p2p_distr_mpi.hpp 64.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#ifndef P2P_DISTR_MPI_HPP
#define P2P_DISTR_MPI_HPP

#include <mpi.h>

#include <vector>
#include <memory>
#include <cassert>

#include <type_traits>
#include <omp.h>
#include <algorithm>

#include "scope_timer.hpp"
#include "particles_utils.hpp"
#include "p2p_tree.hpp"
17
#include "lock_free_bool_array.hpp"
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

template <class partsize_t, class real_number>
class p2p_distr_mpi {
protected:
    static const int MaxNbRhs = 100;

    enum MpiTag{
        TAG_NB_PARTICLES,
        TAG_POSITION_PARTICLES,
        TAG_RESULT_PARTICLES,
    };

    struct NeighborDescriptor{
        partsize_t nbParticlesToExchange;
        int destProc;
        int nbLevelsToExchange;
        bool isRecv;
35
        bool positionsReceived;
36
37
38

        std::unique_ptr<real_number[]> toRecvAndMerge;
        std::unique_ptr<real_number[]> toCompute;
39
        std::unique_ptr<real_number[]> toData;
40
41
42
43
44
45
46
        std::unique_ptr<real_number[]> results;
    };

    enum Action{
        NOTHING_TODO,
        RECV_PARTICLES,
        COMPUTE_PARTICLES,
47
        CHECK_PARTICLES,
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
        RELEASE_BUFFER_PARTICLES,
        MERGE_PARTICLES,

        RECV_MOVE_NB_LOW,
        RECV_MOVE_NB_UP,
        RECV_MOVE_LOW,
        RECV_MOVE_UP
    };

    MPI_Comm current_com;

    int my_rank;
    int nb_processes;
    int nb_processes_involved;

    const std::pair<int,int> current_partition_interval;
    const int current_partition_size;
    const std::array<size_t,3> field_grid_dim;

    std::unique_ptr<int[]> partition_interval_size_per_proc;
    std::unique_ptr<int[]> partition_interval_offset_per_proc;

    std::unique_ptr<partsize_t[]> current_offset_particles_for_partition;

    std::vector<std::pair<Action,int>> whatNext;
    std::vector<MPI_Request> mpiRequests;
    std::vector<NeighborDescriptor> neigDescriptors;

    std::array<real_number,3> spatial_box_width;
    std::array<real_number,3> spatial_box_offset;

79
    const real_number cutoff_radius_compute;
80
    const int nb_cells_factor;
81
82
83
    const real_number cutoff_radius;
    std::array<long int,3> nb_cell_levels;

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
    template <class DataType, int sizeElement>
    static void permute_copy(const partsize_t offsetIdx, const partsize_t nbElements,
                             const std::pair<long int,partsize_t> permutation[],
                             DataType data[], std::vector<unsigned char>* buffer){
        buffer->resize(nbElements*sizeof(DataType)*sizeElement);
        DataType* dataBuffer = reinterpret_cast<DataType*>(buffer->data());

        // Permute
        for(partsize_t idxPart = 0 ; idxPart < nbElements ; ++idxPart){
            const partsize_t srcData = permutation[idxPart].second;
            const partsize_t destData = idxPart;
            for(int idxVal = 0 ; idxVal < sizeElement ; ++idxVal){
                dataBuffer[destData*sizeElement + idxVal]
                        = data[srcData*sizeElement + idxVal];
            }
        }

        // Copy back
        for(partsize_t idxPart = 0 ; idxPart < nbElements ; ++idxPart){
            const partsize_t srcData = idxPart;
            const partsize_t destData = idxPart+offsetIdx;
            for(int idxVal = 0 ; idxVal < sizeElement ; ++idxVal){
                data[destData*sizeElement + idxVal]
                        = dataBuffer[srcData*sizeElement + idxVal];
            }
        }
    }

112
    static int foundGridFactor(const real_number in_cutoff_radius, const std::array<real_number,3>& in_spatial_box_width){
113
114
115
116
        int idx_factor = 1;
        while(in_cutoff_radius <= in_spatial_box_width[IDX_Z]/real_number(idx_factor+1)){
            idx_factor += 1;
        }
117
        return idx_factor;
118
119
    }

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
public:
    ////////////////////////////////////////////////////////////////////////////

    p2p_distr_mpi(MPI_Comm in_current_com,
                     const std::pair<int,int>& in_current_partitions,
                     const std::array<size_t,3>& in_field_grid_dim,
                     const std::array<real_number,3>& in_spatial_box_width,
                     const std::array<real_number,3>& in_spatial_box_offset,
                     const real_number in_cutoff_radius)
        : current_com(in_current_com),
            my_rank(-1), nb_processes(-1),nb_processes_involved(-1),
            current_partition_interval(in_current_partitions),
            current_partition_size(current_partition_interval.second-current_partition_interval.first),
            field_grid_dim(in_field_grid_dim),
            spatial_box_width(in_spatial_box_width), spatial_box_offset(in_spatial_box_offset),
135
            cutoff_radius_compute(in_cutoff_radius),
136
137
            nb_cells_factor(foundGridFactor(in_cutoff_radius, in_spatial_box_width)),
            cutoff_radius(in_spatial_box_width[IDX_Z]/real_number(nb_cells_factor)){
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

        AssertMpi(MPI_Comm_rank(current_com, &my_rank));
        AssertMpi(MPI_Comm_size(current_com, &nb_processes));

        partition_interval_size_per_proc.reset(new int[nb_processes]);
        AssertMpi( MPI_Allgather( const_cast<int*>(&current_partition_size), 1, MPI_INT,
                                  partition_interval_size_per_proc.get(), 1, MPI_INT,
                                  current_com) );
        assert(partition_interval_size_per_proc[my_rank] == current_partition_size);

        partition_interval_offset_per_proc.reset(new int[nb_processes+1]);
        partition_interval_offset_per_proc[0] = 0;
        for(int idxProc = 0 ; idxProc < nb_processes ; ++idxProc){
            partition_interval_offset_per_proc[idxProc+1] = partition_interval_offset_per_proc[idxProc] + partition_interval_size_per_proc[idxProc];
        }

        current_offset_particles_for_partition.reset(new partsize_t[current_partition_size+1]);

        nb_processes_involved = nb_processes;
        while(nb_processes_involved != 0 && partition_interval_size_per_proc[nb_processes_involved-1] == 0){
            nb_processes_involved -= 1;
        }
        assert(nb_processes_involved != 0);
        for(int idx_proc_involved = 0 ; idx_proc_involved < nb_processes_involved ; ++idx_proc_involved){
            assert(partition_interval_size_per_proc[idx_proc_involved] != 0);
        }

        assert(int(field_grid_dim[IDX_Z]) == partition_interval_offset_per_proc[nb_processes_involved]);

