DNS.py 42.2 KB
Newer Older
Cristian Lalescu's avatar
Cristian Lalescu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#######################################################################
#                                                                     #
#  Copyright 2015 Max Planck Institute                                #
#                 for Dynamics and Self-Organization                  #
#                                                                     #
#  This file is part of bfps.                                         #
#                                                                     #
#  bfps is free software: you can redistribute it and/or modify       #
#  it under the terms of the GNU General Public License as published  #
#  by the Free Software Foundation, either version 3 of the License,  #
#  or (at your option) any later version.                             #
#                                                                     #
#  bfps is distributed in the hope that it will be useful,            #
#  but WITHOUT ANY WARRANTY; without even the implied warranty of     #
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the      #
#  GNU General Public License for more details.                       #
#                                                                     #
#  You should have received a copy of the GNU General Public License  #
#  along with bfps.  If not, see <http://www.gnu.org/licenses/>       #
#                                                                     #
# Contact: Cristian.Lalescu@ds.mpg.de                                 #
#                                                                     #
#######################################################################



import os
import sys
import shutil
import subprocess
import argparse
import h5py
import math
import numpy as np
import warnings

import bfps
from ._code import _code
39
from bfps import tools
Cristian Lalescu's avatar
Cristian Lalescu committed
40
41
42
43
44
45
46
47

