Commit 84e1ddbe authored by Pierre Navaro's avatar Pierre Navaro
Browse files
parents 2e13eff2 c7ef2031
Pipeline #38759 failed with stages
in 16 seconds
......@@ -6,13 +6,9 @@
Stable Gaussian radial basis function interpolation based on HermiteGF expansion
Author: Anna Yurova
This is an implementation of the method described in the paper
[*STABLE EVALUATION OF GAUSSIAN RADIAL BASIS FUNCTIONS USING HERMITE POLYNOMIALS*](https://arxiv.org/abs/1709.02164)
by Anna Yurova and Katharina Kormann.
Anna Yurova and Katharina Kormann [*Stable evaluation of guassian radial basis functions using Hermite polynomials*](https://arxiv.org/abs/1709.02164).
- HermiteGF-tensor in 1-5D. The implementation of 4-5D cases is parallel. 5D tests have to be run on a cluster to be finished in a reasonable time.
......
......@@ -4,5 +4,7 @@ Stable evaluation of Gaussian radial basis functions using Hermite polynomials
## Types
```@autodocs
Modules = [HermiteGF]
Order = [:type]
```
"""
Chebyshev( nx, xmin, xmax )
Chebyshev( xmin, xmax, nx )
Chebyshev nodes
......@@ -14,7 +14,7 @@ struct Chebyshev <: NodesType
function Chebyshev( xmin, xmax, nx )
xk = zeros(Float64, nx)
θ = (π:-π/(nx-1):-1e-14);
θ = (π:-π/(nx-1):-1e-14)
xk .= ((cos.(θ).+1)*(xmax-xmin))/2 .+ xmin
new( nx, xmin, xmax, xk )
......
"""
Uniform( nx, xmin, xmax )
Uniform( xmin, xmax, nx )
Uniform nodes
......
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment