core.py 74.8 KB
Newer Older
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1
2
3
4
5
6
7
8
#!/usr/bin/env
# encoding: utf-8
"""
Author:     Daniel Boeckenhoff
Mail:       daniel.boeckenhoff@ipp.mpg.de

core of tfields library
contains numpy ndarray derived bases of the tfields package
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
9
10

Notes:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
11
    It could be worthwhile concidering `np.li.mixins.NDArrayOperatorsMixin <https://docs.scipy.org/doc/numpy-1.15.1/reference/generated/numpy.lib.mixins.NDArrayOperatorsMixin.html>`_
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
"""
import warnings
import os
import pathlib
from six import string_types
from contextlib import contextmanager
from collections import Counter

import numpy as np
import sympy
import scipy as sp
import tfields.bases
np.seterr(all='warn', over='raise')


def rank(tensor):
    """
    Tensor rank
    """
    return len(tensor.shape) - 1


def dim(tensor):
    """
    Manifold dimension
    """
    if rank(tensor) == 0:
        return 1
    return tensor.shape[1]


class AbstractNdarray(np.ndarray):
    """
    All tensors and subclasses should derive from AbstractNdarray.
    AbstractNdarray implements all the inheritance specifics for np.ndarray
    Whene inheriting, three attributes are of interest:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
48
49

    Attributes:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
50
51
52
53
54
55
56
57
58
59
60
61
62
        __slots__ (list of str): If you want to add attributes to
            your AbstractNdarray subclass, add the attribute name to __slots__
        __slot_defaults__ (list): if __slot_defaults__ is None, the
            defaults for the attributes in __slots__ will be None
            other values will be treaded as defaults to the corresponding
            arg at the same position in the __slots__ list.
        __slotDtype__ (list of types): for the conversion of the
            args in __slots__ to numpy arrays. None values mean no
            conversion.

    Args:
        array (array-like): input array
        **kwargs: arguments corresponding to __slots__
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
63

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
64
65
    TODO:
        equality check
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
66

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
    """
    __slots__ = []
    __slot_defaults__ = []
    __slotDtypes__ = []
    __slot_setters__ = []

    def __new__(cls, array, **kwargs):  # pragma: no cover
        raise NotImplementedError("{clsType} type must implement '__new__'"
                                  .format(clsType=type(cls)))

    def __array_finalize__(self, obj):
        if obj is None:
            return
        for attr in self._iter_slots():
            setattr(self, attr, getattr(obj, attr, None))

    def __array_wrap__(self, out_arr, context=None):
        return np.ndarray.__array_wrap__(self, out_arr, context)

    @classmethod
    def _iter_slots(cls):
        return [att for att in cls.__slots__ if att != '_cache']

    @classmethod
    def _update_slot_kwargs(cls, kwargs):
        """
        set the defaults in kwargs according to __slot_defaults__
        and convert the kwargs according to __slotDtypes__
        """
        slotDefaults = cls.__slot_defaults__ + \
            [None] * (len(cls.__slots__) - len(cls.__slot_defaults__))
        slotDtypes = cls.__slotDtypes__ + \
            [None] * (len(cls.__slots__) - len(cls.__slotDtypes__))
        for attr, default, dtype in zip(cls.__slots__, slotDefaults, slotDtypes):
            if attr == '_cache':
                continue
            if attr not in kwargs:
                kwargs[attr] = default
            if dtype is not None:
                try:
                    kwargs[attr] = np.array(kwargs[attr], dtype=dtype)
                except Exception as err:
                    raise ValueError(str(attr) + str(dtype) + str(kwargs[attr]) + str(err))

    def __setattr__(self, name, value):
        if name in self.__slots__:
            index = self.__slots__.index(name)
            try:
                setter = self.__slot_setters__[index]
            except IndexError:
                setter = None
            if setter is not None:
                value = setter(value)
        super(AbstractNdarray, self).__setattr__(name, value)

    def __reduce__(self):
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
124
125
        important for pickling (see `here <https://stackoverflow.com/questions/26598109/preserve-custom-attributes-when-pickling-subclass-of-numpy-array>`_)

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
126
127
128
129
130
131
        Examples:
            >>> from tempfile import NamedTemporaryFile
            >>> import pickle
            >>> import tfields

            Build a dummy scalar field
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
132

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
133
134
135
            >>> from tfields import Tensors, TensorFields
            >>> scalars = Tensors([0, 1, 2])
            >>> vectors = Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
136
            >>> scalar_field = TensorFields(vectors, scalars, coord_sys='cylinder')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
137
138

            Save it and restore it
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
139

140
            >>> out_file = NamedTemporaryFile(suffix='.pickle')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
141

142
            >>> pickle.dump(scalar_field,
143
144
            ...             out_file)
            >>> _ = out_file.seek(0)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
145

146
            >>> sf = pickle.load(out_file)
147
            >>> sf.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
            True
            >>> sf.fields[0][2] == 2.
            True

        """
        # Get the parent's __reduce__ tuple
        pickled_state = super(AbstractNdarray, self).__reduce__()

        # Create our own tuple to pass to __setstate__
        new_state = pickled_state[2] + tuple([getattr(self, slot) for slot in
                                              self._iter_slots()])

        # Return a tuple that replaces the parent's __setstate__ tuple with our own
        return (pickled_state[0], pickled_state[1], new_state)

    def __setstate__(self, state):
        """
165
        Counterpart to __reduce__. Important for unpickling.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
166
167
168
169
170
171
172
173
174
        """
        # Call the parent's __setstate__ with the other tuple elements.
        super(AbstractNdarray, self).__setstate__(state[0:-len(self._iter_slots())])

        # set the __slot__ attributes
        for i, slot in enumerate(reversed(self._iter_slots())):
            index = -(i + 1)
            setattr(self, slot, state[index])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
175
176
177
178
179
180
181
182
    @property
    def bulk(self):
        """
        The pure ndarray version of the actual state
            -> nothing attached
        """
        return np.array(self)

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
183
184
185
    def copy(self, *args, **kwargs):
        """
        The standard ndarray copy does not copy slots. Correct for this.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
186

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
187
188
189
190
191
192
193
194
195
196
197
        Examples:
            >>> import tfields
            >>> m = tfields.TensorMaps([[1,2,3], [3,3,3], [0,0,0], [5,6,7]],
            ...                        maps=[tfields.TensorFields([[0, 1, 2], [1, 2, 3]],
            ...                                                   [1, 2])])
            >>> mc = m.copy()
            >>> mc is m
            False
            >>> mc.maps[0].fields[0] is m.maps[0].fields[0]
            False

