __slots__ and properties are
            mutually exclusive this is a possibility to take care of proper
            attribute handling. None will be passed for 'not set'.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
331
332
333
334

    Args:
        array (array-like): input array
        **kwargs: arguments corresponding to __slots__
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
335

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
336
337
    TODO:
        equality check
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
338

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
339
    """
dboe's avatar
dboe committed
340

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
341
342
    __slots__ = []
    __slot_defaults__ = []
343
    __slot_dtypes__ = []
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
344
345
346
    __slot_setters__ = []

    def __new__(cls, array, **kwargs):  # pragma: no cover
dboe's avatar
dboe committed
347
348
349
        raise NotImplementedError(
            "{clsType} type must implement '__new__'".format(clsType=type(cls))
        )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
350
351
352
353
354
355
356
357
358
359
360
361

    def __array_finalize__(self, obj):
        if obj is None:
            return
        for attr in self._iter_slots():
            setattr(self, attr, getattr(obj, attr, None))

    def __array_wrap__(self, out_arr, context=None):
        return np.ndarray.__array_wrap__(self, out_arr, context)

    @classmethod
    def _iter_slots(cls):
dboe's avatar
dboe committed
362
        return [att for att in cls.__slots__ if att != "_cache"]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
363
364
365
366
367

    @classmethod
    def _update_slot_kwargs(cls, kwargs):
        """
        set the defaults in kwargs according to __slot_defaults__
368
        and convert the kwargs according to __slot_dtypes__
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
369
        """
370
        slot_defaults = cls.__slot_defaults__ + [None] * (
dboe's avatar
dboe committed
371
372
            len(cls.__slots__) - len(cls.__slot_defaults__)
        )
373
374
        slot_dtypes = cls.__slot_dtypes__ + [None] * (
            len(cls.__slots__) - len(cls.__slot_dtypes__)
dboe's avatar
dboe committed
375
        )
376
        for attr, default, dtype in zip(cls.__slots__, slot_defaults, slot_dtypes):
dboe's avatar
dboe committed
377
            if attr == "_cache":
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
378
379
380
381
382
383
384
                continue
            if attr not in kwargs:
                kwargs[attr] = default
            if dtype is not None:
                try:
                    kwargs[attr] = np.array(kwargs[attr], dtype=dtype)
                except Exception as err:
dboe's avatar
dboe committed
385
386
387
                    raise ValueError(
                        str(attr) + str(dtype) + str(kwargs[attr]) + str(err)
                    )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
388
389
390
391
392
393
394
395

    def __setattr__(self, name, value):
        if name in self.__slots__:
            index = self.__slots__.index(name)
            try:
                setter = self.__slot_setters__[index]
            except IndexError:
                setter = None
396
397
            if isinstance(setter, str):
                setter = getattr(self, setter)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
398
399
400
401
            if setter is not None:
                value = setter(value)
        super(AbstractNdarray, self).__setattr__(name, value)

dboe's avatar
dboe committed
402
403
404
405
406
407
    def _args(self):
        return (np.array(self),)

    def _kwargs(self):
        return dict((attr, getattr(self, attr)) for attr in self._iter_slots())

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
408
409
    def __reduce__(self):
        """
dboe's avatar
dboe committed
410
411
        important for pickling (see `here <https://stackoverflow.com/questions/\
26598109/preserve-custom-attributes-when-pickling-subclass-of-numpy-array>`_)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
412

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
413
414
415
416
417
418
        Examples:
            >>> from tempfile import NamedTemporaryFile
            >>> import pickle
            >>> import tfields

            Build a dummy scalar field
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
419

dboe's avatar
dboe committed
420
421
422
423
424
425
            >>> scalars = tfields.Tensors([0, 1, 2])
            >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
            >>> scalar_field = tfields.TensorFields(
            ...     vectors,
            ...     scalars,
            ...     coord_sys='cylinder')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
426
427

            Save it and restore it
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
428

429
            >>> out_file = NamedTemporaryFile(suffix='.pickle')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
430

431
            >>> pickle.dump(scalar_field,
432
433
            ...             out_file)
            >>> _ = out_file.seek(0)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
434

435
            >>> sf = pickle.load(out_file)
436
            >>> sf.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
437
438
439
440
441
442
443
444
445
            True
            >>> sf.fields[0][2] == 2.
            True

        """
        # Get the parent's __reduce__ tuple
        pickled_state = super(AbstractNdarray, self).__reduce__()