167
168
169
        nb_cell_levels[IDX_X] = nb_cells_factor;
        nb_cell_levels[IDX_Y] = nb_cells_factor;
        nb_cell_levels[IDX_Z] = nb_cells_factor;
170
171
172
173
174
175
    }

    virtual ~p2p_distr_mpi(){}

    ////////////////////////////////////////////////////////////////////////////

176
177
178
179
180
181
182
183
    int getGridFactor() const{
        return nb_cells_factor;
    }

    real_number getGridCutoff() const{
        return cutoff_radius;
    }

184
185
186
187
188
    long int get_cell_coord_x_from_index(const long int index) const{
        return index % nb_cell_levels[IDX_X];
    }

    long int get_cell_coord_y_from_index(const long int index) const{
189
        return (index % (nb_cell_levels[IDX_X]*nb_cell_levels[IDX_Y]))
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
                / nb_cell_levels[IDX_X];
    }

    long int get_cell_coord_z_from_index(const long int index) const{
        return index / (nb_cell_levels[IDX_X]*nb_cell_levels[IDX_Y]);
    }

    long int first_cell_level_proc(const int dest_proc) const{
        const real_number field_section_width_z = spatial_box_width[IDX_Z]/real_number(field_grid_dim[IDX_Z]);
        return static_cast<long int>((field_section_width_z*real_number(partition_interval_offset_per_proc[dest_proc]))/cutoff_radius);
    }

    long int last_cell_level_proc(const int dest_proc) const{
        const real_number field_section_width_z = spatial_box_width[IDX_Z]/real_number(field_grid_dim[IDX_Z]);
        return static_cast<long int>((field_section_width_z*real_number(partition_interval_offset_per_proc[dest_proc+1])
                                     - std::numeric_limits<real_number>::epsilon())/cutoff_radius);
    }

208
209
210
211
212
213
214
215
216
217
    real_number apply_pbc(real_number pos, IDXS_3D dim) const{
        while( pos < spatial_box_offset[dim] ){
            pos += spatial_box_width[dim];
        }
        while( spatial_box_width[dim]+spatial_box_offset[dim] <= pos){
            pos -= spatial_box_width[dim];
        }
        return pos;
    }

218
219
    std::array<long int,3> get_cell_coordinate(const real_number pos_x, const real_number pos_y,
                                               const real_number pos_z) const {
220
221
222
        const real_number diff_x = apply_pbc(pos_x,IDX_X) - spatial_box_offset[IDX_X];
        const real_number diff_y = apply_pbc(pos_y,IDX_Y) - spatial_box_offset[IDX_Y];
        const real_number diff_z = apply_pbc(pos_z,IDX_Z) - spatial_box_offset[IDX_Z];
223
224
225
226
227
228
229
230
231
232
233
234
235
236
        std::array<long int,3> coord;
        coord[IDX_X] = static_cast<long int>(diff_x/cutoff_radius);
        coord[IDX_Y] = static_cast<long int>(diff_y/cutoff_radius);
        coord[IDX_Z] = static_cast<long int>(diff_z/cutoff_radius);
        return coord;
    }

    long int get_cell_idx(const real_number pos_x, const real_number pos_y,
                          const real_number pos_z) const {
        std::array<long int,3> coord = get_cell_coordinate(pos_x, pos_y, pos_z);
        return ((coord[IDX_Z]*nb_cell_levels[IDX_Y])+coord[IDX_Y])*nb_cell_levels[IDX_X]+coord[IDX_X];
    }

    real_number compute_distance_r2(const real_number x1, const real_number y1, const real_number z1,
Berenger Bramas's avatar
Berenger Bramas committed
237
238
                                    const real_number x2, const real_number y2, const real_number z2,
                                    const real_number xshift_coef, const real_number yshift_coef, const real_number zshift_coef) const {
239
        real_number diff_x = std::abs(apply_pbc(x1,IDX_X)-apply_pbc(x2,IDX_X)+xshift_coef*spatial_box_width[IDX_X]);
Berenger Bramas's avatar
Berenger Bramas committed
240
        assert(diff_x <= 2*cutoff_radius);
241

242
        real_number diff_y = std::abs(apply_pbc(y1,IDX_X)-apply_pbc(y2,IDX_X)+yshift_coef*spatial_box_width[IDX_Y]);
Berenger Bramas's avatar
Berenger Bramas committed
243
        assert(diff_y <= 2*cutoff_radius);
244

245
        real_number diff_z = std::abs(apply_pbc(z1,IDX_X)-apply_pbc(z2,IDX_X)+zshift_coef*spatial_box_width[IDX_Z]);
Berenger Bramas's avatar
Berenger Bramas committed
246
        assert(diff_z <= 2*cutoff_radius);
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
247
248
249

        return (diff_x*diff_x) + (diff_y*diff_y) + (diff_z*diff_z);
    }
250

251
    template <class computer_class, int size_particle_positions, int size_particle_data, int size_particle_rhs>
252
253
254
    void compute_distr(computer_class& in_computer,
                       const partsize_t current_my_nb_particles_per_partition[],
                       real_number particles_positions[],
255
                       real_number particles_data[],
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
                       real_number particles_current_rhs[],
                       partsize_t inout_index_particles[]){
        TIMEZONE("compute_distr");

        // Some processes might not be involved
        if(nb_processes_involved <= my_rank){
            return;
        }

        const long int my_top_z_cell_level = last_cell_level_proc(my_rank);
        const long int my_down_z_cell_level = first_cell_level_proc(my_rank);
        const long int my_nb_cell_levels = 1+my_top_z_cell_level-my_down_z_cell_level;

        current_offset_particles_for_partition[0] = 0;
        partsize_t myTotalNbParticles = 0;
        for(int idxPartition = 0 ; idxPartition < current_partition_size ; ++idxPartition){
            myTotalNbParticles += current_my_nb_particles_per_partition[idxPartition];
            current_offset_particles_for_partition[idxPartition+1] = current_offset_particles_for_partition[idxPartition] + current_my_nb_particles_per_partition[idxPartition];
        }

        // Compute box idx for each particle
        std::unique_ptr<long int[]> particles_coord(new long int[current_offset_particles_for_partition[current_partition_size]]);

        {
            for(int idxPartition = 0 ; idxPartition < current_partition_size ; ++idxPartition){
                #pragma omp parallel for schedule(static)
                for(partsize_t idxPart = current_offset_particles_for_partition[idxPartition] ; idxPart < current_offset_particles_for_partition[idxPartition+1] ; ++idxPart ){
                    particles_coord[idxPart] = get_cell_idx(particles_positions[(idxPart)*size_particle_positions + IDX_X],
                                                                              particles_positions[(idxPart)*size_particle_positions + IDX_Y],
                                                                              particles_positions[(idxPart)*size_particle_positions + IDX_Z]);
                    assert(my_down_z_cell_level <= get_cell_coord_z_from_index(particles_coord[idxPart]));
287
288
289
290
291
292
293
294
295
296
297
                    if(!(get_cell_coord_z_from_index(particles_coord[idxPart]) <= my_top_z_cell_level)){// TODO
                        printf("Coord index %ld - %ld (tree index %ld)\n", idxPart, inout_index_particles[idxPart],particles_coord[idxPart]);
                        printf(">> Box index %ld - %ld - %ld\n", get_cell_coord_x_from_index(particles_coord[idxPart]),
                               get_cell_coord_y_from_index(particles_coord[idxPart]),
                               get_cell_coord_z_from_index(particles_coord[idxPart]));
                        printf(">> idxPartition %d\n", idxPartition);
                        printf(">> my_top_z_cell_level %ld\n", my_top_z_cell_level);
                        printf(">> position %e %e %e\n", particles_positions[(idxPart)*size_particle_positions + IDX_X],
                                particles_positions[(idxPart)*size_particle_positions + IDX_Y],
                                particles_positions[(idxPart)*size_particle_positions + IDX_Z]);
                    }
298
299
300
301
                    assert(get_cell_coord_z_from_index(particles_coord[idxPart]) <= my_top_z_cell_level);
                }
            }