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
198
199
        TODO:
            This function implementation could be more general or maybe redirect to deepcopy?
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
200
201
202
203
        """
        inst = super(AbstractNdarray, self).copy(*args, **kwargs)
        for attr in self._iter_slots():
            value = getattr(self, attr)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
204
            if hasattr(value, 'copy') and not isinstance(value, list):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
                setattr(inst, attr, value.copy(*args, **kwargs))
            elif isinstance(value, list):
                list_copy = []
                for item in value:
                    if hasattr(item, 'copy'):
                        list_copy.append(item.copy(*args, **kwargs))
                    else:
                        list_copy.append(item)
                setattr(inst, attr, list_copy)

        return inst

    def save(self, path, *args, **kwargs):
        """
        Saving a tensors object by redirecting to the correct save method depending on path
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
220

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
221
222
223
224
225
226
227
228
229
        Args:
            path (str or buffer)
            *args:
                forwarded to extension specific method
            **kwargs:
                extension (str): only needed if path is buffer
                ... remaining:forwarded to extension specific method
        """
        # get the extension
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
230
        if isinstance(path, (string_types, pathlib.Path)):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
231
            extension = pathlib.Path(path).suffix.lstrip('.')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
232
233
234
        else:
            raise ValueError("Wrong path type {0}".format(type(path)))
        path = str(path)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
235
236
237
238
239
240
241
242
243

        # get the save method
        try:
            save_method = getattr(self,
                                  '_save_{extension}'.format(**locals()))
        except:
            raise NotImplementedError("Can not find save method for extension: "
                                      "{extension}.".format(**locals()))

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
244
        path = tfields.lib.in_out.resolve(path)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
245
246
247
248
249
250
        return save_method(path, **kwargs)

    @classmethod
    def load(cls, path, *args, **kwargs):
        """
        load a file as a tensors object.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
251

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
252
253
254
255
256
257
258
259
        Args:
            path (str or buffer)
            *args:
                forwarded to extension specific method
            **kwargs:
                extension (str): only needed if path is buffer
                ... remaining:forwarded to extension specific method
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
260
        if isinstance(path, (string_types, pathlib.Path)):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
261
            extension = pathlib.Path(path).suffix.lstrip('.')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
262
263
264
265
            path = str(path)
            path = tfields.lib.in_out.resolve(path)
        else:
            extension = kwargs.pop('extension', 'npz')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
266
267
268
269
270
271
272
273
274
275
276
277

        try:
            load_method = getattr(cls, '_load_{e}'.format(e=extension))
        except:
            raise NotImplementedError("Can not find load method for extension: "
                                      "{extension}.".format(**locals()))
        return load_method(path, *args, **kwargs)

    def _save_npz(self, path, **kwargs):
        """
        Args:
            path (open file or str/unicode): destination to save file to.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
278

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
279
        Examples:
280
            Build some dummies:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
281
282
            >>> import tfields
            >>> from tempfile import NamedTemporaryFile
283
            >>> out_file = NamedTemporaryFile(suffix='.npz')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
284
            >>> p = tfields.Points3D([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]])
285
286
287
288
289
290
291
292
293
294
295
296

            >>> scalars = tfields.Tensors([0, 1, 2])
            >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
            >>> maps = [tfields.TensorFields([[0, 1, 2], [0, 1, 2]], [42, 21]),
            ...         tfields.TensorFields([[1], [2]], [-42, -21])]
            >>> m = tfields.TensorMaps(vectors, scalars,
            ...                        maps=maps)

            Simply give the file name to save
            >>> p.save(out_file.name)
            >>> _ = out_file.seek(0)
            >>> p1 = tfields.Points3D.load(out_file.name)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
297
298
            >>> assert p.equal(p1)

299
300
301
302
303
304
            The fully nested structure of a TensorMaps object is reconstructed
            >>> out_file_maps = NamedTemporaryFile(suffix='.npz')
            >>> m.save(out_file_maps.name)
            >>> _ = out_file_maps.seek(0)
            >>> m1 = tfields.TensorMaps.load(out_file_maps.name)
            >>> assert m.equal(m1)
305
            >>> assert m.maps[0].dtype == m1.maps[0].dtype
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
306

307
        """
308
309
        content_dict = self._as_dict()
        np.savez(path, **content_dict)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
310
311
312
313
314
315
316
317

    @classmethod
    def _load_npz(cls, path, **load_kwargs):
        """
        Factory method
        Given a path to a npz file, construct the object
        """
        np_file = np.load(path, **load_kwargs)
318
319
320
321
322
323
324
        return cls._from_dict(**np_file)

    def _as_dict(self):
        """
        Recursively walk trough all __slots__ and describe all elements
        """
        d = {}
325
        d['bulk'] = self.bulk
326
327
328
329
330
331
332
333
334
335
336
        d['bulk_type'] = self.__class__.__name__
        for attr in self._iter_slots():
            value = getattr(self, attr)
            if isinstance(value, list):
                if len(value) == 0:
                    d[attr] = None
                if all([isinstance(part, AbstractNdarray) for part in value]):
                    for i, part in enumerate(value):
                        part_dict = part._as_dict()
                        for part_attr, part_value in part_dict.items():
                            d["{attr}::{i}::{part_attr}".format(**locals())] = part_value
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
337
                    continue
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
            if isinstance(value, AbstractNdarray):
                value = value._as_dict()
            d[attr] = value
        return d

    @classmethod
    def _from_dict(cls, **d):
        """
        Opposite of _as_dict
        """
        list_dict = {}
        kwargs = {}
        '''
        De-Flatten the first layer of lists
        '''
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
353
        for key in sorted(list(d)):
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
            if '::' in key:
                splits = key.split('::')
                attr, _, end = key.partition('::')
                if attr not in list_dict:
                    list_dict[attr] = {}

                index, _, end = end.partition('::')
                if not index.isdigit():
                    raise ValueError("None digit index given")
                index = int(index)
                if index not in list_dict[attr]:
                    list_dict[attr][index] = {}
                list_dict[attr][index][end] = d[key]
            else:
                kwargs[key] = d[key]

        '''
        Build the lists (recursively)
        '''
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
373
        for key in list(list_dict):
374
375
            sub_dict = list_dict[key]
            list_dict[key] = []
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
376
            for index in sorted(list(sub_dict)):
Priyanjana Sinha's avatar
Priyanjana Sinha committed
377
378
379
380
381
                bulk_type = sub_dict[index].get('bulk_type').tolist()
                if isinstance(bulk_type, bytes):
                    # asthonishingly, this is not necessary under linux. Found under nt. ???
                    bulk_type = bulk_type.decode('UTF-8')
                bulk_type = getattr(tfields, bulk_type)
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
                list_dict[key].append(bulk_type._from_dict(**sub_dict[index]))

        '''
        Build the normal way
        '''
        bulk = kwargs.pop('bulk')
        bulk_type = kwargs.pop('bulk_type')
        obj = cls.__new__(cls, bulk, **kwargs)

        '''
        Set list attributes
        '''
        for attr, list_value in list_dict.items():
            setattr(obj, attr, list_value)
        return obj
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
397
398
399
400
401


class Tensors(AbstractNdarray):
    """
    Set of tensors with the same basis.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
402