        # Create our own tuple to pass to __setstate__
dboe's avatar
dboe committed
446
447
448
        new_state = pickled_state[2] + tuple(
            [getattr(self, slot) for slot in self._iter_slots()]
        )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
449

dboe's avatar
dboe committed
450
451
        # Return a tuple that replaces the parent's __setstate__
        # tuple with our own
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
452
453
454
455
        return (pickled_state[0], pickled_state[1], new_state)

    def __setstate__(self, state):
        """
456
        Counterpart to __reduce__. Important for unpickling.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
457
458
        """
        # Call the parent's __setstate__ with the other tuple elements.
459
        super(AbstractNdarray, self).__setstate__(state[0 : -len(self._iter_slots())])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
460
461

        # set the __slot__ attributes
462
        valid_slot_attrs = list(self._iter_slots())
dboe's avatar
dboe committed
463
464
465
466
467
        """
        attributes that have been added later have not been pickled with the
        full information and thus need to be excluded from the __setstate__
        need to be in the same order as they have been added to __slots__
        """
468
        added_slot_attrs = ["name"]
dboe's avatar
dboe committed
469
470
        n_np = 5  # number of numpy array states
        n_old = len(valid_slot_attrs) - len(state[n_np:])
471
472
473
        if n_old > 0:
            for latest_index in range(n_old):
                new_slot = added_slot_attrs[-latest_index]
474
475
476
477
478
479
                warnings.warn(
                    "Slots with names '{new_slot}' appears to have "
                    "been added after the creation of the reduced "
                    "state. No corresponding state found in "
                    "__setstate__.".format(**locals())
                )
480
481
482
483
                valid_slot_attrs.pop(valid_slot_attrs.index(new_slot))
                setattr(self, new_slot, None)

        for slot_index, slot in enumerate(valid_slot_attrs):
dboe's avatar
dboe committed
484
            state_index = n_np + slot_index
485
            setattr(self, slot, state[state_index])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
486

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
487
488
489
490
491
492
493
494
    @property
    def bulk(self):
        """
        The pure ndarray version of the actual state
            -> nothing attached
        """
        return np.array(self)

495
496
    @classmethod
    @contextmanager
497
    def _bypass_setters(cls, *slots, empty_means_all=True, demand_existence=False):
498
499
500
        """
        Temporarily remove the setter in __slot_setters__ corresponding to slot
        position in __slot__. You should know what you do, when using this.
501
502
503
504
505

        Args:
            *slots (str): attribute names in __slots__
            empty_means_all (bool): defines behaviour when slots is empty.
                When True: if slots is empty mute all slots in __slots__
dboe's avatar
dboe committed
506
507
            demand_existence (bool): if false do not check the existence of the
                slot in __slots__ - do nothing for that slot. Handle with care!
508
509
510
511
512
513
        """
        if not slots and empty_means_all:
            slots = cls.__slots__
        slot_indices = []
        setters = []
        for slot in slots:
514
            slot_index = cls.__slots__.index(slot) if slot in cls.__slots__ else None
dboe's avatar
dboe committed
515
516
517
            if slot_index is None:
                # slot not in cls.__slots__.
                if demand_existence:
518
                    raise ValueError("Slot {slot} not existing".format(**locals()))
dboe's avatar
dboe committed
519
                continue
520
521
522
523
524
525
526
            if len(cls.__slot_setters__) < slot_index + 1:
                # no setter to be found
                continue
            slot_indices.append(slot_index)
            setter = cls.__slot_setters__[slot_index]
            setters.append(setter)
            cls.__slot_setters__[slot_index] = None
527
        yield
528
529
        for slot_index, setter in zip(slot_indices, setters):
            cls.__slot_setters__[slot_index] = setter
530

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
531
532
533
    def copy(self, *args, **kwargs):
        """
        The standard ndarray copy does not copy slots. Correct for this.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
534