302
            std::vector<std::pair<long int,partsize_t>> part_to_sort;
303
304
305
306
307
308
309

            // Sort each partition in cells
            for(int idxPartition = 0 ; idxPartition < current_partition_size ; ++idxPartition){
                part_to_sort.clear();

                for(partsize_t idxPart = current_offset_particles_for_partition[idxPartition] ; idxPart < current_offset_particles_for_partition[idxPartition+1] ; ++idxPart ){
                    part_to_sort.emplace_back();
310
311
                    part_to_sort.back().first = particles_coord[idxPart];
                    part_to_sort.back().second = idxPart;
312
313
                }

314
                assert(part_to_sort.size() == (current_my_nb_particles_per_partition[idxPartition]));
315
316

                std::sort(part_to_sort.begin(), part_to_sort.end(),
317
318
319
                          [](const std::pair<long int,partsize_t>& p1,
                             const std::pair<long int,partsize_t>& p2){
                    return p1.first < p2.first;
320
                });
321
322
323
324
325
326
327
328
329
330

//                for(partsize_t idxPart = 1 ; idxPart < (long int)part_to_sort.size() ; ++idxPart){// TODO
//                    assert(part_to_sort[idxPart-1].first <= part_to_sort[idxPart].first);
//                }

                // Permute array using buffer
                std::vector<unsigned char> buffer;
                permute_copy<real_number, size_particle_positions>(current_offset_particles_for_partition[idxPartition],
                                                                   current_my_nb_particles_per_partition[idxPartition],
                                                                   part_to_sort.data(), particles_positions, &buffer);
331
332
333
                permute_copy<real_number, size_particle_data>(current_offset_particles_for_partition[idxPartition],
                                                             current_my_nb_particles_per_partition[idxPartition],
                                                             part_to_sort.data(), particles_data, &buffer);
334
335
336
337
338
339
340
341
342
                permute_copy<real_number, size_particle_rhs>(current_offset_particles_for_partition[idxPartition],
                                                             current_my_nb_particles_per_partition[idxPartition],
                                                             part_to_sort.data(), particles_current_rhs, &buffer);
                permute_copy<partsize_t, 1>(current_offset_particles_for_partition[idxPartition],
                                            current_my_nb_particles_per_partition[idxPartition],
                                            part_to_sort.data(), inout_index_particles, &buffer);
                permute_copy<long int, 1>(current_offset_particles_for_partition[idxPartition],
                                            current_my_nb_particles_per_partition[idxPartition],
                                            part_to_sort.data(), particles_coord.get(), &buffer);
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
            }
        }

        // Build the tree
        p2p_tree<std::vector<std::pair<partsize_t,partsize_t>>> my_tree(nb_cell_levels);

        for(int idxPartition = 0 ; idxPartition < current_partition_size ; ++idxPartition){
            long int current_cell_idx = -1;
            partsize_t current_nb_particles_in_cell = 0;
            partsize_t current_cell_offset = 0;

            for(partsize_t idx_part = current_offset_particles_for_partition[idxPartition] ;
                            idx_part != current_offset_particles_for_partition[idxPartition+1]; ++idx_part){
                if(particles_coord[idx_part] != current_cell_idx){
                    if(current_nb_particles_in_cell){
                        my_tree.getCell(current_cell_idx).emplace_back(current_cell_offset,current_nb_particles_in_cell);
                    }
                    current_cell_idx = particles_coord[idx_part];
                    current_nb_particles_in_cell = 1;
                    current_cell_offset = idx_part;
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
//                    if(inout_index_particles[idx_part] == 547){// TODO
//                        printf("idxPartition %d\n", idxPartition);
//                        printf(">> Coord index %ld - %ld (tree index %ld)\n", idx_part, inout_index_particles[idx_part],particles_coord[idx_part]);
//                        printf(">> Box index %ld - %ld - %ld\n", get_cell_coord_x_from_index(particles_coord[idx_part]),
//                               get_cell_coord_y_from_index(particles_coord[idx_part]),
//                               get_cell_coord_z_from_index(particles_coord[idx_part]));
//                        printf(">> current_cell_offset %ld current_nb_particles_in_cell %ld\n", current_cell_offset, current_nb_particles_in_cell);
//                        printf(">> Position %e %e %e\n", particles_positions[idx_part*size_particle_positions + IDX_X],
//                                particles_positions[idx_part*size_particle_positions + IDX_Y],
//                                particles_positions[idx_part*size_particle_positions + IDX_Z]);
//                    }
//                    if(inout_index_particles[idx_part] == 356){// TODO
//                        printf("idxPartition %d\n", idxPartition);
//                        printf(">> Coord index %ld - %ld (tree index %ld)\n", idx_part, inout_index_particles[idx_part],particles_coord[idx_part]);
//                        printf(">> Box index %ld - %ld - %ld\n", get_cell_coord_x_from_index(particles_coord[idx_part]),
//                               get_cell_coord_y_from_index(particles_coord[idx_part]),
//                               get_cell_coord_z_from_index(particles_coord[idx_part]));
//                        printf(">> current_cell_offset %ld current_nb_particles_in_cell %ld\n", current_cell_offset, current_nb_particles_in_cell);
//                        printf(">> Position %e %e %e\n", particles_positions[idx_part*size_particle_positions + IDX_X],
//                                particles_positions[idx_part*size_particle_positions + IDX_Y],
//                                particles_positions[idx_part*size_particle_positions + IDX_Z]);
//                    }
                }
                else{
                    current_nb_particles_in_cell += 1;
388
389
390
391
392
393
394
395
                }
            }
            if(current_nb_particles_in_cell){
                my_tree.getCell(current_cell_idx).emplace_back(current_cell_offset,current_nb_particles_in_cell);

            }
        }

396
397
398
//        printf("[%d] go from cutoff level %ld to %ld\n",
//               my_rank, my_down_z_cell_level, my_top_z_cell_level); // TODO remove
//        fflush(stdout); // TODO
399
400

        // Offset per cell layers
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
401
        long int previous_index = 0;
402
403
404
405
        std::unique_ptr<partsize_t[]> particles_offset_layers(new partsize_t[my_nb_cell_levels+1]());
        for(int idxPartition = 0 ; idxPartition < current_partition_size ; ++idxPartition){
            for(partsize_t idx_part = current_offset_particles_for_partition[idxPartition] ;
                            idx_part != current_offset_particles_for_partition[idxPartition+1]; ++idx_part){
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
406
407
408
409
410
411
                const long int part_box_z_index = get_cell_coord_z_from_index(particles_coord[idx_part]);
                assert(my_down_z_cell_level <= part_box_z_index);
                assert(part_box_z_index <= my_top_z_cell_level);
                particles_offset_layers[part_box_z_index+1-my_down_z_cell_level] += 1;
                assert(previous_index <= part_box_z_index);
                previous_index = part_box_z_index;
412
413
            }
        }
414
415
416
417
        for(long int idx_layer = 0 ; idx_layer < my_nb_cell_levels ; ++idx_layer){
//            printf("[%d] nb particles in cutoff level %ld are %ld\n",
//                   my_rank, idx_layer, particles_offset_layers[idx_layer+1]); // TODO remove
//            fflush(stdout); // TODO
418
419
420
421
422
423
424
425
426
427
            particles_offset_layers[idx_layer+1] += particles_offset_layers[idx_layer];
        }

