From 27e196fbd9ef3af1cd90ac2acdb4c38b245ecffc Mon Sep 17 00:00:00 2001 From: Chichi Lalescu <clalesc1@jhu.edu> Date: Fri, 27 Feb 2015 14:06:32 -0500 Subject: [PATCH] use MPI_FLOAT instead of MPI_REAL4 --- makefile | 2 +- src/Morton_shuffler.cpp | 12 +- src/fftwf_tools.cpp | 2 +- src/field_descriptor.cpp | 12 +- test3.ipynb | 709 +++++++++++++++++++++++++++++++++++++-- 5 files changed, 694 insertions(+), 43 deletions(-) diff --git a/makefile b/makefile index 5e0bc143..d85138e3 100644 --- a/makefile +++ b/makefile @@ -23,7 +23,7 @@ MPICXX = mpicxx LINKER = mpicxx -DEFINES = -DNDEBUG +DEFINES = #-DNDEBUG CFLAGS = -Wall \ -O2 \ #-pg \ diff --git a/src/Morton_shuffler.cpp b/src/Morton_shuffler.cpp index 7d97447c..c351c1a7 100644 --- a/src/Morton_shuffler.cpp +++ b/src/Morton_shuffler.cpp @@ -53,15 +53,15 @@ Morton_shuffler::Morton_shuffler( n[1] = N1; n[2] = N2; n[3] = this->d; - this->dinput = new field_descriptor(4, n, MPI_REAL4, MPI_COMM_WORLD); + this->dinput = new field_descriptor(4, n, MPI_FLOAT, MPI_COMM_WORLD); n[0] = N0/8; n[1] = N1/8; n[2] = N2/8; n[3] = 8*8*8*this->d; - this->drcubbie = new field_descriptor(4, n, MPI_REAL4, MPI_COMM_WORLD); + this->drcubbie = new field_descriptor(4, n, MPI_FLOAT, MPI_COMM_WORLD); n[0] = (N0/8) * (N1/8) * (N2/8); n[1] = 8*8*8*this->d; - this->dzcubbie = new field_descriptor(2, n, MPI_REAL4, MPI_COMM_WORLD); + this->dzcubbie = new field_descriptor(2, n, MPI_FLOAT, MPI_COMM_WORLD); //set up output file descriptor int out_rank, out_nprocs; @@ -78,7 +78,7 @@ Morton_shuffler::Morton_shuffler( n[0] = ((N0/8) * (N1/8) * (N2/8)) / nfiles; n[1] = 8*8*8*this->d; MPI_Comm_split(MPI_COMM_WORLD, this->out_group, out_rank, &this->out_communicator); - this->doutput = new field_descriptor(2, n, MPI_REAL4, this->out_communicator); + this->doutput = new field_descriptor(2, n, MPI_FLOAT, this->out_communicator); } Morton_shuffler::~Morton_shuffler() @@ -138,14 +138,14 @@ int Morton_shuffler::shuffle( if (myrank == rid) MPI_Send( rz, cubbie_size, - MPI_REAL4, + MPI_FLOAT, zid, z, MPI_COMM_WORLD); else MPI_Recv( rtmp + zz*cubbie_size, cubbie_size, - MPI_REAL4, + MPI_FLOAT, rid, z, MPI_COMM_WORLD, diff --git a/src/fftwf_tools.cpp b/src/fftwf_tools.cpp index 67d7a818..5135a795 100644 --- a/src/fftwf_tools.cpp +++ b/src/fftwf_tools.cpp @@ -163,7 +163,7 @@ int fftwf_get_descriptors_3D( ntmp[0] = n0; ntmp[1] = n1; ntmp[2] = n2; - *fr = new field_descriptor(3, ntmp, MPI_REAL4, MPI_COMM_WORLD); + *fr = new field_descriptor(3, ntmp, MPI_FLOAT, MPI_COMM_WORLD); ntmp[0] = n0; ntmp[1] = n1; ntmp[2] = n2/2+1; diff --git a/src/field_descriptor.cpp b/src/field_descriptor.cpp index ce9b145f..fba906b8 100644 --- a/src/field_descriptor.cpp +++ b/src/field_descriptor.cpp @@ -160,7 +160,7 @@ field_descriptor::field_descriptor( tsubsizes, tstarts, MPI_ORDER_C, - MPI_REAL4, + MPI_FLOAT, &this->mpi_array_dtype); MPI_Type_commit(&this->mpi_array_dtype); } @@ -232,15 +232,15 @@ int field_descriptor::read( MPI_File_set_view( f, 0, - MPI_REAL4, + MPI_FLOAT, this->mpi_array_dtype, - "native", //this needs to be made more general + "external32", //this needs to be made more general info); MPI_File_read_all( f, buffer, read_size, - MPI_REAL4, + MPI_FLOAT, MPI_STATUS_IGNORE); MPI_File_close(&f); } @@ -271,7 +271,7 @@ int field_descriptor::write( MPI_File_set_view( f, 0, - MPI_REAL4, + MPI_FLOAT, this->mpi_array_dtype, "native", //this needs to be made more general info); @@ -279,7 +279,7 @@ int field_descriptor::write( f, buffer, read_size, - MPI_REAL4, + MPI_FLOAT, MPI_STATUS_IGNORE); MPI_File_close(&f); } diff --git a/test3.ipynb b/test3.ipynb index da102d8e..538027d7 100644 --- a/test3.ipynb +++ b/test3.ipynb @@ -1,7 +1,7 @@ { "metadata": { "name": "", - "signature": "sha256:36cd47ff064b589a2110031c054c1d9eaa0011c1b0627ee83866e04516e42c63" + "signature": "sha256:f59c9e48a9601e13f2d225340408e49bbfb8c42b2b77b5262263c89e6773b9da" }, "nbformat": 3, "nbformat_minor": 0, @@ -21,7 +21,7 @@ "language": "python", "metadata": {}, "outputs": [], - "prompt_number": 1 + "prompt_number": 3 }, { "cell_type": "code", @@ -57,22 +57,14 @@ "Kdata0 = generate_data_3D(n, p = 