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
535
536
        Examples:
            >>> import tfields
dboe's avatar
dboe committed
537
538
            >>> m = tfields.TensorMaps(
            ...     [[1,2,3], [3,3,3], [0,0,0], [5,6,7]],
dboe's avatar
dboe committed
539
            ...     [[1], [3], [0], [5]],
540
541
            ...     maps=[
            ...         ([[0, 1, 2], [1, 2, 3]], [21, 42]),
dboe's avatar
dboe committed
542
543
            ...         [[1]],
            ...         [[0, 1, 2, 3]]
544
            ...     ])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
545
            >>> mc = m.copy()
dboe's avatar
dboe committed
546
547
            >>> mc.equal(m)
            True
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
548
549
            >>> mc is m
            False
dboe's avatar
dboe committed
550
551
552
553
            >>> mc.fields is m.fields
            False
            >>> mc.fields[0] is m.fields[0]
            False
dboe's avatar
dboe committed
554
            >>> mc.maps[3].fields[0] is m.maps[3].fields[0]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
555
556
557
            False

        """
dboe's avatar
dboe committed
558
559
        # works with __reduce__ / __setstate__
        return deepcopy(self)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
560
561
562
563
564


class Tensors(AbstractNdarray):
    """
    Set of tensors with the same basis.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
565

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
566
567
    TODO:
        all slot args should be protected -> _base
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
568

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
569
570
    Args:
        tensors: np.ndarray or AbstractNdarray subclass
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
571
572
        **kwargs:
            name: optional - custom name, can be anything
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
573

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
574
575
    Examples:
        >>> import numpy as np
576
        >>> import tfields
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
577
578

        Initialize a scalar range
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
579

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
580
581
582
583
584
        >>> scalars = tfields.Tensors([0, 1, 2])
        >>> scalars.rank == 0
        True

        Initialize vectors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
585

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
586
587
588
589
590
        >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
        >>> vectors.rank == 1
        True
        >>> vectors.dim == 3
        True
591
        >>> assert vectors.coord_sys == 'cartesian'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
592
593

        Initialize the Levi-Zivita Tensor
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
594

595
596
597
598
        >>> matrices = tfields.Tensors(
        ...                     [[[0, 0, 0], [0, 0, 1], [0, -1, 0]],
        ...                      [[0, 0, -1], [0, 0, 0], [1, 0, 0]],
        ...                      [[0, 1, 0], [-1, 0, 0], [0, 0, 0]]])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
599
600
601
602
603
604
605
606
        >>> matrices.shape == (3, 3, 3)
        True
        >>> matrices.rank == 2
        True
        >>> matrices.dim == 3
        True

        Initializing in different start coordinate system
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
607

dboe's avatar
dboe committed
608
609
        >>> cyl = tfields.Tensors([[5, np.arctan(4. / 3.), 42]],
        ...                       coord_sys='cylinder')
610
        >>> assert cyl.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
611
        >>> cyl.transform('cartesian')
612
        >>> assert cyl.coord_sys == 'cartesian'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
613
614
615
616
617
618
        >>> cart = cyl
        >>> assert round(cart[0, 0], 10) == 3.
        >>> assert round(cart[0, 1], 10) == 4.
        >>> assert cart[0, 2] == 42

        Initialize with copy constructor keeps the coordinate system
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
619

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
620
621
        >>> with vectors.tmp_transform('cylinder'):
        ...     vect_cyl = tfields.Tensors(vectors)
622
623
        ...     assert vect_cyl.coord_sys == vectors.coord_sys
        >>> assert vect_cyl.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
624
625

        You can demand a special dimension.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
626

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
627
628
629
630
631
632
633
634
        >>> _ = tfields.Tensors([[1, 2, 3]], dim=3)
        >>> _ = tfields.Tensors([[1, 2, 3]], dim=2)  # doctest: +ELLIPSIS
        Traceback (most recent call last):
            ...
        ValueError: Incorrect dimension: 3 given, 2 demanded.

        The dimension argument (dim) becomes necessary if you want to initialize
        an empty array
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
635

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
636
637
638
639
640
641
642
643
        >>> _ = tfields.Tensors([])  # doctest: +ELLIPSIS
        Traceback (most recent call last):
            ...
        ValueError: Empty tensors need dimension parameter 'dim'.
        >>> tfields.Tensors([], dim=7)
        Tensors([], shape=(0, 7), dtype=float64)