        // Reset vectors
        assert(whatNext.size() == 0);
        assert(mpiRequests.size() == 0);
        neigDescriptors.clear();

        // Find process with at least one neighbor
        {
428
429
430
            std::cout << my_rank << ">>  my_top_z_cell_level " << my_top_z_cell_level << std::endl;
            std::cout << my_rank << ">>  my_down_z_cell_level " << my_down_z_cell_level << std::endl;
            std::cout.flush();// TODO
431
432
433
434
435
436
437
438
439
440
441
442

            int dest_proc = (my_rank+1)%nb_processes_involved;
            while(dest_proc != my_rank
                  && (my_top_z_cell_level == first_cell_level_proc(dest_proc)
                      || (my_top_z_cell_level+1)%nb_cell_levels[IDX_Z] == first_cell_level_proc(dest_proc))){
                // Find if we have to send 1 or 2 cell levels
                int nb_levels_to_send = 1;
                if(my_nb_cell_levels > 1 // I have more than one level
                        && (my_top_z_cell_level-1+2)%nb_cell_levels[IDX_Z] <= last_cell_level_proc(dest_proc)){
                    nb_levels_to_send += 1;
                }

443
444
445
446
                std::cout << my_rank << " dest_proc " << dest_proc << std::endl;
                std::cout << my_rank << ">> first_cell_level_proc(dest_proc) " << first_cell_level_proc(dest_proc) << std::endl;
                std::cout << my_rank << ">> last_cell_level_proc(dest_proc) " << last_cell_level_proc(dest_proc) << std::endl;
                std::cout.flush();// TODO
447
448
449
450
451
452

                NeighborDescriptor descriptor;
                descriptor.destProc = dest_proc;
                descriptor.nbLevelsToExchange = nb_levels_to_send;
                descriptor.nbParticlesToExchange = particles_offset_layers[my_nb_cell_levels] - particles_offset_layers[my_nb_cell_levels-nb_levels_to_send];
                descriptor.isRecv = false;
453
                descriptor.positionsReceived = false;
454

455
456
457
458
459
460
461
                std::cout << my_rank << " SEND" << std::endl;
                std::cout << ">> descriptor.destProc " << descriptor.destProc << std::endl;
                std::cout << ">> descriptor.nbLevelsToExchange " << descriptor.nbLevelsToExchange << std::endl;
                std::cout << ">> descriptor.nbParticlesToExchange " << descriptor.nbParticlesToExchange << std::endl;
                std::cout << ">> descriptor.isRecv " << descriptor.isRecv << std::endl;
                std::cout << ">> neigDescriptors.size() " << neigDescriptors.size() << std::endl;
                std::cout.flush();// TODO
462
463
464
465
466

                neigDescriptors.emplace_back(std::move(descriptor));

                dest_proc = (dest_proc+1)%nb_processes_involved;
            }
467
468
469
            std::cout << my_rank << " NO dest_proc " << dest_proc << std::endl;
            std::cout << my_rank << " NO first_cell_level_proc(dest_proc) " << first_cell_level_proc(dest_proc) << std::endl;
            std::cout.flush();// TODO
470
471
472
473
474
475
476
477
478
479
480
481

            int src_proc = (my_rank-1+nb_processes_involved)%nb_processes_involved;
            while(src_proc != my_rank
                  && (last_cell_level_proc(src_proc) == my_down_z_cell_level
                      || (last_cell_level_proc(src_proc)+1)%nb_cell_levels[IDX_Z] == my_down_z_cell_level)){
                // Find if we have to send 1 or 2 cell levels
                int nb_levels_to_recv = 1;
                if(my_nb_cell_levels > 1 // I have more than one level
                        && first_cell_level_proc(src_proc) <= (my_down_z_cell_level-1+2)%nb_cell_levels[IDX_Z]){
                    nb_levels_to_recv += 1;
                }

482
483
484
                std::cout << my_rank << " src_proc " << src_proc << std::endl;
                std::cout << my_rank << " first_cell_level_proc(src_proc) " << first_cell_level_proc(src_proc) << std::endl;
                std::cout.flush();// TODO
485
486
487
488
489
490

                NeighborDescriptor descriptor;
                descriptor.destProc = src_proc;
                descriptor.nbLevelsToExchange = nb_levels_to_recv;
                descriptor.nbParticlesToExchange = -1;
                descriptor.isRecv = true;
491
                descriptor.positionsReceived = false;
492
493
494

                neigDescriptors.emplace_back(std::move(descriptor));

495
496
497
498
499
500
501
502
                std::cout << my_rank << "] RECV" << std::endl;
                std::cout << ">> descriptor.destProc " << descriptor.destProc << std::endl;
                std::cout << ">> descriptor.nbLevelsToExchange " << descriptor.nbLevelsToExchange << std::endl;
                std::cout << ">> descriptor.nbParticlesToExchange " << descriptor.nbParticlesToExchange << std::endl;
                std::cout << ">> descriptor.nbParticlesToExchange " << descriptor.nbParticlesToExchange << std::endl;
                std::cout << ">> descriptor.isRecv " << descriptor.isRecv << std::endl;
                std::cout << ">> neigDescriptors.size() " << neigDescriptors.size() << std::endl;
                std::cout.flush();// TODO
503
504
505

                src_proc = (src_proc-1+nb_processes_involved)%nb_processes_involved;
            }
506
507
508
            std::cout << my_rank << " NO src_proc " << src_proc << std::endl;
            std::cout << my_rank << " NO first_cell_level_proc(src_proc) " << first_cell_level_proc(src_proc) << std::endl;
            std::cout.flush();// TODO
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
        }

        //////////////////////////////////////////////////////////////////////
        /// Exchange the number of particles in each partition
        /// Could involve only here but I do not think it will be a problem
        //////////////////////////////////////////////////////////////////////

        assert(whatNext.size() == 0);
        assert(mpiRequests.size() == 0);


        for(int idxDescr = 0 ; idxDescr < int(neigDescriptors.size()) ; ++idxDescr){
            NeighborDescriptor& descriptor = neigDescriptors[idxDescr];

            if(descriptor.isRecv == false){
                whatNext.emplace_back(std::pair<Action,int>{NOTHING_TODO, -1});
                mpiRequests.emplace_back();
                AssertMpi(MPI_Isend(const_cast<partsize_t*>(&descriptor.nbParticlesToExchange),
                                    1, particles_utils::GetMpiType(partsize_t()),
                                    descriptor.destProc, TAG_NB_PARTICLES,
                                    current_com, &mpiRequests.back()));

                if(descriptor.nbParticlesToExchange){
532
533
534
535
536
//                    std::cout << my_rank << "] SEND_PARTICLES" << std::endl;
//                    std::cout << "descriptor.nbParticlesToExchange " << descriptor.nbParticlesToExchange << std::endl;
//                    std::cout << "descriptor.destProc " << descriptor.destProc << std::endl;
//                    std::cout << "idxDescr " << idxDescr << std::endl;
//                    std::cout << "send from part " << particles_offset_layers[my_nb_cell_levels-descriptor.nbLevelsToExchange] << std::endl;
537
538
539
540

                    whatNext.emplace_back(std::pair<Action,int>{NOTHING_TODO, -1});
                    mpiRequests.emplace_back();
                    assert(descriptor.nbParticlesToExchange*size_particle_positions < std::numeric_limits<int>::max());
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
541
                    AssertMpi(MPI_Isend(const_cast<real_number*>(&particles_positions[particles_offset_layers[my_nb_cell_levels-descriptor.nbLevelsToExchange]*size_particle_positions]),
542
543
544
545
                              int(descriptor.nbParticlesToExchange*size_particle_positions), particles_utils::GetMpiType(real_number()),
                              descriptor.destProc, TAG_POSITION_PARTICLES,
                              current_com, &mpiRequests.back()));