2).astype(np.complex64)\n", "Kdata1 = generate_data_3D(n, p = 2).astype(np.complex64)\n", "Kdata2 = generate_data_3D(n, p = 2).astype(np.complex64)\n", - "Kdata0.T.copy().tofile(\"Kdata0\")\n", - "Kdata1.T.copy().tofile(\"Kdata1\")\n", - "Kdata2.T.copy().tofile(\"Kdata2\")" + "Kdata0.T.copy().astype('>c8').tofile(\"Kdata0\")\n", + "Kdata1.T.copy().astype('>c8').tofile(\"Kdata1\")\n", + "Kdata2.T.copy().astype('>c8').tofile(\"Kdata2\")" ], "language": "python", "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stderr", - "text": [ - "-c:15: RuntimeWarning: divide by zero encountered in true_divide\n" - ] - } - ], - "prompt_number": 2 + "outputs": [], + "prompt_number": 37 }, { "cell_type": "code", @@ -126,19 +118,12 @@ " 0:a.shape[2]//8]\n", " bindices = np.array([bi, bj, bk])\n", " cindices = cm.grid3D_to_zindex(bindices)\n", - " plist = []\n", - " zlist = []\n", " for k in range(a.shape[0]//8):\n", " for j in range(a.shape[1]//8):\n", " for i in range(a.shape[2]//8):\n", " z = cm.grid3D_to_zindex(np.array([k, j, i]))\n", " c[z] = a[8*k:8*(k+1), 8*j:8*(j+1), 8*i:8*(i+1)]\n", - " plist.append([i, j, k])\n", - " zlist.append(z)\n", - " plist = np.array(plist)\n", - " zlist = np.array(zlist)\n", - " i = np.argsort(zlist)\n", - " return c, zlist[i], plist[i]\n", + " return c\n", "\n", "d0 = transform_py(Kdata0)\n", "d1 = transform_py(Kdata1)\n", @@ -146,7 +131,7 @@ "\n", "Rdata_py_tmp = np.array([d0, d1, d2]).transpose((1, 2, 3, 0))\n", "\n", - "Rdata_py, zlist, plist = array_to_8cubes(Rdata_py_tmp)\n", + "Rdata_py = array_to_8cubes(Rdata_py_tmp)\n", "\n", "# i0 = np.random.randint(16)\n", "# i1 = np.random.randint(16)\n", @@ -156,7 +141,7 @@ "language": "python", "metadata": {}, "outputs": [], - "prompt_number": 3 + "prompt_number": 38 }, { "cell_type": "code", @@ -209,13 +194,14 @@ "language": "python", "metadata": {}, "outputs": [], - "prompt_number": 19 + "prompt_number": 39 }, { "cell_type": "code", "collapsed": true, "input": [ "distance = np.max(np.abs(Rdata_py - Rdata), axis = (1, 2, 3, 4))\n", + "print(np.max(distance))\n", "if np.max(distance) > 1e-5:\n", " ax = plt.figure(figsize=(6,2)).add_subplot(111)\n", " ax.plot(distance)\n", @@ -237,7 +223,8 @@ " print (ta0[ta0.shape[0]/2-1:ta0.shape[0]/2+7])\n", " print (ta1[ta1.shape[0]/2-1:ta1.shape[0]/2+7])\n", "else:\n", - " print('distance is small')" + " print('distance is small')\n", + "print(np.max(np.abs(Rdata)))" ], "language": "python", "metadata": {}, @@ -246,11 +233,675 @@ "output_type": "stream", "stream": "stdout", "text": [ - "distance is small\n" + "14.3243\n" + ] + }, + { + "javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support.' +\n", + " 'Please try Chrome, Safari or Firefox \u2265 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.focus_on_mousover = false;\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('<div/>');\n", + " this.root.attr('style', 'display: inline-block');\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " fig.waiting = false;\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " this.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", + " 'ui-helper-clearfix\"/>');\n", + " var titletext = $(\n", + " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", + " 'text-align: center; padding: 3px;\"/>');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('<div/>');\n", + " canvas_div.resizable({ resize: mpl.debounce_resize(\n", + " function(event, ui) { fig.request_resize(ui.size.width, ui.size.height); }\n", + " , 50)});\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both;');\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('<canvas/>');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0;\")\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var rubberband = $('<canvas/>');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + " function mouse_event_fn(event) {\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keydown('key_release', canvas_keyboard_event);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width);\n", + " canvas.attr('height', height);\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('<button/>');\n", + " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", + " 'ui-button-icon-only');\n", + " button.attr('role', 'button');\n", + " button.attr('aria-disabled', 'false');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + "\n", + " var icon_img = $('<span/>');\n", + " icon_img.addClass('ui-button-icon-primary ui-icon');\n", + " icon_img.addClass(image);\n", + " icon_img.addClass('ui-corner-all');\n", + "\n", + " var tooltip_span = $('<span/>');\n", + " tooltip_span.addClass('ui-button-text');\n", + " tooltip_span.html(tooltip);\n", + "\n", + " button.append(icon_img);\n", + " button.append(tooltip_span);\n", + "\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " var fmt_picker_span = $('<span/>');\n", + "\n", + " var fmt_picker = $('<select/>');\n", + " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", + " fmt_picker_span.append(fmt_picker);\n", + " nav_element.append(fmt_picker_span);\n", + " this.format_dropdown = fmt_picker[0];\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = $(\n", + " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", + " fmt_picker.append(option)\n", + " }\n", + "\n", + " // Add hover states to the ui-buttons\n", + " $( \".ui-button\" ).hover(\n", + " function() { $(this).addClass(\"ui-state-hover\");},\n", + " function() { $(this).removeClass(\"ui-state-hover\");}\n", + " );\n", + "\n", + " var status_bar = $('<span class=\"mpl-message\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "}\n", + "\n", + "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", + "}\n", + "\n", + "mpl.figure.prototype.send_message = function(type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "}\n", + "\n", + "mpl.figure.prototype.send_draw_message = function() {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1]);\n", + " fig.send_message(\"refresh\", {});\n", + " };\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + " var x0 = msg['x0'];\n", + " var y0 = fig.canvas.height - msg['y0'];\n", + " var x1 = msg['x1'];\n", + " var y1 = fig.canvas.height - msg['y1'];\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0, 0, fig.canvas.width, fig.canvas.height);\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch(cursor)\n", + " {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message(\"ack\", {});\n", + "}\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = \"image/png\";\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src);\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data);\n", + " fig.updated_canvas_event();\n", + " return;\n", + " }\n", + " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig[\"handle_\" + msg_type];\n", + " } catch (e) {\n", + " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " }\n", + " }\n", + " };\n", + "}\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function(e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e)\n", + " e = window.event;\n", + " if (e.target)\n", + " targ = e.target;\n", + " else if (e.srcElement)\n", + " targ = e.srcElement;\n", + " if (targ.nodeType == 3) // defeat Safari bug\n", + " targ = targ.parentNode;\n", + "\n", + " // jQuery normalizes the pageX and pageY\n", + " // pageX,Y are the mouse positions relative to the document\n", + " // offset() returns the position of the element relative to the document\n", + " var x = e.pageX - $(targ).offset().left;\n", + " var y = e.pageY - $(targ).offset().top;\n", + "\n", + " return {\"x\": x, \"y\": y};\n", + "};\n", + "\n", + "mpl.figure.prototype.mouse_event = function(event, name) {\n", + " var canvas_pos = mpl.findpos(event)\n", + "\n", + " if (this.focus_on_mouseover && name === 'motion_notify')\n", + " {\n", + " this.canvas.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x;\n", + " var y = canvas_pos.y;\n", + "\n", + " this.send_message(name, {x: x, y: y, button: event.button});\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype.key_event = function(event, name) {\n", + " /* Don't fire events just when a modifier is changed. Modifiers are\n", + " sent along with other keys. */\n", + " if (event.keyCode >= 16 && event.keyCode <= 20) {\n", + " return;\n", + " }\n", + "\n", + " value = '';\n", + " if (event.ctrlKey) {\n", + " value += \"ctrl+\";\n", + " }\n", + " if (event.altKey) {\n", + " value += \"alt+\";\n", + " }\n", + " value += String.fromCharCode(event.keyCode).toLowerCase();\n", + "\n", + " this.send_message(name, {key: value});\n", + "}\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", + " if (name == 'download') {\n", + " var format_dropdown = this.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " this.ondownload(this, format);\n", + " } else {\n", + " this.send_message(\"toolbar_button\", {name: name});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "\n", + "mpl.debounce_event = function(func, time){\n", + " var timer;\n", + " return function(event){\n", + " clearTimeout(timer);\n", + " timer = setTimeout(function(){ func(event); }, time);\n", + " };\n", + "}\n", + "\n", + "mpl.debounce_resize = function(func, time){\n", + " var timer;\n", + " return function(event, ui){\n", + " clearTimeout(timer);\n", + " timer = setTimeout(function(){ func(event, ui); }, time);\n", + " };\n", + "}\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", + "\n", + "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function() {\n", + " comm.close()\n", + " };\n", + " ws.send = function(m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function(msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overriden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data'])\n", + " });\n", + " return ws;\n", + "}\n", + "\n", + "mpl.mpl_figure_comm = function(comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = $(\"#\" + id);\n", + " var ws_proxy = comm_websocket_adapter(comm)\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy,\n", + " function() { },\n", + " element.get(0));\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element.get(0);\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + "\n", + " var output_index = fig.cell_info[2]\n", + " var cell = fig.cell_info[0];\n", + "\n", + " // Disable right mouse context menu.\n", + " $(fig.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function(fig, msg) {\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable()\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\">');\n", + " fig.send_message('closing', {});\n", + " fig.ws.close()\n", + "}\n", + "\n", + "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\">';\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message(\"ack\", {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () { fig.push_to_output() }, 1000);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>')\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) { continue; };\n", + "\n", + " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", + " var button = $('<button class=\"btn btn-mini btn-danger\" href=\"#\" title=\"Close figure\"><i class=\"fa fa-times icon-remove icon-large\"></i></button>');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Close figure', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i<ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type == 'code'){\n", + " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (cell.output_area.outputs[j]['text/html'] == html_output) {\n", + " var output = cell.output_area.outputs[j];\n", + " return [cell, output, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "metadata": {}, + "output_type": "display_data", + "text": [ + "<IPython.core.display.Javascript at 0x7fd54d44e438>" + ] + }, + { + "html": [ + "<img src=\"\">" + ], + "metadata": {}, + "output_type": "display_data", + "text": [ + "<IPython.core.display.HTML at 0x7fd54d44e080>" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "[0 3 0]\n", + "18 0 3.30636\n", + "[-0.83038074 1.17252076 -0.34368908 -0.71512604 -3.7917273 ]\n", + "[ 0. 0. 0. 0. 0.]\n", + "[ 2.00750494 -2.65982461 0.07980549 1.95563817 -3.33233905 0.33735609\n", + " 2.60928655 -4.097404 ]\n", + "[ 0. 0. 0. 0. 0. 0. 0. 0.]" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n", + "0.0" + ] + }, + { + "output_type": "stream", + "stream": "stdout", + "text": [ + "\n" ] } ], - "prompt_number": 20 + "prompt_number": 40 }, { "cell_type": "code", -- GitLab