class DNS(_code):
    """This class is meant to stitch together the C++ code into a final source file,
    compile it, and handle all job launching.
    """
    def __init__(
            self,
            work_dir = './',
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
            simname = 'test'):
        _code.__init__(
                self,
                work_dir = work_dir,
                simname = simname)
        self.host_info = {'type'        : 'cluster',
                          'environment' : None,
                          'deltanprocs' : 1,
                          'queue'       : '',
                          'mail_address': '',
                          'mail_events' : None}
        self.generate_default_parameters()
        return None
    def set_precision(
            self,
            fluid_dtype):
Cristian Lalescu's avatar
Cristian Lalescu committed
64
65
66
67
68
69
70
71
72
73
        if fluid_dtype in [np.float32, np.float64]:
            self.fluid_dtype = fluid_dtype
        elif fluid_dtype in ['single', 'double']:
            if fluid_dtype == 'single':
                self.fluid_dtype = np.dtype(np.float32)
            elif fluid_dtype == 'double':
                self.fluid_dtype = np.dtype(np.float64)
        self.rtype = self.fluid_dtype
        if self.rtype == np.float32:
            self.ctype = np.dtype(np.complex64)
74
            self.C_field_dtype = 'float'
75
            self.fluid_precision = 'single'
Cristian Lalescu's avatar
Cristian Lalescu committed
76
77
        elif self.rtype == np.float64:
            self.ctype = np.dtype(np.complex128)
78
            self.C_field_dtype = 'double'
79
80
81
            self.fluid_precision = 'double'
        return None
    def write_src(self):
Cristian Lalescu's avatar
Cristian Lalescu committed
82
83
84
85
86
        self.version_message = (
                '/***********************************************************************\n' +
                '* this code automatically generated by bfps\n' +
                '* version {0}\n'.format(bfps.__version__) +
                '***********************************************************************/\n\n\n')
87
88
89
90
91
        self.include_list = [
                '"base.hpp"',
                '"scope_timer.hpp"',
                '"fftw_interface.hpp"',
                '"full_code/main_code.hpp"',
92
                '<cmath>',
93
94
95
96
97
98
99
100
101
                '<iostream>',
                '<hdf5.h>',
                '<string>',
                '<cstring>',
                '<fftw3-mpi.h>',
                '<omp.h>',
                '<cfenv>',
                '<cstdlib>',
                '"full_code/{0}.hpp"\n'.format(self.dns_type)]
Cristian Lalescu's avatar
Cristian Lalescu committed
102
        self.main = """
103
104
105
106
107
108
109
110
            int main(int argc, char *argv[])
            {{
                bool fpe = (
                    (getenv("BFPS_FPE_OFF") == nullptr) ||
                    (getenv("BFPS_FPE_OFF") != std::string("TRUE")));
                return main_code< {0} >(argc, argv, fpe);
            }}
            """.format(self.dns_type + '<{0}>'.format(self.C_field_dtype))
111
112
113
114
115
116
        self.includes = '\n'.join(
                ['#include ' + hh
                 for hh in self.include_list])
        with open(self.name + '.cpp', 'w') as outfile:
            outfile.write(self.version_message + '\n\n')
            outfile.write(self.includes + '\n\n')
117
118
119
120
121
122
123
            outfile.write(
                    self.cread_pars(
                       template_class = '{0}<rnumber>::'.format(self.dns_type),
                        template_prefix = 'template <typename rnumber> ',
                        simname_variable = 'this->simname.c_str()',
                        prepend_this = True) +
                    '\n\n')
124
125
126
127
128
            for rnumber in ['float', 'double']:
                outfile.write(self.cread_pars(
                    template_class = '{0}<{1}>::'.format(self.dns_type, rnumber),
                    template_prefix = 'template '.format(rnumber),
                    just_declaration = True) + '\n\n')
129
            if self.dns_type in ['NSVEparticles', 'NSVE_no_output', 'NSVEparticles_no_output']:
130
131
132
                outfile.write('template <typename rnumber> int NSVE<rnumber>::read_parameters(){return EXIT_SUCCESS;}\n')
                outfile.write('template int NSVE<float>::read_parameters();\n')
                outfile.write('template int NSVE<double>::read_parameters();\n\n')
133
134
135
136
            if self.dns_type in ['NSVEparticles_no_output']:
                outfile.write('template <typename rnumber> int NSVEparticles<rnumber>::read_parameters(){return EXIT_SUCCESS;}\n')
                outfile.write('template int NSVEparticles<float>::read_parameters();\n')
                outfile.write('template int NSVEparticles<double>::read_parameters();\n\n')
137
            outfile.write(self.main + '\n')
138
139
140
        return None
    def generate_default_parameters(self):
        # these parameters are relevant for all DNS classes
141
142
143
144
145
146
147
        self.parameters['dealias_type'] = int(1)
        self.parameters['dkx'] = float(1.0)
        self.parameters['dky'] = float(1.0)
        self.parameters['dkz'] = float(1.0)
        self.parameters['niter_todo'] = int(8)
        self.parameters['niter_stat'] = int(1)
        self.parameters['niter_out'] = int(8)
148
        self.parameters['checkpoints_per_file'] = int(1)
149
        self.parameters['dt'] = float(0.01)
150
        self.parameters['nu'] = float(0.1)
151
        self.parameters['fmode'] = int(1)
152
153
154
155
156
157
158
159
        self.parameters['famplitude'] = float(0.5)
        self.parameters['fk0'] = float(2.0)
        self.parameters['fk1'] = float(4.0)
        self.parameters['forcing_type'] = 'linear'
        self.parameters['histogram_bins'] = int(256)
        self.parameters['max_velocity_estimate'] = float(1)
        self.parameters['max_vorticity_estimate'] = float(1)
        # parameters specific to particle version
160
161
162
163
164
165
        self.NSVEp_extra_parameters = {}
        self.NSVEp_extra_parameters['niter_part'] = int(1)
        self.NSVEp_extra_parameters['nparticles'] = int(10)
        self.NSVEp_extra_parameters['tracers0_integration_steps'] = int(4)
        self.NSVEp_extra_parameters['tracers0_neighbours'] = int(1)
        self.NSVEp_extra_parameters['tracers0_smoothness'] = int(1)
Cristian Lalescu's avatar
Cristian Lalescu committed
166
        return None
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
    def get_kspace(self):
        kspace = {}
        if self.parameters['dealias_type'] == 1:
            kMx = self.parameters['dkx']*(self.parameters['nx']//2 - 1)
            kMy = self.parameters['dky']*(self.parameters['ny']//2 - 1)
            kMz = self.parameters['dkz']*(self.parameters['nz']//2 - 1)
        else:
            kMx = self.parameters['dkx']*(self.parameters['nx']//3 - 1)
            kMy = self.parameters['dky']*(self.parameters['ny']//3 - 1)
            kMz = self.parameters['dkz']*(self.parameters['nz']//3 - 1)
        kspace['kM'] = max(kMx, kMy, kMz)
        kspace['dk'] = min(self.parameters['dkx'],
                           self.parameters['dky'],
                           self.parameters['dkz'])
        nshells = int(kspace['kM'] / kspace['dk']) + 2
        kspace['nshell'] = np.zeros(nshells, dtype = np.int64)
        kspace['kshell'] = np.zeros(nshells, dtype = np.float64)
        kspace['kx'] = np.arange( 0,
                                  self.parameters['nx']//2 + 1).astype(np.float64)*self.parameters['dkx']
        kspace['ky'] = np.arange(-self.parameters['ny']//2 + 1,
                                  self.parameters['ny']//2 + 1).astype(np.float64)*self.parameters['dky']
        kspace['ky'] = np.roll(kspace['ky'], self.parameters['ny']//2+1)
        kspace['kz'] = np.arange(-self.parameters['nz']//2 + 1,
                                  self.parameters['nz']//2 + 1).astype(np.float64)*self.parameters['dkz']
        kspace['kz'] = np.roll(kspace['kz'], self.parameters['nz']//2+1)
        return kspace
    def get_data_file_name(self):
        return os.path.join(self.work_dir, self.simname + '.h5')
    def get_data_file(self):
        return h5py.File(self.get_data_file_name(), 'r')
    def get_particle_file_name(self):
        return os.path.join(self.work_dir, self.simname + '_particles.h5')
    def get_particle_file(self):
        return h5py.File(self.get_particle_file_name(), 'r')
    def get_postprocess_file_name(self):
        return os.path.join(self.work_dir, self.simname + '_postprocess.h5')
    def get_postprocess_file(self):
        return h5py.File(self.get_postprocess_file_name(), 'r')
    def compute_statistics(self, iter0 = 0, iter1 = None):
        """Run basic postprocessing on raw data.
        The energy spectrum :math:`E(t, k)` and the enstrophy spectrum
        :math:`\\frac{1}{2}\omega^2(t, k)` are computed from the