546
547
548
549
550
551
552
553
                    whatNext.emplace_back(std::pair<Action,int>{NOTHING_TODO, -1});
                    mpiRequests.emplace_back();
                    assert(descriptor.nbParticlesToExchange*size_particle_data < std::numeric_limits<int>::max());
                    AssertMpi(MPI_Isend(const_cast<real_number*>(&particles_data[particles_offset_layers[my_nb_cell_levels-descriptor.nbLevelsToExchange]*size_particle_data]),
                              int(descriptor.nbParticlesToExchange*size_particle_data), particles_utils::GetMpiType(real_number()),
                              descriptor.destProc, TAG_POSITION_PARTICLES,
                              current_com, &mpiRequests.back()));

554
555
                    assert(descriptor.toRecvAndMerge == nullptr);
                    descriptor.toRecvAndMerge.reset(new real_number[descriptor.nbParticlesToExchange*size_particle_rhs]);
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
556
                    whatNext.emplace_back(std::pair<Action,int>{MERGE_PARTICLES, idxDescr});
557
558
559
560
561
562
563
564
                    mpiRequests.emplace_back();
                    assert(descriptor.nbParticlesToExchange*size_particle_rhs < std::numeric_limits<int>::max());
                    AssertMpi(MPI_Irecv(descriptor.toRecvAndMerge.get(), int(descriptor.nbParticlesToExchange*size_particle_rhs),
                                        particles_utils::GetMpiType(real_number()), descriptor.destProc, TAG_RESULT_PARTICLES,
                                        current_com, &mpiRequests.back()));
                }
            }
            else{
565
566
//                std::cout << "RECV_PARTICLES " << RECV_PARTICLES << std::endl;
//                std::cout << "idxDescr " << idxDescr << std::endl;
567
568
569
570
571
572
573
574
                whatNext.emplace_back(std::pair<Action,int>{RECV_PARTICLES, idxDescr});
                mpiRequests.emplace_back();
                AssertMpi(MPI_Irecv(&descriptor.nbParticlesToExchange,
                      1, particles_utils::GetMpiType(partsize_t()), descriptor.destProc, TAG_NB_PARTICLES,
                      current_com, &mpiRequests.back()));
            }
        }

575
576
        lock_free_bool_array cells_locker(512);

577
578
579
580
581
582
        TIMEZONE_OMP_INIT_PREPARALLEL(omp_get_max_threads())
        #pragma omp parallel default(shared)
        {
            #pragma omp master
            {
                while(mpiRequests.size()){
Berenger Bramas's avatar
Berenger Bramas committed
583
                    TIMEZONE("wait-loop");
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
                    assert(mpiRequests.size() == whatNext.size());

                    int idxDone = int(mpiRequests.size());
                    {
                        TIMEZONE("wait");
                        AssertMpi(MPI_Waitany(int(mpiRequests.size()), mpiRequests.data(), &idxDone, MPI_STATUSES_IGNORE));
                    }
                    const std::pair<Action, int> releasedAction = whatNext[idxDone];
                    std::swap(mpiRequests[idxDone], mpiRequests[mpiRequests.size()-1]);
                    std::swap(whatNext[idxDone], whatNext[mpiRequests.size()-1]);
                    mpiRequests.pop_back();
                    whatNext.pop_back();

                    //////////////////////////////////////////////////////////////////////
                    /// Data to exchange particles
                    //////////////////////////////////////////////////////////////////////
                    if(releasedAction.first == RECV_PARTICLES){
Berenger Bramas's avatar
Berenger Bramas committed
601
                        TIMEZONE("post-recv-particles");
602
                        NeighborDescriptor& descriptor = neigDescriptors[releasedAction.second];
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
603
                        assert(descriptor.isRecv);
604
605
606
607
608
                        const int destProc = descriptor.destProc;
                        const partsize_t NbParticlesToReceive = descriptor.nbParticlesToExchange;
                        assert(NbParticlesToReceive != -1);
                        assert(descriptor.toCompute == nullptr);

609
610
611
612
//                        std::cout << my_rank << "] RECV_PARTICLES" << std::endl;
//                        std::cout << "descriptor.nbParticlesToExchange " << descriptor.nbParticlesToExchange << std::endl;
//                        std::cout << "descriptor.destProc " << descriptor.destProc << std::endl;
//                        std::cout << "releasedAction.second " << releasedAction.second << std::endl;
613
614

                        if(NbParticlesToReceive){
615
//                            std::cout << "MPI_Irecv " << std::endl;
616
                            descriptor.toCompute.reset(new real_number[NbParticlesToReceive*size_particle_positions]);
617
                            whatNext.emplace_back(std::pair<Action,int>{CHECK_PARTICLES, releasedAction.second});
618
619
620
621
622
                            mpiRequests.emplace_back();
                            assert(NbParticlesToReceive*size_particle_positions < std::numeric_limits<int>::max());
                            AssertMpi(MPI_Irecv(descriptor.toCompute.get(), int(NbParticlesToReceive*size_particle_positions),
                                                particles_utils::GetMpiType(real_number()), destProc, TAG_POSITION_PARTICLES,
                                                current_com, &mpiRequests.back()));
623
624
625
626
627
628
629
630
631


                            descriptor.toData.reset(new real_number[NbParticlesToReceive*size_particle_data]);
                            whatNext.emplace_back(std::pair<Action,int>{COMPUTE_PARTICLES, releasedAction.second});
                            mpiRequests.emplace_back();
                            assert(NbParticlesToReceive*size_particle_data < std::numeric_limits<int>::max());
                            AssertMpi(MPI_Irecv(descriptor.toData.get(), int(NbParticlesToReceive*size_particle_data),
                                                particles_utils::GetMpiType(real_number()), destProc, TAG_POSITION_PARTICLES,
                                                current_com, &mpiRequests.back()));
632
633
634
635
636
637
638
                        }
                    }

                    //////////////////////////////////////////////////////////////////////
                    /// Computation
                    //////////////////////////////////////////////////////////////////////
                    if(releasedAction.first == COMPUTE_PARTICLES){
Berenger Bramas's avatar
Berenger Bramas committed
639
                        TIMEZONE("compute-particles");
640
                        NeighborDescriptor& descriptor = neigDescriptors[releasedAction.second];
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
641
                        assert(descriptor.isRecv);
642
643
644
                        const partsize_t NbParticlesToReceive = descriptor.nbParticlesToExchange;