    """
644
645
646

    __slots__ = ["coord_sys", "name"]
    __slot_defaults__ = ["cartesian"]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
647
648
649
    __slot_setters__ = [tfields.bases.get_coord_system_name]

    def __new__(cls, tensors, **kwargs):
dboe's avatar
dboe committed
650
651
652
        dtype = kwargs.pop("dtype", None)
        order = kwargs.pop("order", None)
        dim = kwargs.pop("dim", None)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
653

dboe's avatar
dboe committed
654
        """ copy constructor extracts the kwargs from tensors"""
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
655
656
657
        if issubclass(type(tensors), Tensors):
            if dim is not None:
                dim = tensors.dim
dboe's avatar
dboe committed
658
            coord_sys = kwargs.pop("coord_sys", tensors.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
659
            tensors = tensors.copy()
660
            tensors.transform(coord_sys)
661
662
            kwargs["coord_sys"] = coord_sys
            kwargs["name"] = kwargs.pop("name", tensors.name)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
663
664
665
666
            if dtype is None:
                dtype = tensors.dtype
        else:
            if dtype is None:
dboe's avatar
dboe committed
667
                if hasattr(tensors, "dtype"):
668
669
670
                    dtype = tensors.dtype
                else:
                    dtype = np.float64
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
671

dboe's avatar
dboe committed
672
        """ demand iterable structure """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
673
674
        try:
            len(tensors)
dboe's avatar
dboe committed
675
        except TypeError:
dboe's avatar
dboe committed
676
            raise TypeError(
677
                "Iterable structure necessary." " Got {tensors}".format(**locals())
dboe's avatar
dboe committed
678
            )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
679

dboe's avatar
dboe committed
680
        """ process empty inputs """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
681
682
683
684
685
686
687
688
        if len(tensors) == 0:
            if issubclass(type(tensors), tfields.Tensors):
                tensors = np.empty(tensors.shape, dtype=tensors.dtype)
            elif dim is not None:
                tensors = np.empty((0, dim))
            if issubclass(type(tensors), np.ndarray):
                # np.empty
                pass
689
            elif hasattr(tensors, "shape"):
dboe's avatar
dboe committed
690
                dim = dim(tensors)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
691
            else:
692
                raise ValueError("Empty tensors need dimension parameter 'dim'.")
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
693
694
695
696

        tensors = np.asarray(tensors, dtype=dtype, order=order)
        obj = tensors.view(cls)

dboe's avatar
dboe committed
697
        """ check dimension(s) """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
698
699
        for d in obj.shape[1:]:
            if not d == obj.dim:
dboe's avatar
dboe committed
700
701
702
703
704
705
706
                raise ValueError(
                    "Dimensions are inconstistent. "
                    "Manifold dimension is {obj.dim}. "
                    "Found dimensions {found} in {obj}.".format(
                        found=obj.shape[1:], **locals()
                    )
                )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
707
708
        if dim is not None:
            if dim != obj.dim:
dboe's avatar
dboe committed
709
710
711
712
                raise ValueError(
                    "Incorrect dimension: {obj.dim} given,"
                    " {dim} demanded.".format(**locals())
                )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
713

dboe's avatar
dboe committed
714
        """ update kwargs with defaults from slots """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
715
716
        cls._update_slot_kwargs(kwargs)

dboe's avatar
dboe committed
717
        """ set kwargs to slots attributes """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
718
719
        for attr in kwargs:
            if attr not in cls._iter_slots():
dboe's avatar
dboe committed
720
721
722
723
                raise AttributeError(
                    "Keyword argument {attr} not accepted "
                    "for class {cls}".format(**locals())
                )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
724
725
726
727
            setattr(obj, attr, kwargs[attr])

        return obj

728
729
730
731
    def __iter__(self):
        """
        Forwarding iterations to the bulk array. Otherwise __getitem__ would
        kick in and slow down imensely.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
732

733
734
735
        Examples:
            >>> import tfields
            >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
dboe's avatar
dboe committed
736
737
            >>> scalar_field = tfields.TensorFields(
            ...     vectors, [42, 21, 10.5], [1, 2, 3])
738
739
740
741
742
743
744
            >>> [(point.rank, point.dim) for point in scalar_field]
            [(0, 1), (0, 1), (0, 1)]

        """
        for index in range(len(self)):
            yield super(Tensors, self).__getitem__(index).view(Tensors)

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
745
746
747
748
    @classmethod
    def merged(cls, *objects, **kwargs):
        """
        Factory method
dboe's avatar
dboe committed
749
        Merges all input arguments to one object
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
750

751
752
753
        Args:
            return_templates (bool): return the templates which can be used
                together with cut to retrieve the original objects
dboe's avatar
dboe committed
754
755
            dim (int):
            **kwargs: passed to cls
756

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
757
758
759
760
761
        Examples:
            >>> import numpy as np
            >>> import tfields
            >>> import tfields.bases

