diff --git a/tests/test_base.py b/tests/test_base.py index 83985031ee7db6dabec44b5f32151c818809a523..97950f010d5ab5e39f538a4aedf1b53c5a2d5c47 100755 --- a/tests/test_base.py +++ b/tests/test_base.py @@ -169,16 +169,20 @@ def acceleration_test(c, m = 3, species = 0): return -10*np.log10(np.mean((a - b)**2, axis = (0, 2)) / np.mean(a**2, axis = (0, 2))) pid = np.argmin(SNR(num_acc1, acc[n+1:-n-1])) pars = d['parameters'] - print('integration={0}, steps={1}, interp={2}, neighbours={3}, smoothness={4}, '.format( - pars['tracers{0}_integration_method'.format(species)].value, - pars['tracers{0}_integration_steps'.format(species)].value, - pars[str(pars['tracers{0}_field'.format(species)].value) + '_type'].value, - pars[str(pars['tracers{0}_field'.format(species)].value) + '_neighbours'].value, - pars[str(pars['tracers{0}_field'.format(species)].value) + '_smoothness'].value) + - 'SNR d1p-vel={0:.3f}, d1v-acc={1:.3f}, d2p-acc={2:.3f}'.format( - np.mean(SNR(num_vel1, vel[n+1:-n-1])), - np.mean(SNR(num_acc1, acc[n+1:-n-1])), - np.mean(SNR(num_acc2, acc[n+1:-n-1])))) + to_print = ( + 'integration={0}, steps={1}, interp={2}, neighbours={3}, '.format( + pars['tracers{0}_integration_method'.format(species)].value, + pars['tracers{0}_integration_steps'.format(species)].value, + pars[str(pars['tracers{0}_field'.format(species)].value) + '_type'].value, + pars[str(pars['tracers{0}_field'.format(species)].value) + '_neighbours'].value)) + if 'spline' in pars['tracers{0}_field'.format(species)].value: + to_print += 'smoothness = {0}, '.format(pars[str(pars['tracers{0}_field'.format(species)].value) + '_smoothness'].value) + to_print += ( + 'SNR d1p-vel={0:.3f}, d1v-acc={1:.3f}, d2p-acc={2:.3f}'.format( + np.mean(SNR(num_vel1, vel[n+1:-n-1])), + np.mean(SNR(num_acc1, acc[n+1:-n-1])), + np.mean(SNR(num_acc2, acc[n+1:-n-1])))) + print(to_print) for cc in range(3): a.plot(num_acc1[:, pid, cc], color = col[cc]) a.plot(num_acc2[:, pid, cc], color = col[cc], dashes = (2, 2))