                        assert(descriptor.toCompute != nullptr);
645
646
                        assert(descriptor.toData != nullptr);
                        assert(descriptor.positionsReceived == true);
647
                        descriptor.results.reset(new real_number[NbParticlesToReceive*size_particle_rhs]);
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
648
                        in_computer.template init_result_array<size_particle_rhs>(descriptor.results.get(), NbParticlesToReceive);
649
650
651
652
653
654
655

                        // Compute
                        partsize_t idxPart = 0;
                        while(idxPart != NbParticlesToReceive){
                            const long int current_cell_idx = get_cell_idx(descriptor.toCompute[idxPart*size_particle_positions + IDX_X],
                                                                           descriptor.toCompute[idxPart*size_particle_positions + IDX_Y],
                                                                           descriptor.toCompute[idxPart*size_particle_positions + IDX_Z]);
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
656
                            partsize_t nb_parts_in_cell = 1;
657
658
659
660
661
662
663
                            while(idxPart+nb_parts_in_cell != NbParticlesToReceive
                                  && current_cell_idx == get_cell_idx(descriptor.toCompute[(idxPart+nb_parts_in_cell)*size_particle_positions + IDX_X],
                                                                     descriptor.toCompute[(idxPart+nb_parts_in_cell)*size_particle_positions + IDX_Y],
                                                                     descriptor.toCompute[(idxPart+nb_parts_in_cell)*size_particle_positions + IDX_Z])){
                                nb_parts_in_cell += 1;
                            }

664
665
666
667
668
669
                            #pragma omp task default(shared) firstprivate(idxPart, nb_parts_in_cell, current_cell_idx)
                            {
                                const std::vector<std::pair<partsize_t,partsize_t>>* neighbors[27];
                                long int neighbors_indexes[27];
                                std::array<real_number,3> shift[27];
                                const int nbNeighbors = my_tree.getNeighbors(current_cell_idx, neighbors, neighbors_indexes, shift, true);
670

671
672
673
674
675
676
677
678
679
680
681
682
//                            for(int idx_test = 0 ; idx_test < nb_parts_in_cell ; ++idx_test){ // TODO
//                                real_number totest[3] = {8.570442e-01, 7.173084e-02, 8.279754e-03};
//                                if(int(descriptor.toCompute[(idxPart+idx_test)*size_particle_positions + IDX_X]*1000) == int(totest[0]*1000)
//                                        && int(descriptor.toCompute[(idxPart+idx_test)*size_particle_positions + IDX_Y]*1000) == int(totest[1]*1000)
//                                        && int(descriptor.toCompute[(idxPart+idx_test)*size_particle_positions + IDX_Z]*1000) == int(totest[2]*1000)){
//                                    printf("Found a pos %ld\n", idxPart+idx_test);
//                                    printf("pos %e %e %e\n",
//                                           descriptor.toCompute[(idxPart+idx_test)*size_particle_positions + IDX_X],
//                                            descriptor.toCompute[(idxPart+idx_test)*size_particle_positions + IDX_Y],
//                                            descriptor.toCompute[(idxPart+idx_test)*size_particle_positions + IDX_Z]);
//                                }
//                            }
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
683

684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
                                // with other interval
                                for(size_t idx_neighbor = 0 ; idx_neighbor < nbNeighbors ; ++idx_neighbor){
                                    cells_locker.lock(neighbors_indexes[idx_neighbor]);

                                    for(size_t idx_2 = 0 ; idx_2 < (*neighbors[idx_neighbor]).size() ; ++idx_2){
                                        for(partsize_t idx_p1 = 0 ; idx_p1 < nb_parts_in_cell ; ++idx_p1){
                                            for(partsize_t idx_p2 = 0 ; idx_p2 < (*neighbors[idx_neighbor])[idx_2].second ; ++idx_p2){
                                                const real_number dist_r2 = compute_distance_r2(descriptor.toCompute[(idxPart+idx_p1)*size_particle_positions + IDX_X],
                                                                                                descriptor.toCompute[(idxPart+idx_p1)*size_particle_positions + IDX_Y],
                                                                                                descriptor.toCompute[(idxPart+idx_p1)*size_particle_positions + IDX_Z],
                                                                                                particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions + IDX_X],
                                                                                                particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions + IDX_Y],
                                                                                                particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions + IDX_Z],
                                                                                                shift[idx_neighbor][IDX_X], shift[idx_neighbor][IDX_Y], shift[idx_neighbor][IDX_Z]);
                                                if(dist_r2 < cutoff_radius_compute*cutoff_radius_compute){
                                                    in_computer.template compute_interaction<size_particle_positions,size_particle_data, size_particle_rhs>(
                                                                        &descriptor.toCompute[(idxPart+idx_p1)*size_particle_positions],
                                                                        &descriptor.toData[(idxPart+idx_p1)*size_particle_data],
                                                                        &descriptor.results[(idxPart+idx_p1)*size_particle_rhs],
                                                                        &particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions],
                                                                        &particles_data[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_data],
                                                                        &particles_current_rhs[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_rhs],
                                                                        dist_r2, shift[idx_neighbor][IDX_X], shift[idx_neighbor][IDX_Y], shift[idx_neighbor][IDX_Z]);
                                                }

    //                                            if(inout_index_particles[(*neighbors[idx_neighbor])[idx_2].first+idx_p2] == 356){// TODO
    //                                                printf("test interaction between :\n");
    //                                                printf("index %ld (%ld) pos %e %e %e\n",
    //                                                       (idxPart+idx_p1), -1L,
    //                                                       descriptor.toCompute[(idxPart+idx_p1)*size_particle_positions + IDX_X],
    //                                                       descriptor.toCompute[(idxPart+idx_p1)*size_particle_positions + IDX_Y],
    //                                                       descriptor.toCompute[(idxPart+idx_p1)*size_particle_positions + IDX_Z]);
    //                                                printf("index %ld (%ld) pos %e %e %e\n",
    //                                                       ((*neighbors[idx_neighbor])[idx_2].first+idx_p2),
    //                                                       inout_index_particles[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)],
    //                                                       particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions + IDX_X],
    //                                                       particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions + IDX_Y],
    //                                                       particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions + IDX_Z]);
    //                                                printf("Radius = %e (%e)\n", sqrt(dist_r2), dist_r2);
    //                                            }
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
724
                                            }
725
726
                                        }
                                    }
727
728

                                    cells_locker.unlock(neighbors_indexes[idx_neighbor]);
729
730
731
732
733
734
                                }
                            }