        .. math::

            \sum_{k \\leq \\|\\mathbf{k}\\| \\leq k+dk}\\hat{u_i} \\hat{u_j}^*, \\hskip .5cm
            \sum_{k \\leq \\|\\mathbf{k}\\| \\leq k+dk}\\hat{\omega_i} \\hat{\\omega_j}^*

        tensors, and the enstrophy spectrum is also used to
        compute the dissipation :math:`\\varepsilon(t)`.
        These basic quantities are stored in a newly created HDF5 file,
        ``simname_postprocess.h5``.
        """
        if len(list(self.statistics.keys())) > 0:
            return None
        self.read_parameters()
        with self.get_data_file() as data_file:
            if 'moments' not in data_file['statistics'].keys():
                return None
            iter0 = min((data_file['statistics/moments/velocity'].shape[0] *
                         self.parameters['niter_stat']-1),
                        iter0)
            if type(iter1) == type(None):
                iter1 = data_file['iteration'].value
            else:
                iter1 = min(data_file['iteration'].value, iter1)
            ii0 = iter0 // self.parameters['niter_stat']
            ii1 = iter1 // self.parameters['niter_stat']
            self.statistics['kshell'] = data_file['kspace/kshell'].value
            self.statistics['kM'] = data_file['kspace/kM'].value
            self.statistics['dk'] = data_file['kspace/dk'].value
            computation_needed = True
            pp_file = h5py.File(self.get_postprocess_file_name(), 'a')
            if 'ii0' in pp_file.keys():
                computation_needed =  not (ii0 == pp_file['ii0'].value and
                                           ii1 == pp_file['ii1'].value)
                if computation_needed:
                    for k in pp_file.keys():
                        del pp_file[k]
            if computation_needed:
                pp_file['iter0'] = iter0
                pp_file['iter1'] = iter1
                pp_file['ii0'] = ii0
                pp_file['ii1'] = ii1
                pp_file['t'] = (self.parameters['dt']*
                                self.parameters['niter_stat']*
                                (np.arange(ii0, ii1+1).astype(np.float)))
                pp_file['energy(t, k)'] = (
                    data_file['statistics/spectra/velocity_velocity'][ii0:ii1+1, :, 0, 0] +
                    data_file['statistics/spectra/velocity_velocity'][ii0:ii1+1, :, 1, 1] +
                    data_file['statistics/spectra/velocity_velocity'][ii0:ii1+1, :, 2, 2])/2
                pp_file['enstrophy(t, k)'] = (
                    data_file['statistics/spectra/vorticity_vorticity'][ii0:ii1+1, :, 0, 0] +
                    data_file['statistics/spectra/vorticity_vorticity'][ii0:ii1+1, :, 1, 1] +
                    data_file['statistics/spectra/vorticity_vorticity'][ii0:ii1+1, :, 2, 2])/2
                pp_file['vel_max(t)'] = data_file['statistics/moments/velocity']  [ii0:ii1+1, 9, 3]
                pp_file['renergy(t)'] = data_file['statistics/moments/velocity'][ii0:ii1+1, 2, 3]/2
            for k in ['t',
                      'energy(t, k)',
                      'enstrophy(t, k)',
                      'vel_max(t)',
                      'renergy(t)']:
                if k in pp_file.keys():
                    self.statistics[k] = pp_file[k].value
            self.compute_time_averages()
        return None
    def compute_time_averages(self):
        """Compute easy stats.