762
763
            The new object with turn out in the most frequent coordinate
            system if not specified explicitly
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
764

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
765
            >>> vec_a = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
dboe's avatar
dboe committed
766
767
768
769
770
771
            >>> vec_b = tfields.Tensors([[5, 4, 1]],
            ...     coord_sys=tfields.bases.cylinder)
            >>> vec_c = tfields.Tensors([[4, 2, 3]],
            ...     coord_sys=tfields.bases.cylinder)
            >>> merge = tfields.Tensors.merged(
            ...     vec_a, vec_b, vec_c, [[2, 0, 1]])
772
            >>> assert merge.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
773
774
775
776
777
778
779
780
            >>> assert merge.equal([[0, 0, 0],
            ...                     [0, 0, 1],
            ...                     [1, -np.pi / 2, 0],
            ...                     [5, 4, 1],
            ...                     [4, 2, 3],
            ...                     [2, 0, 1]])

            Merge also shifts the maps to still refer to the same tensors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
781

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
782
783
            >>> tm_a = tfields.TensorMaps(merge, maps=[[[0, 1, 2]]])
            >>> tm_b = tm_a.copy()
784
            >>> assert tm_a.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
785
            >>> tm_merge = tfields.TensorMaps.merged(tm_a, tm_b)
786
            >>> assert tm_merge.coord_sys == 'cylinder'
dboe's avatar
dboe committed
787
            >>> assert tm_merge.maps[3].equal([[0, 1, 2],
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
788
789
790
            ...                               list(range(len(merge),
            ...                                          len(merge) + 3,
            ...                                          1))])
dboe's avatar
dboe committed
791

792
793
            >>> obj_list = [tfields.Tensors([[1, 2, 3]],
            ...             coord_sys=tfields.bases.CYLINDER),
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
794
795
            ...             tfields.Tensors([[3] * 3]),
            ...             tfields.Tensors([[5, 1, 3]])]
796
797
            >>> merge2 = tfields.Tensors.merged(
            ...     *obj_list, coord_sys=tfields.bases.CARTESIAN)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
798
799
            >>> assert merge2.equal([[-0.41614684, 0.90929743, 3.],
            ...                      [3, 3, 3], [5, 1, 3]], atol=1e-8)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
800

801
802
803
804
805
806
807
808
809
            The return_templates argument allows to retrieve a template which
            can be used with the cut method.

            >>> merge, templates = tfields.Tensors.merged(
            ...     vec_a, vec_b, vec_c, return_templates=True)
            >>> assert merge.cut(templates[0]).equal(vec_a)
            >>> assert merge.cut(templates[1]).equal(vec_b)
            >>> assert merge.cut(templates[2]).equal(vec_c)

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
810
811
        """

dboe's avatar
dboe committed
812
813
        """ get most frequent coord_sys or predefined coord_sys """
        coord_sys = kwargs.get("coord_sys", None)
814
        return_templates = kwargs.pop("return_templates", False)
815
        if coord_sys is None:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
816
817
818
            bases = []
            for t in objects:
                try:
819
                    bases.append(t.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
820
821
822
                except AttributeError:
                    pass
            if bases:
823
                # get most frequent coord_sys
824
                coord_sys = sorted(bases, key=Counter(bases).get, reverse=True)[0]
dboe's avatar
dboe committed
825
                kwargs["coord_sys"] = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
826
            else:
827
                default = cls.__slot_defaults__[cls.__slots__.index("coord_sys")]
dboe's avatar
dboe committed
828
                kwargs["coord_sys"] = default
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
829

dboe's avatar
dboe committed
830
        """ transform all raw inputs to cls type with correct coord_sys. Also
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
831
        automatically make a copy of those instances that are of the correct
dboe's avatar
dboe committed
832
        type already."""
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
833
        objects = [cls.__new__(cls, t, **kwargs) for t in objects]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
834

dboe's avatar
dboe committed
835
        """ check rank and dimension equality """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
836
837
838
839
840
        if not len(set([t.rank for t in objects])) == 1:
            raise TypeError("Tensors must have the same rank for merging.")
        if not len(set([t.dim for t in objects])) == 1:
            raise TypeError("Tensors must have the same dimension for merging.")

dboe's avatar
dboe committed
841
        """ merge all objects """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
842
843
844
845
846
847
        remainingObjects = objects[1:] or []
        tensors = objects[0]

        for i, obj in enumerate(remainingObjects):
            tensors = np.append(tensors, obj, axis=0)