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
403
404
    TODO:
        all slot args should be protected -> _base
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
405

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
406
407
    Args:
        tensors: np.ndarray or AbstractNdarray subclass
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
408

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
409
410
    Examples:
        >>> import numpy as np
411
        >>> import tfields
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
412
413

        Initialize a scalar range
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
414

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
415
416
417
418
419
        >>> scalars = tfields.Tensors([0, 1, 2])
        >>> scalars.rank == 0
        True

        Initialize vectors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
420

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
421
422
423
424
425
        >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
        >>> vectors.rank == 1
        True
        >>> vectors.dim == 3
        True
426
        >>> assert vectors.coord_sys == 'cartesian'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
427
428

        Initialize the Levi-Zivita Tensor
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
429

430
431
432
433
        >>> matrices = tfields.Tensors(
        ...                     [[[0, 0, 0], [0, 0, 1], [0, -1, 0]],
        ...                      [[0, 0, -1], [0, 0, 0], [1, 0, 0]],
        ...                      [[0, 1, 0], [-1, 0, 0], [0, 0, 0]]])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
434
435
436
437
438
439
440
441
        >>> matrices.shape == (3, 3, 3)
        True
        >>> matrices.rank == 2
        True
        >>> matrices.dim == 3
        True

        Initializing in different start coordinate system
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
442

443
444
        >>> cyl = tfields.Tensors([[5, np.arctan(4. / 3.), 42]], coord_sys='cylinder')
        >>> assert cyl.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
445
        >>> cyl.transform('cartesian')
446
        >>> assert cyl.coord_sys == 'cartesian'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
447
448
449
450
451
452
        >>> cart = cyl
        >>> assert round(cart[0, 0], 10) == 3.
        >>> assert round(cart[0, 1], 10) == 4.
        >>> assert cart[0, 2] == 42

        Initialize with copy constructor keeps the coordinate system
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
453

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
454
455
        >>> with vectors.tmp_transform('cylinder'):
        ...     vect_cyl = tfields.Tensors(vectors)
456
457
        ...     assert vect_cyl.coord_sys == vectors.coord_sys
        >>> assert vect_cyl.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
458
459

        You can demand a special dimension.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
460

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
461
462
463
464
465
466
467
468
        >>> _ = tfields.Tensors([[1, 2, 3]], dim=3)
        >>> _ = tfields.Tensors([[1, 2, 3]], dim=2)  # doctest: +ELLIPSIS
        Traceback (most recent call last):
            ...
        ValueError: Incorrect dimension: 3 given, 2 demanded.

        The dimension argument (dim) becomes necessary if you want to initialize
        an empty array
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
469

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
470
471
472
473
474
475
476
477
        >>> _ = tfields.Tensors([])  # doctest: +ELLIPSIS
        Traceback (most recent call last):
            ...
        ValueError: Empty tensors need dimension parameter 'dim'.
        >>> tfields.Tensors([], dim=7)
        Tensors([], shape=(0, 7), dtype=float64)

    """
478
    __slots__ = ['coord_sys']
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
479
480
481
482
483
484
485
486
487
488
489
490
    __slot_defaults__ = ['cartesian']
    __slot_setters__ = [tfields.bases.get_coord_system_name]

    def __new__(cls, tensors, **kwargs):
        dtype = kwargs.pop('dtype', None)
        order = kwargs.pop('order', None)
        dim = kwargs.pop('dim', None)

        ''' copy constructor extracts the kwargs from tensors'''
        if issubclass(type(tensors), Tensors):
            if dim is not None:
                dim = tensors.dim
491
            coord_sys = kwargs.pop('coord_sys', tensors.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
492
            tensors = tensors.copy()
493
494
            tensors.transform(coord_sys)
            kwargs['coord_sys'] = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
495
496
497
498
            if dtype is None:
                dtype = tensors.dtype
        else:
            if dtype is None:
499
500
501
502
                if hasattr(tensors, 'dtype'):
                    dtype = tensors.dtype
                else:
                    dtype = np.float64
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531

        ''' demand iterable structure '''
        try:
            len(tensors)
        except TypeError as err:
            raise TypeError("Iterable structure necessary."
                            " Got {tensors}"
                            .format(**locals()))

        ''' process empty inputs '''
        if len(tensors) == 0:
            if issubclass(type(tensors), tfields.Tensors):
                tensors = np.empty(tensors.shape, dtype=tensors.dtype)
            elif dim is not None:
                tensors = np.empty((0, dim))
            if issubclass(type(tensors), np.ndarray):
                # np.empty
                pass
            else:
                raise ValueError("Empty tensors need dimension "
                                 "parameter 'dim'.")

        tensors = np.asarray(tensors, dtype=dtype, order=order)
        obj = tensors.view(cls)

        ''' check dimension(s) '''
        for d in obj.shape[1:]:
            if not d == obj.dim:
                raise ValueError("Dimensions are inconstistent. "
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
532
                                 "Manifold dimension is {obj.dim}. "
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
                                 "Found dimensions {found} in {obj}."
                                 .format(found=obj.shape[1:], **locals()))
        if dim is not None:
            if dim != obj.dim:
                raise ValueError("Incorrect dimension: {obj.dim} given,"
                                 " {dim} demanded."
                                 .format(**locals()))

        ''' update kwargs with defaults from slots '''
        cls._update_slot_kwargs(kwargs)

        ''' set kwargs to slots attributes '''
        for attr in kwargs:
            if attr not in cls._iter_slots():
                raise AttributeError("Keyword argument {attr} not accepted "
                                     "for class {cls}".format(**locals()))
            setattr(obj, attr, kwargs[attr])

        return obj

553
554
555
556
    def __iter__(self):
        """
        Forwarding iterations to the bulk array. Otherwise __getitem__ would
        kick in and slow down imensely.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
557

558
559
560
561
562
563
564
565
566
567
568
        Examples:
            >>> import tfields
            >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
            >>> scalar_field = tfields.TensorFields(vectors, [42, 21, 10.5], [1, 2, 3])
            >>> [(point.rank, point.dim) for point in scalar_field]
            [(0, 1), (0, 1), (0, 1)]

        """
        for index in range(len(self)):
            yield super(Tensors, self).__getitem__(index).view(Tensors)

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
569
570
571
572
573
574
575
576
577
578
579
580
    @classmethod
    def merged(cls, *objects, **kwargs):
        """
        Factory method
        Merges all tensor inputs to one tensor

        Examples:
            >>> import numpy as np
            >>> import tfields
            >>> import tfields.bases

            Use of most frequent coordinate system
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
581