        Further computation of statistics based on the contents of
        ``simname_postprocess.h5``.
        Standard quantities are as follows
        (consistent with [Ishihara]_):

        .. math::

            U_{\\textrm{int}}(t) = \\sqrt{\\frac{2E(t)}{3}}, \\hskip .5cm
            L_{\\textrm{int}}(t) = \\frac{\pi}{2U_{int}^2(t)} \\int \\frac{dk}{k} E(t, k), \\hskip .5cm
            T_{\\textrm{int}}(t) =
            \\frac{L_{\\textrm{int}}(t)}{U_{\\textrm{int}}(t)}

            \\eta_K = \\left(\\frac{\\nu^3}{\\varepsilon}\\right)^{1/4}, \\hskip .5cm
            \\tau_K = \\left(\\frac{\\nu}{\\varepsilon}\\right)^{1/2}, \\hskip .5cm
            \\lambda = \\sqrt{\\frac{15 \\nu U_{\\textrm{int}}^2}{\\varepsilon}}

            Re = \\frac{U_{\\textrm{int}} L_{\\textrm{int}}}{\\nu}, \\hskip
            .5cm
            R_{\\lambda} = \\frac{U_{\\textrm{int}} \\lambda}{\\nu}

        .. [Ishihara] T. Ishihara et al,
                      *Small-scale statistics in high-resolution direct numerical
                      simulation of turbulence: Reynolds number dependence of
                      one-point velocity gradient statistics*.
                      J. Fluid Mech.,
                      **592**, 335-366, 2007
        """
        for key in ['energy', 'enstrophy']:
            self.statistics[key + '(t)'] = (self.statistics['dk'] *
                                            np.sum(self.statistics[key + '(t, k)'], axis = 1))
        self.statistics['Uint(t)'] = np.sqrt(2*self.statistics['energy(t)'] / 3)
        self.statistics['Lint(t)'] = ((self.statistics['dk']*np.pi /
                                       (2*self.statistics['Uint(t)']**2)) *
                                      np.nansum(self.statistics['energy(t, k)'] /
                                                self.statistics['kshell'][None, :], axis = 1))
        for key in ['energy',
                    'enstrophy',
                    'vel_max',
                    'Uint',
                    'Lint']:
            if key + '(t)' in self.statistics.keys():
                self.statistics[key] = np.average(self.statistics[key + '(t)'], axis = 0)
        for suffix in ['', '(t)']:
            self.statistics['diss'    + suffix] = (self.parameters['nu'] *
                                                   self.statistics['enstrophy' + suffix]*2)
            self.statistics['etaK'    + suffix] = (self.parameters['nu']**3 /
                                                   self.statistics['diss' + suffix])**.25
            self.statistics['tauK'    + suffix] =  (self.parameters['nu'] /
                                                    self.statistics['diss' + suffix])**.5
            self.statistics['Re' + suffix] = (self.statistics['Uint' + suffix] *
                                              self.statistics['Lint' + suffix] /
                                              self.parameters['nu'])
            self.statistics['lambda' + suffix] = (15 * self.parameters['nu'] *
                                                  self.statistics['Uint' + suffix]**2 /
                                                  self.statistics['diss' + suffix])**.5
            self.statistics['Rlambda' + suffix] = (self.statistics['Uint' + suffix] *
                                                   self.statistics['lambda' + suffix] /
                                                   self.parameters['nu'])
            self.statistics['kMeta' + suffix] = (self.statistics['kM'] *
                                                 self.statistics['etaK' + suffix])
            if self.parameters['dealias_type'] == 1:
                self.statistics['kMeta' + suffix] *= 0.8
        self.statistics['Tint'] = self.statistics['Lint'] / self.statistics['Uint']
        self.statistics['Taylor_microscale'] = self.statistics['lambda']
        return None
    def set_plt_style(
            self,
            style = {'dashes' : (None, None)}):
        self.style.update(style)
        return None
    def convert_complex_from_binary(
            self,
            field_name = 'vorticity',
            iteration = 0,
            file_name = None):
        """read the Fourier representation of a vector field.