848
        if len(tensors) == 0 and not kwargs.get("dim", None):
849
850
            # if you can not determine the tensor dimension, search for the
            # first object with some entries
851
            kwargs["dim"] = dim(objects[0])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
852

853
        inst = cls.__new__(cls, tensors, **kwargs)
854
        if not return_templates:
855
            return inst
856
857
        else:
            tensor_lengths = [len(o) for o in objects]
858
            cum_tensor_lengths = [sum(tensor_lengths[:i]) for i in range(len(objects))]
859
860
            templates = [
                tfields.TensorFields(
861
                    np.empty((len(obj), 0)),
862
863
864
865
                    np.arange(tensor_lengths[i]) + cum_tensor_lengths[i],
                )
                for i, obj in enumerate(objects)
            ]
866
            return inst, templates
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
867
868
869
870
871

    @classmethod
    def grid(cls, *base_vectors, **kwargs):
        """
        Args:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
872
873
874
875
876
877
878
            *base_vectors (Iterable): base coordinates. The amount of base
                vectors defines the dimension

            **kwargs:
                iter_order (list): order in which the iteration will be done.
                    Frequency rises with position in list. default is [0, 1, 2]
                    iteration will be done like::
dboe's avatar
dboe committed
879

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
880
881
882
883
884
885
                    for v0 in base_vectors[iter_order[0]]:
                        for v1 in base_vectors[iter_order[1]]:
                            for v2 in base_vectors[iter_order[2]]:
                                coords0.append(locals()['v%i' % iter_order[0]])
                                coords1.append(locals()['v%i' % iter_order[1]])
                                coords2.append(locals()['v%i' % iter_order[2]])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
886
887
888

        Examples:
            Initilaize using the mgrid notation
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
889

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
890
891
892
893
894
895
896
897
898
899
900
            >>> import tfields
            >>> mgrid = tfields.Tensors.grid((0, 1, 2j), (3, 4, 2j), (6, 7, 2j))
            >>> mgrid.equal([[0, 3, 6],
            ...              [0, 3, 7],
            ...              [0, 4, 6],
            ...              [0, 4, 7],
            ...              [1, 3, 6],
            ...              [1, 3, 7],
            ...              [1, 4, 6],
            ...              [1, 4, 7]])
            True
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
901
902
903

            Lists or arrays are accepted also.
            Furthermore, the iteration order can be changed
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
904

dboe's avatar
dboe committed
905
906
907
            >>> lins = tfields.Tensors.grid(
            ...     np.linspace(3, 4, 2), np.linspace(0, 1, 2),
            ...     np.linspace(6, 7, 2), iter_order=[1, 0, 2])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
            >>> lins.equal([[3, 0, 6],
            ...             [3, 0, 7],
            ...             [4, 0, 6],
            ...             [4, 0, 7],
            ...             [3, 1, 6],
            ...             [3, 1, 7],
            ...             [4, 1, 6],
            ...             [4, 1, 7]])
            True
            >>> lins2 = tfields.Tensors.grid(np.linspace(0, 1, 2),
            ...                              np.linspace(3, 4, 2),
            ...                              np.linspace(6, 7, 2),
            ...                              iter_order=[2, 0, 1])
            >>> lins2.equal([[0, 3, 6],
            ...              [0, 4, 6],
            ...              [1, 3, 6],
            ...              [1, 4, 6],
            ...              [0, 3, 7],
            ...              [0, 4, 7],
            ...              [1, 3, 7],
            ...              [1, 4, 7]])
            True

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
931
932
            When given the coord_sys argument, the grid is performed in the
            given coorinate system:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
933

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
934
935
936
937
938
939
940
941
942
            >>> lins3 = tfields.Tensors.grid(np.linspace(4, 9, 2),
            ...                              np.linspace(np.pi/2, np.pi/2, 1),
            ...                              np.linspace(4, 4, 1),
            ...                              iter_order=[2, 0, 1],
            ...                              coord_sys=tfields.bases.CYLINDER)
            >>> assert lins3.coord_sys == 'cylinder'
            >>> lins3.transform('cartesian')
            >>> assert np.array_equal(lins3[:, 1], [4, 9])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
943
        """
dboe's avatar
dboe committed
944
        cls_kwargs = {
945
            attr: kwargs.pop(attr) for attr in list(kwargs) if attr in cls.__slots__
dboe's avatar
dboe committed
946
947
948
949
        }
        inst = cls.__new__(
            cls, tfields.lib.grid.igrid(*base_vectors, **kwargs), **cls_kwargs
        )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
        return inst