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
582
            >>> vec_a = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
583
584
            >>> vec_b = tfields.Tensors([[5, 4, 1]], coord_sys=tfields.bases.cylinder)
            >>> vec_c = tfields.Tensors([[4, 2, 3]], coord_sys=tfields.bases.cylinder)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
585
            >>> merge = tfields.Tensors.merged(vec_a, vec_b, vec_c, [[2, 0, 1]])
586
            >>> assert merge.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
587
588
589
590
591
592
593
594
            >>> assert merge.equal([[0, 0, 0],
            ...                     [0, 0, 1],
            ...                     [1, -np.pi / 2, 0],
            ...                     [5, 4, 1],
            ...                     [4, 2, 3],
            ...                     [2, 0, 1]])

            Merge also shifts the maps to still refer to the same tensors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
595

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
596
597
            >>> tm_a = tfields.TensorMaps(merge, maps=[[[0, 1, 2]]])
            >>> tm_b = tm_a.copy()
598
            >>> assert tm_a.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
599
            >>> tm_merge = tfields.TensorMaps.merged(tm_a, tm_b)
600
            >>> assert tm_merge.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
601
602
603
604
605
            >>> assert tm_merge.maps[0].equal([[0, 1, 2],
            ...                               list(range(len(merge),
            ...                                          len(merge) + 3,
            ...                                          1))])
            
606
            >>> obj_list = [tfields.Tensors([[1, 2, 3]], coord_sys=tfields.bases.CYLINDER),
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
607
608
            ...             tfields.Tensors([[3] * 3]),
            ...             tfields.Tensors([[5, 1, 3]])]
609
            >>> merge2 = tfields.Tensors.merged(*obj_list, coord_sys=tfields.bases.CARTESIAN)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
610
611
            >>> assert merge2.equal([[-0.41614684, 0.90929743, 3.],
            ...                      [3, 3, 3], [5, 1, 3]], atol=1e-8)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
612

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
613
614
        """

615
616
        ''' get most frequent coord_sys or predefined coord_sys '''
        coord_sys = kwargs.get('coord_sys', None)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
617
        dimension = kwargs.get('dim', None)
618
        if coord_sys is None:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
619
620
621
            bases = []
            for t in objects:
                try:
622
                    bases.append(t.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
623
624
625
                except AttributeError:
                    pass
            if bases:
626
627
628
                # get most frequent coord_sys
                coord_sys = sorted(bases, key=Counter(bases).get, reverse=True)[0]
                kwargs['coord_sys'] = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
629
            else:
630
631
                default = cls.__slot_defaults__[cls.__slots__.index('coord_sys')]
                kwargs['coord_sys'] = default
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
632

633
        ''' transform all raw inputs to cls type with correct coord_sys. Also
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
634
635
        automatically make a copy of those instances that are of the correct
        type already.'''
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
636
        objects = [cls.__new__(cls, t, **kwargs) for t in objects]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660

        ''' check rank and dimension equality '''
        if not len(set([t.rank for t in objects])) == 1:
            raise TypeError("Tensors must have the same rank for merging.")
        if not len(set([t.dim for t in objects])) == 1:
            raise TypeError("Tensors must have the same dimension for merging.")

        ''' merge all objects '''
        remainingObjects = objects[1:] or []
        tensors = objects[0]

        for i, obj in enumerate(remainingObjects):
            tensors = np.append(tensors, obj, axis=0)

        if len(tensors) == 0 and dimension is None:
            for obj in objects:
                kwargs['dim'] = dim(obj)

        return cls.__new__(cls, tensors, **kwargs)

    @classmethod
    def grid(cls, *base_vectors, **kwargs):
        """
        Args:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
661
662
663
664
665
666
667
668
669
670
671
672
673
674
            *base_vectors (Iterable): base coordinates. The amount of base
                vectors defines the dimension

            **kwargs:
                iter_order (list): order in which the iteration will be done.
                    Frequency rises with position in list. default is [0, 1, 2]
                    iteration will be done like::
                          
                    for v0 in base_vectors[iter_order[0]]:
                        for v1 in base_vectors[iter_order[1]]:
                            for v2 in base_vectors[iter_order[2]]:
                                coords0.append(locals()['v%i' % iter_order[0]])
                                coords1.append(locals()['v%i' % iter_order[1]])
                                coords2.append(locals()['v%i' % iter_order[2]])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
675
676
677

        Examples:
            Initilaize using the mgrid notation
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
678

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
679
680
681
682
683
684
685
686
687
688
689
            >>> import tfields
            >>> mgrid = tfields.Tensors.grid((0, 1, 2j), (3, 4, 2j), (6, 7, 2j))
            >>> mgrid.equal([[0, 3, 6],
            ...              [0, 3, 7],
            ...              [0, 4, 6],
            ...              [0, 4, 7],
            ...              [1, 3, 6],
            ...              [1, 3, 7],
            ...              [1, 4, 6],
            ...              [1, 4, 7]])
            True
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
690
691
692

            Lists or arrays are accepted also.
            Furthermore, the iteration order can be changed
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
693

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
            >>> lins = tfields.Tensors.grid(np.linspace(3, 4, 2), np.linspace(0, 1, 2),
            ...                             np.linspace(6, 7, 2), iter_order=[1, 0, 2])
            >>> lins.equal([[3, 0, 6],
            ...             [3, 0, 7],
            ...             [4, 0, 6],
            ...             [4, 0, 7],
            ...             [3, 1, 6],
            ...             [3, 1, 7],
            ...             [4, 1, 6],
            ...             [4, 1, 7]])
            True
            >>> lins2 = tfields.Tensors.grid(np.linspace(0, 1, 2),
            ...                              np.linspace(3, 4, 2),
            ...                              np.linspace(6, 7, 2),
            ...                              iter_order=[2, 0, 1])
            >>> lins2.equal([[0, 3, 6],
            ...              [0, 4, 6],
            ...              [1, 3, 6],
            ...              [1, 4, 6],
            ...              [0, 3, 7],
            ...              [0, 4, 7],
            ...              [1, 3, 7],
            ...              [1, 4, 7]])
            True

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
719
720
            When given the coord_sys argument, the grid is performed in the
            given coorinate system:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
721

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
722
723
724
725
726
727
728
729
730
            >>> lins3 = tfields.Tensors.grid(np.linspace(4, 9, 2),
            ...                              np.linspace(np.pi/2, np.pi/2, 1),
            ...                              np.linspace(4, 4, 1),
            ...                              iter_order=[2, 0, 1],
            ...                              coord_sys=tfields.bases.CYLINDER)
            >>> assert lins3.coord_sys == 'cylinder'
            >>> lins3.transform('cartesian')
            >>> assert np.array_equal(lins3[:, 1], [4, 9])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
731
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
732
        cls_kwargs = {attr: kwargs.pop(attr) for attr in list(kwargs) if attr in cls.__slots__}
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
733
734
735
        inst = cls.__new__(cls,
                           tfields.lib.grid.igrid(*base_vectors, **kwargs),
                           **cls_kwargs)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
        return inst