        Read the binary file containing iteration ``iteration`` of the
        field ``field_name``, and write it in a ``.h5`` file.
        """
        data = np.memmap(
                os.path.join(self.work_dir,
                             self.simname + '_{0}_i{1:0>5x}'.format('c' + field_name, iteration)),
                dtype = self.ctype,
                mode = 'r',
                shape = (self.parameters['ny'],
                         self.parameters['nz'],
                         self.parameters['nx']//2+1,
                         3))
        if type(file_name) == type(None):
            file_name = self.simname + '_{0}_i{1:0>5x}.h5'.format('c' + field_name, iteration)
            file_name = os.path.join(self.work_dir, file_name)
        f = h5py.File(file_name, 'a')
        f[field_name + '/complex/{0}'.format(iteration)] = data
        f.close()
        return None
    def write_par(
            self,
            iter0 = 0,
            particle_ic = None):
        assert (self.parameters['niter_todo'] % self.parameters['niter_stat'] == 0)
        assert (self.parameters['niter_todo'] % self.parameters['niter_out']  == 0)
        assert (self.parameters['niter_out']  % self.parameters['niter_stat'] == 0)
379
        if self.dns_type in ['NSVEparticles_no_output', 'NSVEparticles']:
380
381
            assert (self.parameters['niter_todo'] % self.parameters['niter_part'] == 0)
            assert (self.parameters['niter_out']  % self.parameters['niter_part'] == 0)
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
        _code.write_par(self, iter0 = iter0)
        with h5py.File(self.get_data_file_name(), 'r+') as ofile:
            ofile['bfps_info/exec_name'] = self.name
            kspace = self.get_kspace()
            for k in kspace.keys():
                ofile['kspace/' + k] = kspace[k]
            nshells = kspace['nshell'].shape[0]
            kspace = self.get_kspace()
            nshells = kspace['nshell'].shape[0]
            vec_stat_datasets = ['velocity', 'vorticity']
            scal_stat_datasets = []
            for k in vec_stat_datasets:
                time_chunk = 2**20//(8*3*3*nshells)
                time_chunk = max(time_chunk, 1)
                ofile.create_dataset('statistics/spectra/' + k + '_' + k,
                                     (1, nshells, 3, 3),
                                     chunks = (time_chunk, nshells, 3, 3),
                                     maxshape = (None, nshells, 3, 3),
                                     dtype = np.float64)
                time_chunk = 2**20//(8*4*10)
                time_chunk = max(time_chunk, 1)
                a = ofile.create_dataset('statistics/moments/' + k,
                                     (1, 10, 4),
                                     chunks = (time_chunk, 10, 4),
                                     maxshape = (None, 10, 4),
                                     dtype = np.float64)
                time_chunk = 2**20//(8*4*self.parameters['histogram_bins'])
                time_chunk = max(time_chunk, 1)
                ofile.create_dataset('statistics/histograms/' + k,
                                     (1,
                                      self.parameters['histogram_bins'],
                                      4),
                                     chunks = (time_chunk,
                                               self.parameters['histogram_bins'],
                                               4),
                                     maxshape = (None,
                                                 self.parameters['histogram_bins'],
                                                 4),
                                     dtype = np.int64)
            ofile['checkpoint'] = int(0)
422
        if self.dns_type in ['NSVE', 'NSVE_no_output']:
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
            return None