                            idxPart += nb_parts_in_cell;
                        }

735
736
                        #pragma omp taskwait

737
738
739
740
741
742
743
744
745
746
747
748
                        // Send back
                        const int destProc = descriptor.destProc;
                        whatNext.emplace_back(std::pair<Action,int>{RELEASE_BUFFER_PARTICLES, releasedAction.second});
                        mpiRequests.emplace_back();
                        assert(NbParticlesToReceive*size_particle_rhs < std::numeric_limits<int>::max());
                        AssertMpi(MPI_Isend(descriptor.results.get(), int(NbParticlesToReceive*size_particle_rhs),
                                            particles_utils::GetMpiType(real_number()), destProc, TAG_RESULT_PARTICLES,
                                            current_com, &mpiRequests.back()));
                    }
                    //////////////////////////////////////////////////////////////////////
                    /// Computation
                    //////////////////////////////////////////////////////////////////////
749
750
751
752
753
754
755
756
757
                    if(releasedAction.first == CHECK_PARTICLES){
                        NeighborDescriptor& descriptor = neigDescriptors[releasedAction.second];
                        assert(descriptor.toCompute != nullptr);
                        assert(descriptor.isRecv);
                        descriptor.positionsReceived = true;
                    }
                    //////////////////////////////////////////////////////////////////////
                    /// Computation
                    //////////////////////////////////////////////////////////////////////
758
759
760
                    if(releasedAction.first == RELEASE_BUFFER_PARTICLES){
                        NeighborDescriptor& descriptor = neigDescriptors[releasedAction.second];
                        assert(descriptor.toCompute != nullptr);
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
761
                        assert(descriptor.isRecv);
762
763
764
765
766
                        descriptor.toCompute.release();
                    }
                    //////////////////////////////////////////////////////////////////////
                    /// Merge
                    //////////////////////////////////////////////////////////////////////
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
767
                    if(releasedAction.first == MERGE_PARTICLES){
Berenger Bramas's avatar
Berenger Bramas committed
768
                        TIMEZONE("merge");
769
                        NeighborDescriptor& descriptor = neigDescriptors[releasedAction.second];
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
770
                        assert(descriptor.isRecv == false);
771
                        assert(descriptor.toRecvAndMerge != nullptr);
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
772
773
                        in_computer.template reduce_particles_rhs<size_particle_rhs>(&particles_current_rhs[particles_offset_layers[my_nb_cell_levels-descriptor.nbLevelsToExchange]*size_particle_rhs],
                                descriptor.toRecvAndMerge.get(), descriptor.nbParticlesToExchange);
774
775
776
777
778
779
780
781
782
783
784
                        descriptor.toRecvAndMerge.release();
                    }
                }
            }
        }

        assert(whatNext.size() == 0);
        assert(mpiRequests.size() == 0);

        // Compute self data
        for(const auto& iter_cell : my_tree){
Berenger Bramas's avatar
Berenger Bramas committed
785
            TIMEZONE("proceed-leaf");
786
787
            const long int currenct_cell_idx = iter_cell.first;
            const std::vector<std::pair<partsize_t,partsize_t>>* intervals_ptr = &iter_cell.second;
788

789
790
791
#pragma omp task default(shared) firstprivate(currenct_cell_idx, intervals_ptr)
            {
                const std::vector<std::pair<partsize_t,partsize_t>>& intervals = (*intervals_ptr);
792

793
                cells_locker.lock(currenct_cell_idx);
794

795
796
                for(size_t idx_1 = 0 ; idx_1 < intervals.size() ; ++idx_1){
                    // self interval
797
                    for(partsize_t idx_p1 = 0 ; idx_p1 < intervals[idx_1].second ; ++idx_p1){
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
    //                    if(((inout_index_particles[(intervals[idx_1].first+idx_p1)] == 356))){// TODO
    //                        printf("box %ld:\n", iter_cell.first);
    //                        printf("intervals.size() %lu:\n", intervals.size());
    //                        printf("intervals[idx_1].second %ld:\n", intervals[idx_1].second);
    //                        printf("index %ld (%ld) pos %e %e %e\n",
    //                               (intervals[idx_1].first+idx_p1), inout_index_particles[(intervals[idx_1].first+idx_p1)],
    //                               particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_X],
    //                               particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_Y],
    //                               particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_Z]);
    //                    }
    //                    if(((inout_index_particles[(intervals[idx_1].first+idx_p1)] == 547))){// TODO
    //                        printf("box %ld:\n", iter_cell.first);
    //                        printf("intervals.size() %lu:\n", intervals.size());
    //                        printf("intervals[idx_1].second %ld:\n", intervals[idx_1].second);
    //                        printf("index %ld (%ld) pos %e %e %e\n",
    //                               (intervals[idx_1].first+idx_p1), inout_index_particles[(intervals[idx_1].first+idx_p1)],
    //                               particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_X],
    //                               particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_Y],
    //                               particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_Z]);
    //                    }


                        for(partsize_t idx_p2 = idx_p1+1 ; idx_p2 < intervals[idx_1].second ; ++idx_p2){
821
822
823
                            const real_number dist_r2 = compute_distance_r2(particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_X],
                                                                            particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_Y],
                                                                            particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_Z],
824
825
826
                                                                            particles_positions[(intervals[idx_1].first+idx_p2)*size_particle_positions + IDX_X],
                                                                            particles_positions[(intervals[idx_1].first+idx_p2)*size_particle_positions + IDX_Y],
                                                                            particles_positions[(intervals[idx_1].first+idx_p2)*size_particle_positions + IDX_Z],
Berenger Bramas's avatar
Berenger Bramas committed
827
                                                                            0, 0, 0);
828
                            if(dist_r2 < cutoff_radius_compute*cutoff_radius_compute){
829
                                in_computer.template compute_interaction<size_particle_positions,size_particle_data,size_particle_rhs>(
830
                                                    &particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions],
831
                                                    &particles_data[(intervals[idx_1].first+idx_p1)*size_particle_data],
832
                                                    &particles_current_rhs[(intervals[idx_1].first+idx_p1)*size_particle_rhs],
833
834
835
                                                    &particles_positions[(intervals[idx_1].first+idx_p2)*size_particle_positions],
                                                    &particles_data[(intervals[idx_1].first+idx_p2)*size_particle_data],
                                                    &particles_current_rhs[(intervals[idx_1].first+idx_p2)*size_particle_rhs],
Berenger Bramas's avatar
Berenger Bramas committed
836
                                                    dist_r2, 0, 0, 0);
837
                            }
838

839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
    //                        if(((inout_index_particles[(intervals[idx_1].first+idx_p1)] == 356)
    //                                || inout_index_particles[(intervals[idx_1].first+idx_p2)] == 356)/*
    //                                && ((inout_index_particles[(intervals[idx_1].first+idx_p1)] == 1832)
    //                                    || inout_index_particles[(intervals[idx_1].first+idx_p2)] == 1832)
    //                                && ((inout_index_particles[(intervals[idx_1].first+idx_p1)] == 547)
    //                                    || inout_index_particles[(intervals[idx_1].first+idx_p2)] == 547)*/){// TODO
    //                            printf("print between :\n");
    //                            printf("index %ld (%ld) pos %e %e %e\n",
    //                                   (intervals[idx_1].first+idx_p1), inout_index_particles[(intervals[idx_1].first+idx_p1)],
    //                                   particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_X],
    //                                   particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_Y],
    //                                   particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_Z]);
    //                            printf("index %ld (%ld) pos %e %e %e\n",
    //                                   (intervals[idx_1].first+idx_p2),
    //                                   inout_index_particles[(intervals[idx_1].first+idx_p2)],
    //                                   particles_positions[(intervals[idx_1].first+idx_p2)*size_particle_positions + IDX_X],
    //                                   particles_positions[(intervals[idx_1].first+idx_p2)*size_particle_positions + IDX_Y],
    //                                   particles_positions[(intervals[idx_1].first+idx_p2)*size_particle_positions + IDX_Z]);
    //                            printf("Radius = %e (%e)\n", sqrt(dist_r2), dist_r2);
    //                        }
                        }
                    }