    @property
    def rank(self):
        """
        Tensor rank
        """
        return rank(self)

    @property
    def dim(self):
        """
        Manifold dimension
        """
        return dim(self)

752
    def transform(self, coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
753
754
        """
        Args:
755
            coord_sys (str)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
756
757
758
759
760
761
762
763
764
765

        Examples:
            >>> import numpy as np
            >>> import tfields

            CARTESIAN to SPHERICAL
            >>> t = tfields.Tensors([[1, 2, 2], [1, 0, 0], [0, 0, -1], [0, 0, 1], [0, 0, 0]])
            >>> t.transform('spherical')

            r
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
766

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
767
768
769
            >>> assert t[0, 0] == 3

            phi
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
770

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
771
772
773
774
            >>> assert t[1, 1] == 0.
            >>> assert t[2, 1] == 0.

            theta is 0 at (0, 0, 1) and pi / 2 at (0, 0, -1)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
775

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
776
777
778
779
780
            >>> assert round(t[1, 2], 10) == round(0, 10)
            >>> assert t[2, 2] == -np.pi / 2
            >>> assert t[3, 2] == np.pi / 2

            theta is defined 0 for R == 0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
781

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
782
783
784
785
786
            >>> assert t[4, 0] == 0.
            >>> assert t[4, 2] == 0.


            CARTESIAN to CYLINDER
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
787

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
788
789
790
            >>> tCart = tfields.Tensors([[3, 4, 42], [1, 0, 0], [0, 1, -1], [-1, 0, 1], [0, 0, 0]])
            >>> t_cyl = tCart.copy()
            >>> t_cyl.transform('cylinder')
791
            >>> assert t_cyl.coord_sys == 'cylinder'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
792
793

            R
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
794

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
795
796
797
798
799
800
            >>> assert t_cyl[0, 0] == 5
            >>> assert t_cyl[1, 0] == 1
            >>> assert t_cyl[2, 0] == 1
            >>> assert t_cyl[4, 0] == 0

            Phi
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
801
            
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
802
803
804
805
806
807
            >>> assert round(t_cyl[0, 1], 10) == round(np.arctan(4. / 3), 10)
            >>> assert t_cyl[1, 1] == 0
            >>> assert round(t_cyl[2, 1], 10) == round(np.pi / 2, 10)
            >>> assert t_cyl[1, 1] == 0

            Z
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
808
            
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
809
810
811
812
            >>> assert t_cyl[0, 2] == 42
            >>> assert t_cyl[2, 2] == -1

            >>> t_cyl.transform('cartesian')
813
            >>> assert t_cyl.coord_sys == 'cartesian'
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
814
815
816
817
            >>> assert t_cyl[0, 0] == 3

        """
        #           scalars                 empty             already there
818
819
        if self.rank == 0 or self.shape[0] == 0 or self.coord_sys == coord_sys:
            self.coord_sys = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
820
821
            return

822
823
824
        tfields.bases.transform(self, self.coord_sys, coord_sys)
        # self[:] = tfields.bases.transform(self, self.coord_sys, coord_sys)
        self.coord_sys = coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
825
826

    @contextmanager
827
    def tmp_transform(self, coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
828
        """
829
        Temporarily change the coord_sys to another coord_sys and change it back at exit
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
830
831
        This method is for cleaner code only.
        No speed improvements go with this.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
832

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
833
834
        Args:
            see transform
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
835

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
836
837
        Examples:
            >>> import tfields
838
            >>> p = tfields.Tensors([[1,2,3]], coord_sys=tfields.bases.SPHERICAL)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
839
            >>> with p.tmp_transform(tfields.bases.CYLINDER):
840
841
            ...     assert p.coord_sys == tfields.bases.CYLINDER
            >>> assert p.coord_sys == tfields.bases.SPHERICAL
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
842
843

        """
844
845
        baseBefore = self.coord_sys
        if baseBefore == coord_sys:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
846
847
            yield
        else:
848
            self.transform(coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
849
850
851
852
853
854
855
856

            yield

            self.transform(baseBefore)

    def mirror(self, coordinate, condition=None):
        """
        Reflect/Mirror the entries meeting <condition> at <coordinate> = 0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
857

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
858
859
        Args:
            coordinate (int): coordinate index
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
860

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
861
862
863
864
865
866
        Examples:
            >>> import tfields
            >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]])
            >>> p.mirror(1)
            >>> assert p.equal([[1, -2, 3], [4, -5,  6], [1, -2, -6]])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
867
868
            multiple coordinates can be mirrored at the same time
            i.e. a point mirrorion would be
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
869

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
870
871
872
873
874
875
            >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6]])
            >>> p.mirror([0,2])
            >>> assert p.equal([[-1, 2, -3], [-4, 5, -6], [-1, 2., 6.]])

            You can give a condition as mask or as str.
            The mirroring will only be applied to the points meeting the condition.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
876

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
877
878
            >>> import sympy
            >>> x, y, z = sympy.symbols('x y z')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
879
            >>> p.mirror([0, 2], y > 3)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
880
881
882
883
884
885
886
887
888
889
            >>> p.equal([[-1, 2, -3], [4, 5, 6], [-1, 2, 6]])
            True

        """
        if condition is None:
            condition = np.array([True for i in range(len(self))])
        elif isinstance(condition, sympy.Basic):
            condition = self.evalf(condition)
        if isinstance(coordinate, list) or isinstance(coordinate, tuple):
            for c in coordinate:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
890
                self.mirror(c, condition=condition)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
891
892
893
894
895
896
        elif isinstance(coordinate, int):
            self[:, coordinate][condition] *= -1
        else:
            raise TypeError()

    def to_segment(self, segment, num_segments, coordinate,
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
897
                   periodicity=2 * np.pi, offset=0.,
898
                   coord_sys=None):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
899
900
901
902
903
        """
        For circular (close into themself after
        <periodicity>) coordinates at index <coordinate> assume
        <num_segments> segments and transform all values to
        segment number <segment>
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
904

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
905
906
907
908
909
910
        Args:
            segment (int): segment index (starting at 0)
            num_segments (int): number of segments
            coordinate (int): coordinate index
            periodicity (float): after what lenght, the coordiante repeats
            offset (float): offset in the mapping
911
            coord_sys (str or sympy.CoordinateSystem): in which coord sys the
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
912
                transformation should be done
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
913

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
914
915
916
917
918
        Examples:
            >>> import tfields
            >>> import numpy as np
            >>> pStart = tfields.Points3D([[6, 2 * np.pi, 1],
            ...                            [6, 2 * np.pi / 5 * 3, 1]],
919
            ...                           coord_sys='cylinder')
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
920
921
922
923
924
925
926
927
928
929
930
931
            >>> p = tfields.Points3D(pStart)
            >>> p.to_segment(0, 5, 1, offset=-2 * np.pi / 10)
            >>> assert np.array_equal(p[:, 1], [0, 0])