    @property
    def rank(self):
        """
        Tensor rank
        """
        return rank(self)

    @property
    def dim(self):
        """
        Manifold dimension
        """
        return dim(self)

966
    def transform(self, coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
967
968
        """
        Args:
969
            coord_sys (str)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
970
971
972
973
974
975

        Examples:
            >>> import numpy as np
            >>> import tfields

            CARTESIAN to SPHERICAL
dboe's avatar
dboe committed
976
977
            >>> t = tfields.Tensors([[1, 2, 2], [1, 0, 0], [0, 0, -1],
            ...                      [0, 0, 1], [0, 0, 0]])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
978
979
980
            >>> t.transform('spherical')

            r
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
981

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
982
983
984
            >>> assert t[0, 0] == 3

            phi
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
985

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
986
987
988
989
            >>> assert t[1, 1] == 0.
            >>> assert t[2, 1] == 0.

            theta is 0 at (0, 0, 1) and pi / 2 at (0, 0, -1)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
990

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
991
992
993
994
995
            >>> assert round(t[1, 2], 10) == round(0, 10)
            >>> assert t[2, 2] == -np.pi / 2
            >>> assert t[3, 2] == np.pi / 2

            theta is defined 0 for R == 0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
996

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
997
998
999
1000
1001
            >>> assert t[4, 0] == 0.
            >>> assert t[4, 2] == 0.


            CARTESIAN to CYLINDER
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1002

dboe's avatar
dboe committed
1003
1004
            >>> tCart = tfields.Tensors([[3, 4, 42], [1, 0, 0], [0, 1, -1],
            ...                          [-1, 0, 1], [0, 0, 0]])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1005
1006
            >>> t_cyl = tCart.copy()
            >>> t_cyl.transform('cylinder')
1007
            >>> assert t_cyl.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1008
1009

            R
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1010

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1011
1012
1013
1014
1015
1016
            >>> assert t_cyl[0, 0] == 5
            >>> assert t_cyl[1, 0] == 1
            >>> assert t_cyl[2, 0] == 1
            >>> assert t_cyl[4, 0] == 0

            Phi
dboe's avatar
dboe committed
1017

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1018
1019
1020
1021
1022
1023
            >>> assert round(t_cyl[0, 1], 10) == round(np.arctan(4. / 3), 10)
            >>> assert t_cyl[1, 1] == 0
            >>> assert round(t_cyl[2, 1], 10) == round(np.pi / 2, 10)
            >>> assert t_cyl[1, 1] == 0

            Z
dboe's avatar
dboe committed
1024

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1025
1026
1027
1028
            >>> assert t_cyl[0, 2] == 42
            >>> assert t_cyl[2, 2] == -1

            >>> t_cyl.transform('cartesian')
1029
            >>> assert t_cyl.coord_sys == 'cartesian'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1030
1031
1032
1033
            >>> assert t_cyl[0, 0] == 3

        """
        #           scalars                 empty             already there
1034
1035
        if self.rank == 0 or self.shape[0] == 0 or self.coord_sys == coord_sys:
            self.coord_sys = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1036
1037
            return

1038
1039
1040
        tfields.bases.transform(self, self.coord_sys, coord_sys)
        # self[:] = tfields.bases.transform(self, self.coord_sys, coord_sys)
        self.coord_sys = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1041
1042

    @contextmanager
1043
    def tmp_transform(self, coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1044
        """
1045
        Temporarily change the coord_sys to another coord_sys and change it back at exit
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1046
1047
        This method is for cleaner code only.
        No speed improvements go with this.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1048

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1049
1050
        Args:
            see transform
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1051

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1052
1053
        Examples:
            >>> import tfields
1054
            >>> p = tfields.Tensors([[1,2,3]], coord_sys=tfields.bases.SPHERICAL)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1055
            >>> with p.tmp_transform(tfields.bases.CYLINDER):
1056
1057
            ...     assert p.coord_sys == tfields.bases.CYLINDER
            >>> assert p.coord_sys == tfields.bases.SPHERICAL
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1058
1059