                    // with other interval
                    for(size_t idx_2 = idx_1+1 ; idx_2 < intervals.size() ; ++idx_2){
                        for(partsize_t idx_p1 = 0 ; idx_p1 < intervals[idx_1].second ; ++idx_p1){
                            for(partsize_t idx_p2 = 0 ; idx_p2 < intervals[idx_2].second ; ++idx_p2){
                                const real_number dist_r2 = compute_distance_r2(particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_X],
                                                                                particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_Y],
                                                                                particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_Z],
                                                                                particles_positions[(intervals[idx_2].first+idx_p2)*size_particle_positions + IDX_X],
                                                                                particles_positions[(intervals[idx_2].first+idx_p2)*size_particle_positions + IDX_Y],
                                                                                particles_positions[(intervals[idx_2].first+idx_p2)*size_particle_positions + IDX_Z],
                                                                                0, 0, 0);
                                if(dist_r2 < cutoff_radius_compute*cutoff_radius_compute){
                                    in_computer.template compute_interaction<size_particle_positions,size_particle_data,size_particle_rhs>(
                                                        &particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions],
                                                        &particles_data[(intervals[idx_1].first+idx_p1)*size_particle_data],
                                                        &particles_current_rhs[(intervals[idx_1].first+idx_p1)*size_particle_rhs],
                                                        &particles_positions[(intervals[idx_2].first+idx_p2)*size_particle_positions],
                                                        &particles_data[(intervals[idx_2].first+idx_p2)*size_particle_data],
                                                        &particles_current_rhs[(intervals[idx_2].first+idx_p2)*size_particle_rhs],
                                                        dist_r2, 0, 0, 0);
                                }

    //                            if(((inout_index_particles[(intervals[idx_1].first+idx_p1)] == 356)
    //                                    || inout_index_particles[(intervals[idx_2].first+idx_p2)] == 356)/*
    //                                    && ((inout_index_particles[(intervals[idx_1].first+idx_p1)] == 547)
    //                                        || inout_index_particles[(intervals[idx_2].first+idx_p2)] == 547)
    //                                    && ((inout_index_particles[(intervals[idx_1].first+idx_p1)] == 1832)
    //                                        || inout_index_particles[(intervals[idx_2].first+idx_p2)] == 1832)*/){// TODO
    //                                printf("print between :\n");
    //                                printf("index %ld (%ld) pos %e %e %e\n",
    //                                       (intervals[idx_1].first+idx_p1), inout_index_particles[(intervals[idx_1].first+idx_p1)],
    //                                       particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_X],
    //                                       particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_Y],
    //                                       particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_Z]);
    //                                printf("index %ld (%ld) pos %e %e %e\n",
    //                                       (intervals[idx_2].first+idx_p2),
    //                                       inout_index_particles[(intervals[idx_2].first+idx_p2)],
    //                                       particles_positions[(intervals[idx_2].first+idx_p2)*size_particle_positions + IDX_X],
    //                                       particles_positions[(intervals[idx_2].first+idx_p2)*size_particle_positions + IDX_Y],
    //                                       particles_positions[(intervals[idx_2].first+idx_p2)*size_particle_positions + IDX_Z]);
    //                                printf("Radius = %e (%e)\n", sqrt(dist_r2), dist_r2);
    //                            }
                            }
905
906
907
908
                        }
                    }
                }

909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
                const std::vector<std::pair<partsize_t,partsize_t>>* neighbors[27];
                long int neighbors_indexes[27];
                std::array<real_number,3> shift[27];
                const int nbNeighbors = my_tree.getNeighbors(currenct_cell_idx, neighbors, neighbors_indexes, shift, false);

    //            if(((currenct_cell_idx == 785))){// TODO
    //                printf("box %ld:\n", iter_cell.first);
    //                printf("intervals.size() %lu:\n", intervals.size());
    //                printf("nbNeighbors %d\n",nbNeighbors);
    //            }

                for(size_t idx_1 = 0 ; idx_1 < intervals.size() ; ++idx_1){
                    // with other interval
                    for(size_t idx_neighbor = 0 ; idx_neighbor < nbNeighbors ; ++idx_neighbor){
                        if(currenct_cell_idx < neighbors_indexes[idx_neighbor]){
                            cells_locker.lock(neighbors_indexes[idx_neighbor]);

                            for(size_t idx_2 = 0 ; idx_2 < (*neighbors[idx_neighbor]).size() ; ++idx_2){
                                for(partsize_t idx_p1 = 0 ; idx_p1 < intervals[idx_1].second ; ++idx_p1){
                                    for(partsize_t idx_p2 = 0 ; idx_p2 < (*neighbors[idx_neighbor])[idx_2].second ; ++idx_p2){
                                        const real_number dist_r2 = compute_distance_r2(particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_X],
                                                                                        particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_Y],
                                                                                        particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_Z],
                                                                                        particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions + IDX_X],
                                                                                        particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions + IDX_Y],
                                                                                        particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions + IDX_Z],
                                                                                        shift[idx_neighbor][IDX_X], shift[idx_neighbor][IDX_Y], shift[idx_neighbor][IDX_Z]);
                                        if(dist_r2 < cutoff_radius_compute*cutoff_radius_compute){
                                            in_computer.template compute_interaction<size_particle_positions,size_particle_data,size_particle_rhs>(
                                                                &particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions],
                                                                &particles_data[(intervals[idx_1].first+idx_p1)*size_particle_data],
                                                                &particles_current_rhs[(intervals[idx_1].first+idx_p1)*size_particle_rhs],
                                                                &particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions],
                                                                &particles_data[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_data],
                                                                &particles_current_rhs[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_rhs],
                                                                dist_r2, shift[idx_neighbor][IDX_X], shift[idx_neighbor][IDX_Y], shift[idx_neighbor][IDX_Z]);
                                        }
946

947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
    //                                    if(((inout_index_particles[(intervals[idx_1].first+idx_p1)] == 356)
    //                                            || inout_index_particles[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)] == 356)/*
    //                                        && (inout_index_particles[(intervals[idx_1].first+idx_p1)] == 547)
    //                                            || inout_index_particles[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)] == 547
    //                                        && (inout_index_particles[(intervals[idx_1].first+idx_p1)] == 1832)
    //                                            || inout_index_particles[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)] == 1832*/){// TODO
    //                                        printf("print between :\n");
    //                                        printf("index %ld (%ld) pos %e %e %e\n",
    //                                               (intervals[idx_1].first+idx_p1), inout_index_particles[(intervals[idx_1].first+idx_p1)],
    //                                               particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_X],
    //                                               particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_Y],
    //                                               particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_Z]);
    //                                        printf("index %ld (%ld) pos %e %e %e\n",
    //                                               ((*neighbors[idx_neighbor])[idx_2].first+idx_p2),
    //                                               inout_index_particles[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)],
    //                                               particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions + IDX_X],
    //                                               particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions + IDX_Y],
    //                                               particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions + IDX_Z]);
    //                                        printf("Radius = %e (%e)\n", sqrt(dist_r2), dist_r2);
    //                                    }
967
                                    }
968
969
                                }
                            }
970
                            cells_locker.unlock(neighbors_indexes[idx_neighbor]);
971
972
973
                        }
                    }
                }
974
975

                cells_locker.unlock(currenct_cell_idx);
976
977
978
979
980
981
            }
        }
    }
};

#endif