            >>> p2 = tfields.Points3D(pStart)
            >>> p2.to_segment(1, 5, 1, offset=-2 * np.pi / 10)
            >>> assert np.array_equal(np.round(p2[:, 1], 4), [1.2566] * 2)

        """
        if segment > num_segments - 1:
            raise ValueError("Segment {0} not existent.".format(segment))

932
933
934
        if coord_sys is None:
            coord_sys = self.coord_sys
        with self.tmp_transform(coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
935
936
937
938
939
940
941
942
943
944
            # map all values to first segment
            self[:, coordinate] = \
                (self[:, coordinate] - offset) % (periodicity / num_segments) + \
                offset + segment * periodicity / num_segments

    def equal(self, other,
              rtol=None, atol=None, equal_nan=False,
              return_bool=True):
        """
        Evaluate, whether the instance has the same content as other.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
945

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
946
947
948
949
950
951
952
        Args:
            optional:
                rtol (float)
                atol (float)
                equal_nan (bool)
            see numpy.isclose
        """
953
        if issubclass(type(other), Tensors) and self.coord_sys != other.coord_sys:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
954
            other = other.copy()
955
            other.transform(self.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
        x, y = np.asarray(self), np.asarray(other)
        if rtol is None and atol is None:
            mask = (x == y)
            if equal_nan:
                both_nan = np.isnan(x) & np.isnan(y)
                mask[both_nan] = both_nan[both_nan]
        else:
            if rtol is None:
                rtol = 0.
            if atol is None:
                atol = 0.
            mask = np.isclose(x, y, rtol=rtol, atol=atol, equal_nan=equal_nan)
        if return_bool:
            return bool(np.all(mask))
        return mask

    def contains(self, other, **kwargs):
        """
        Inspired by a speed argument @
        stackoverflow.com/questions/14766194/testing-whether-a-numpy-array-contains-a-given-row
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
976

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
977
978
979
980
981
982
983
984
985
        Examples:
            >>> import tfields
            >>> p = tfields.Tensors([[1,2,3], [4,5,6], [6,7,8]])
            >>> p.contains([4,5,6])
            True

        """
        return any(self.equal(other, return_bool=False).all(1))

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
986
    def indices(self, tensor, rtol=None, atol=None):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
987
988
989
        """
        Returns:
            list of int: indices of tensor occuring
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
990

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
991
        Examples:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
992
            Rank 1 Tensors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
993

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
994
995
996
997
998
999
1000
1001
            >>> import tfields
            >>> p = tfields.Tensors([[1,2,3], [4,5,6], [6,7,8], [4,5,6],
            ...                      [4.1, 5, 6]])
            >>> p.indices([4,5,6])
            array([1, 3])
            >>> p.indices([4,5,6.1], rtol=1e-5, atol=1e-1)
            array([1, 3, 4])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1002
            Rank 0 Tensors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1003

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1004
1005
1006
1007
1008
1009
            >>> p = tfields.Tensors([2, 3, 6, 3.01])
            >>> p.indices(3)
            array([1])
            >>> p.indices(3, rtol=1e-5, atol=1e-1)
            array([1, 3])

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1010
        """
1011
1012
        x, y = np.asarray(self), np.asarray(tensor)
        if rtol is None and atol is None:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1013
            equal_method = np.equal
1014
1015
        else:
            equal_method = lambda a, b: np.isclose(a, b, rtol=rtol, atol=atol)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1016
1017

        # inspired by https://stackoverflow.com/questions/19228295/find-ordered-vector-in-numpy-array
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1018
1019
1020
1021
1022
1023
        if self.rank == 0:
            indices = np.where(equal_method((x-y), 0))[0]
        elif self.rank == 1:
            indices = np.where(np.all(equal_method((x-y), 0), axis=1))[0]
        else:
            raise NotImplementedError()
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1024
1025
        return indices

1026
    def index(self, tensor, **kwargs):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1027
1028
1029
        """
        Args:
            tensor
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1030

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1031
1032
1033
        Returns:
            int: index of tensor occuring
        """
1034
        indices = self.indices(tensor, **kwargs)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1035
1036
1037
1038
1039
1040
1041
        if not indices:
            return None
        if len(indices) == 1:
            return indices[0]
        raise ValueError("Multiple occurences of value {}"
                         .format(tensor))

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1042
    def moment(self, moment, weights=None):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1043
1044
1045
        """
        Returns:
            Moments of the distribution.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1046

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1047
1048
        Args:
            moment (int): n-th moment
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1049

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1050
1051
        Examples:
            >>> import tfields
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1052
            >>> import numpy as np
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1053
1054

            Skalars
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1055

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1056
            >>> t = tfields.Tensors(range(1, 6))
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1057
            >>> assert t.moment(1) == 0
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1058
1059
1060
1061
            >>> assert t.moment(1, weights=[-2, -1, 20, 1, 2]) == 0.5
            >>> assert t.moment(2, weights=[0.25, 1, 17.5, 1, 0.25]) == 0.2

            Vectors
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1062

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1063
            >>> t = tfields.Tensors(list(zip(range(1, 6), range(1, 6))))
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1064
1065
1066
1067
            >>> assert Tensors([0.5, 0.5]).equal(t.moment(1, weights=[-2, -1, 20, 1, 2]))
            >>> assert Tensors([1. , 0.5]).equal(
            ...     t.moment(1, weights=list(zip([-2, -1, 10, 1, 2],
            ...                                  [-2, -1, 20, 1, 2]))))
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1068

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1069
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1070
1071
1072
1073
        array = tfields.lib.stats.moment(self, moment, weights=weights)
        if self.rank == 0:  # scalar
            array = [array]
        return Tensors(array, coord_sys=self.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1074
1075
1076
1077
1078
1079

    def closest(self, other, **kwargs):
        """
        Args:
            other (Tensors): closest points to what? -> other
            **kwargs: forwarded to scipy.spatial.cKDTree.query
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1080

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1081
1082
        Returns:
            array shape(len(self)): Indices of other points that are closest to own points
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1083

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1084
1085
1086
1087
1088
1089
1090
1091
1092
        Examples:
            >>> import tfields
            >>> m = tfields.Tensors([[1,0,0], [0,1,0], [1,1,0], [0,0,1],
            ...                      [1,0,1]])
            >>> p = tfields.Tensors([[1.1,1,0], [0,0.1,1], [1,0,1.1]])
            >>> p.closest(m)
            array([2, 3, 4])

        """
1093
        with other.tmp_transform(self.coord_sys):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1094
1095
1096
1097
1098
1099
1100
1101
            # balanced_tree option gives huge speedup!
            kd_tree = sp.spatial.cKDTree(other, 1000,
                                         balanced_tree=False)
            res = kd_tree.query(self, **kwargs)
            array = res[1]

        return array

1102
    def evalf(self, expression=None, coord_sys=None):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1103
1104
1105
        """
        Args:
            expression (sympy logical expression)
1106
            coord_sys (str): coord_sys to evalfuate the expression in.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1107