        """
1060
1061
        baseBefore = self.coord_sys
        if baseBefore == coord_sys:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1062
1063
            yield
        else:
1064
            self.transform(coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1065
1066
1067
1068
1069
1070
1071
1072

            yield

            self.transform(baseBefore)

    def mirror(self, coordinate, condition=None):
        """
        Reflect/Mirror the entries meeting <condition> at <coordinate> = 0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1073

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1074
1075
        Args:
            coordinate (int): coordinate index
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1076

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1077
1078
1079
1080
1081
1082
        Examples:
            >>> import tfields
            >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]])
            >>> p.mirror(1)
            >>> assert p.equal([[1, -2, 3], [4, -5,  6], [1, -2, -6]])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1083
1084
            multiple coordinates can be mirrored at the same time
            i.e. a point mirrorion would be
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1085

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1086
1087
1088
1089
1090
            >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]])
            >>> p.mirror([0,2])
            >>> assert p.equal([[-1, 2, -3], [-4, 5, -6], [-1, 2., 6.]])

            You can give a condition as mask or as str.
dboe's avatar
dboe committed
1091
1092
            The mirroring will only be applied to the points meeting the
            condition.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1093

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1094
1095
            >>> import sympy
            >>> x, y, z = sympy.symbols('x y z')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1096
            >>> p.mirror([0, 2], y > 3)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
            >>> p.equal([[-1, 2, -3], [4, 5, 6], [-1, 2, 6]])
            True

        """
        if condition is None:
            condition = np.array([True for i in range(len(self))])
        elif isinstance(condition, sympy.Basic):
            condition = self.evalf(condition)
        if isinstance(coordinate, list) or isinstance(coordinate, tuple):
            for c in coordinate:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1107
                self.mirror(c, condition=condition)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1108
1109
1110
1111
1112
        elif isinstance(coordinate, int):
            self[:, coordinate][condition] *= -1
        else:
            raise TypeError()

dboe's avatar
dboe committed
1113
1114
1115
1116
1117
1118
1119
1120
1121
    def to_segment(
        self,
        segment,
        num_segments,
        coordinate,
        periodicity=2 * np.pi,
        offset=0.0,
        coord_sys=None,
    ):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1122
1123
1124
1125
1126
        """
        For circular (close into themself after
        <periodicity>) coordinates at index <coordinate> assume
        <num_segments> segments and transform all values to
        segment number <segment>
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1127

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1128
1129
1130
1131
1132
1133
        Args:
            segment (int): segment index (starting at 0)
            num_segments (int): number of segments
            coordinate (int): coordinate index
            periodicity (float): after what lenght, the coordiante repeats
            offset (float): offset in the mapping
1134
            coord_sys (str or sympy.CoordinateSystem): in which coord sys the
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1135
                transformation should be done
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1136

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1137
1138
1139
1140
1141
        Examples:
            >>> import tfields
            >>> import numpy as np
            >>> pStart = tfields.Points3D([[6, 2 * np.pi, 1],
            ...                            [6, 2 * np.pi / 5 * 3, 1]],
1142
            ...                           coord_sys='cylinder')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
            >>> p = tfields.Points3D(pStart)
            >>> p.to_segment(0, 5, 1, offset=-2 * np.pi / 10)
            >>> assert np.array_equal(p[:, 1], [0, 0])

            >>> p2 = tfields.Points3D(pStart)
            >>> p2.to_segment(1, 5, 1, offset=-2 * np.pi / 10)
            >>> assert np.array_equal(np.round(p2[:, 1], 4), [1.2566] * 2)

        """
        if segment > num_segments - 1:
            raise ValueError("Segment {0} not existent.".format(segment))

1155
1156
1157
        if coord_sys is None:
            coord_sys = self.coord_sys
        with self.tmp_transform(coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1158
            # map all values to first segment
dboe's avatar
dboe committed
1159
1160
1161
1162
1163
            self[:, coordinate] = (
                (self[:, coordinate] - offset) % (periodicity / num_segments)
                + offset
                + segment * periodicity / num_segments
            )
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1164

1165
    def equal(self, other, rtol=None, atol=None, equal_nan=False, return_bool=True):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1166
1167
        """
        Evaluate, whether the instance has the same content as other.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1168

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1169
1170
1171
1172
1173
1174
1175
        Args:
            optional:
                rtol (float)
                atol (float)
                equal_nan (bool)
            see numpy.isclose
        """
1176
        if issubclass(type(other), Tensors) and self.coord_sys != other.coord_sys:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1177
            other = other.copy()
1178
            other.transform</