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1108
1109
1110
        Returns:
            np.ndarray: mask of dtype bool with lenght of number of points in self.
                 This array is True, where expression evalfuates True.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1111

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
        Examples:
            >>> import tfields
            >>> import numpy
            >>> import sympy
            >>> x, y, z = sympy.symbols('x y z')
            >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6],
            ...                      [-5, -5, -5], [1,0,-1], [0,1,-1]])
            >>> np.array_equal(p.evalf(x > 0),
            ...                [True, True, True, False, True, False])
            True
            >>> np.array_equal(p.evalf(x >= 0),
            ...                [True, True, True, False, True, True])
            True

            And combination
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1127

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1128
1129
1130
1131
1132
            >>> np.array_equal(p.evalf((x > 0) & (y < 3)),
            ...                [True, False, True, False, True, False])
            True

            Or combination
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1133

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1134
1135
1136
1137
1138
1139
            >>> np.array_equal(p.evalf((x > 0) | (y > 3)),
            ...                [True, True, True, False, True, False])
            True

        """
        coords = sympy.symbols('x y z')
1140
        with self.tmp_transform(coord_sys or self.coord_sys):
1141
            mask = tfields.evalf(np.array(self), expression, coords=coords)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1142
1143
        return mask

1144
    def cut(self, expression, coord_sys=None):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1145
1146
        """
        Default cut method for Points3D. Works on a copy.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1147

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1148
1149
1150
        Args:
            expression (sympy logical expression): logical expression which will be evalfuated.
                             use symbols x, y and z
1151
            coord_sys (str): coord_sys to evalfuate the expression in.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1152

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
        Examples:
            >>> import tfields
            >>> import sympy
            >>> x, y, z = sympy.symbols('x y z')
            >>> p = tfields.Tensors([[1., 2., 3.], [4., 5., 6.], [1, 2, -6],
            ...                      [-5, -5, -5], [1,0,-1], [0,1,-1]])
            >>> p.cut(x > 0).equal([[1, 2, 3],
            ...                     [4, 5, 6],
            ...                     [1, 2, -6],
            ...                     [1, 0, -1]])
            True

            combinations of cuts
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1166

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1167
1168
1169
1170
1171
1172
1173
1174
1175
            >>> p.cut((x > 0) & (z < 0)).equal([[1, 2, -6], [1, 0, -1]])
            True

        Returns:
            copy of self with cut applied

        """
        if len(self) == 0:
            return self.copy()
1176
        mask = self.evalf(expression, coord_sys=coord_sys or self.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1177
1178
1179
1180
1181
1182
1183
        mask.astype(bool)
        inst = self[mask].copy()
        return inst

    def distances(self, other, **kwargs):
        """
        Args:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1184
            other(Iterable)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1185
1186
            **kwargs:
                ... is forwarded to sp.spatial.distance.cdist
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1187

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
        Examples:
            >>> import tfields
            >>> p = tfields.Tensors.grid((0, 2, 3j),
            ...                          (0, 2, 3j),
            ...                          (0, 0, 1j))
            >>> p[4,2] = 1
            >>> p.distances(p)[0,0]
            0.0
            >>> p.distances(p)[5,1]
            1.4142135623730951
            >>> p.distances([[0,1,2]])[-1][0] == 3
            True

        """
1202
        if issubclass(type(other), Tensors) and self.coord_sys != other.coord_sys:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1203
            other = other.copy()
1204
            other.transform(self.coord_sys)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
        return sp.spatial.distance.cdist(self, other, **kwargs)

    def min_dists(self, other=None, **kwargs):
        """
        Args:
            other(array | None): if None: closest distance to self
            **kwargs:
                memory_saving (bool): for very large array comparisons
                    default False
                ... rest is forwarded to sp.spatial.distance.cdist

        Returns:
            np.array: minimal distances of self to other

        Examples:
            >>> import tfields
            >>> import numpy as np
            >>> p = tfields.Tensors.grid((0, 2, 3),
            ...                          (0, 2, 3),
            ...                          (0, 0, 1))
            >>> p[4,2] = 1
            >>> dMin = p.min_dists()
            >>> expected = [1] * 9
            >>> expected[4] = np.sqrt(2)
            >>> np.array_equal(dMin, expected)
            True

            >>> dMin2 = p.min_dists(memory_saving=True)
            >>> bool((dMin2 == dMin).all())
            True

        """
        memory_saving = kwargs.pop('memory_saving', False)

        if other is None:
            other = self
        else:
            raise NotImplementedError("Should be easy but make shure not to remove diagonal")

        try:
            if memory_saving:
                raise MemoryError()
            d = self.distances(other, **kwargs)
            return d[d > 0].reshape(d.shape[0], - 1).min(axis=1)
        except MemoryError:
            min_dists = np.empty(self.shape[0])
1251
            for i, point in enumerate(np.array(other)):
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1252
1253
1254
1255
1256
1257
1258
1259
                d = self.distances([point], **kwargs)
                min_dists[i] = d[d > 0].reshape(-1).min()
            return min_dists

    def epsilon_neighbourhood(self, epsilon):
        """
        Returns:
            indices for those sets of points that lie within epsilon around the other
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1260

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
        Examples:
            Create mesh grid with one extra point that will have 8 neighbours
            within epsilon
            >>> import tfields
            >>> p = tfields.Tensors.grid((0, 1, 2j),
            ...                          (0, 1, 2j),
            ...                          (0, 1, 2j))
            >>> p = tfields.Tensors.merged(p, [[0.5, 0.5, 0.5]])
            >>> [len(en) for en in p.epsilon_neighbourhood(0.9)]
            [2, 2, 2, 2, 2, 2, 2, 2, 9]

        """
        indices = np.arange(self.shape[0])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1274
        dists = self.distances(self)  # this takes long
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1275
        distsInEpsilon = dists <= epsilon
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1276
1277
        indices = [indices[die] for die in distsInEpsilon]  # this takes long
        return indices
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1278
1279
1280
1281

    def _weights(self, weights, rigid=True):
        """
        transformer method for weights inputs.
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1282

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1283
1284
1285
1286
1287
        Args:
            weights (np.ndarray | None):
                If weights is None, use np.ones
                Otherwise just pass the weights.
            rigid (bool): demand equal weights and tensor length
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1288

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
        Returns:
            weight array
        """
        # set weights to 1.0 if weights is None
        if weights is None:
            weights = np.ones(len(self))
        if rigid:
            if not len(weights) == len(self):
                raise ValueError("Equal number of weights as tensors demanded.")
        return weights

    def cov_eig(self, weights=None):
        """
        Calculate the covariance eigenvectors with lenghts of eigenvalues
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1303

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
        Args:
            weights (np.array | int | None): index to scalars to weight with
        """
        # weights = self.getNormedWeightedAreas(weights=weights)
        weights = self._weights(weights)
        cov = np.cov(self.T,
                     ddof=0,
                     aweights=weights)
        # calculate eigenvalues and eigenvectors of covariance
        evalfs, evecs = np.linalg.eigh(cov)
        idx = evalfs.argsort()[::-1]
        evalfs = evalfs[idx]
        evecs = evecs[:, idx]
        e = np.concatenate((evecs, evalfs.reshape(1, 3)))
        return e.T.reshape(12, )

    def main_axes(self, weights=None):
        """
        Returns:
            Main Axes eigen-vectors
        """
        # weights = self.getNormedWeightedAreas(weights=weights)
        weights = self._weights(weights)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1327
        mean = np.array(self).mean(axis=0)
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1328
1329
1330
1331
1332
1333
1334
1335
        relative_coords = self - mean
        cov = np.cov(relative_coords.T,
                     ddof=0,
                     aweights=weights)
        # calculate eigenvalues and eigenvectors of covariance
        evalfs, evecs = np.linalg.eigh(cov)
        return (evecs * evalfs.T).T

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1336
1337
    def plot(self, **kwargs):
        """
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1338
        Forwarding to tfields.lib.plotting.plot_array
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1339
1340
1341
1342
        """
        artist = tfields.plotting.plot_array(self, **kwargs)
        return artist

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359

class TensorFields(Tensors):
    """
    Discrete Tensor Field

    Args:
        tensors (array): base tensors
        *fields (array): multiple fields assigned to one base tensor. Fields
            themself are also of type tensor
        **kwargs:
            rigid (bool): demand equal field and tensor lenght
            ... : see tfields.Tensors

    Examples:
        >>> from tfields import Tensors, TensorFields
        >>> scalars = Tensors([0, 1, 2])
        >>> vectors = Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
1360
1361
        >>> scalar_field = TensorFields(vectors, scalars)
        >>> scalar_field.rank
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1362
        1
1363
        >>> scalar_field.fields[0].rank
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
        0
        >>> vectorField = TensorFields(vectors, vectors)
        >>> vectorField.fields[0].rank
        1
        >>> vectorField.fields[0].dim
        3
        >>> multiField = TensorFields(vectors, scalars, vectors)
        >>> multiField.fields[0].dim
        1
        >>> multiField.fields[1].dim
        3

        Empty initialization
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1377

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1378
1379
1380
1381
1382
        >>> empty_field = TensorFields([], dim=3)
        >>> assert empty_field.shape == (0, 3)
        >>> assert empty_field.fields == []

        Directly initializing with lists or arrays
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1383

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1384
1385
1386
1387
1388
        >>> vec_field_raw = tfields.TensorFields([[0, 1, 2], [3, 4, 5]],
        ...                                       [1, 6], [2, 7])
        >>> assert len(vec_field_raw.fields) == 2

        Copying
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1389

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1390
1391
1392
        >>> cp = TensorFields(vectorField)
        >>> assert vectorField.equal(cp)

1393
        Copying takes care of coord_sys
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1394

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1395
1396
        >>> cp.transform(tfields.bases.CYLINDER)
        >>> cp_cyl = TensorFields(cp)
1397
        >>> assert cp_cyl.coord_sys == tfields.bases.CYLINDER
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1398
1399

        Copying with changing type
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1400

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1401
1402
1403
1404
1405
1406
        >>> tcp = TensorFields(vectorField, dtype=int)
        >>> assert vectorField.equal(tcp)
        >>> assert tcp.dtype == int

    Raises:
        TypeError:
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1407

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1408
1409
1410
1411
1412
1413
1414
        >>> import tfields
        >>> tfields.TensorFields([1, 2, 3], [3])  # doctest: +ELLIPSIS
        Traceback (most recent call last):
        ...
        ValueError: Length of base (3) should be the same as the length of all fields ([1]).

        This error can be suppressed by setting rigid=False
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1415

Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1416
1417
1418
1419
        >>> loose = tfields.TensorFields([1, 2, 3], [3], rigid=False)
        >>> assert len(loose) != 1

    """
1420
    __slots__ = ['coord_sys', 'fields']
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451

    def __new__(cls, tensors, *fields, **kwargs):
        rigid = kwargs.pop('rigid', True)

        obj = super(TensorFields, cls).__new__(cls, tensors, **kwargs)
        if issubclass(type(tensors), TensorFields):
            if tensors.fields is None:
                raise ValueError("Tensor fields were None")
            obj.fields = [Tensors(field) for field in tensors.fields]
        elif not fields:
            obj.fields = []
        if fields:
            # (over)write fields
            obj.fields = [Tensors(field) for field in fields]

        if rigid:
            olen = len(obj)
            field_lengths = [len(f) for f in obj.fields]
            if not all([flen == olen for flen in field_lengths]):
                raise ValueError("Length of base ({olen}) should be the same as"
                                 " the length of all fields ({field_lengths})."
                                 .format(**locals()))
        return obj

    def __getitem__(self, index):
        """
        In addition to the usual, also slice fields
        Examples:
            >>> import tfields
            >>> import numpy as np
            >>> vectors = tfields.Tensors([[0, 0, 0], [0, 0, 1], [0, -1, 0]])
1452
            >>> scalar_field = tfields.TensorFields(vectors, [42, 21, 10.5], [1, 2, 3])
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1453
1454

            Slicing
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1455

1456
            >>> sliced = scalar_field[2:]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1457
1458
1459
1460
1461
            >>> assert isinstance(sliced, tfields.TensorFields)
            >>> assert isinstance(sliced.fields[0], tfields.Tensors)
            >>> assert sliced.fields[0].equal([10.5])

            Picking
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1462

1463
            >>> picked = scalar_field[1]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1464
1465
1466
            >>> assert np.array_equal(picked, [0, 0, 1])

            Masking
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1467

1468
            >>> masked = scalar_field[[True, False, True]]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1469
1470
1471
1472
1473
            >>> assert masked.equal([[0, 0, 0], [0, -1, 0]])
            >>> assert masked.fields[0].equal([42, 10.5])
            >>> assert masked.fields[1].equal([1, 3])

            Iteration
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1474

1475
            >>> _ = [point for point in scalar_field]
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493

        """
        item = super(TensorFields, self).__getitem__(index)
        try:
            if issubclass(type(item), TensorFields):
                if isinstance(index, tuple):
                    index = index[0]
                if item.fields:
                    item.fields = [field.__getitem__(index) for field in item.fields]
        except IndexError as err:
            warnings.warn("Index error occured for field.__getitem__. Error "
                          "message: {err}".format(**locals()))

        return item

    def __setitem__(self, index, item):
        """
        In addition to the usual, also slice fields
Daniel Boeckenhoff's avatar
Daniel Boeckenhoff committed
1494