        if type(particle_ic) == type(None):
            pbase_shape = (self.parameters['nparticles'],)
            number_of_particles = self.parameters['nparticles']
        else:
            pbase_shape = particle_ic.shape[:-1]
            assert(particle_ic.shape[-1] == 3)
            number_of_particles = 1
            for val in pbase_shape[1:]:
                number_of_particles *= val
        with h5py.File(self.get_checkpoint_0_fname(), 'a') as ofile:
            s = 0
            ofile.create_group('tracers{0}'.format(s))
            ofile.create_group('tracers{0}/rhs'.format(s))
            ofile.create_group('tracers{0}/state'.format(s))
            ofile['tracers{0}/rhs'.format(s)].create_dataset(
                    '0',
                    shape = (
                        (self.parameters['tracers{0}_integration_steps'.format(s)],) +
                        pbase_shape +
                        (3,)),
                    dtype = np.float)
            ofile['tracers{0}/state'.format(s)].create_dataset(
                    '0',
                    shape = (
                        pbase_shape +
                        (3,)),
                    dtype = np.float)
        return None
453
    def job_parser_arguments(
454
455
            self,
            parser):
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
        parser.add_argument(
                '--ncpu',
                type = int,
                dest = 'ncpu',
                default = -1)
        parser.add_argument(
                '--np', '--nprocesses',
                metavar = 'NPROCESSES',
                help = 'number of mpi processes to use',
                type = int,
                dest = 'nb_processes',
                default = 4)
        parser.add_argument(
                '--ntpp', '--nthreads-per-process',
                type = int,
                dest = 'nb_threads_per_process',
                metavar = 'NTHREADS_PER_PROCESS',
                help = 'number of threads to use per MPI process',
                default = 1)
        parser.add_argument(
                '--no-submit',
                action = 'store_true',
                dest = 'no_submit')
        parser.add_argument(
                '--environment',
                type = str,
                dest = 'environment',
                default = None)
        parser.add_argument(
                '--minutes',
                type = int,
                dest = 'minutes',
                default = 5,
                help = 'If environment supports it, this is the requested wall-clock-limit.')
        parser.add_argument(
               '--njobs',
               type = int, dest = 'njobs',
               default = 1)
        return None
    def simulation_parser_arguments(
            self,
            parser):
        parser.add_argument(
                '--simname',
                type = str, dest = 'simname',
                default = 'test')
        parser.add_argument(
503
               '-n', '--grid-size',
504
505
506
507
508
               type = int,
               dest = 'n',
               default = 32,
               metavar = 'N',
               help = 'code is run by default in a grid of NxNxN')
509
510
511
512
513
514
515
516
        for coord in ['x', 'y', 'z']:
            parser.add_argument(
                   '--L{0}'.format(coord), '--box-length-{0}'.format(coord),
                   type = float,
                   dest = 'L{0}'.format(coord),
                   default = 2.0,
                   metavar = 'length{0}'.format(coord),
                   help = 'length of the box in the {0} direction will be `length{0} x pi`'.format(coord))
517
518
519
520
521
522
523
524
525
        parser.add_argument(
                '--wd',
                type = str, dest = 'work_dir',
                default = './')
        parser.add_argument(
                '--precision',
                choices = ['single', 'double'],
                type = str,
                default = 'single')
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
        parser.add_argument(
                '--src-wd',
                type = str,
                dest = 'src_work_dir',
                default = '')
        parser.add_argument(
                '--src-simname',
                type = str,
                dest = 'src_simname',
                default = '')
        parser.add_argument(
                '--src-iteration',
                type = int,
                dest = 'src_iteration',
                default = 0)
        parser.add_argument(
               '--kMeta',
               type = float,
               dest = 'kMeta',
               default = 2.0)
        parser.add_argument(
               '--dtfactor',
               type = float,
               dest = 'dtfactor',
               default = 0.5,
               help = 'dt is computed as DTFACTOR / N')
552
553
554
555
        return None
    def particle_parser_arguments(
            self,
            parser):
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
        parser.add_argument(
               '--particle-rand-seed',
               type = int,
               dest = 'particle_rand_seed',
               default = None)
        parser.add_argument(
               '--pclouds',
               type = int,
               dest = 'pclouds',
               default = 1,
               help = ('number of particle clouds. Particle "clouds" '
                       'consist of particles distributed according to '
                       'pcloud-type.'))
        parser.add_argument(
                '--pcloud-type',
                choices = ['random-cube',
                           'regular-cube'],
                dest = 'pcloud_type',
                default = 'random-cube')
        parser.add_argument(
               '--particle-cloud-size',
               type = float,
               dest = 'particle_cloud_size',
               default = 2*np.pi)
        return None
581
582
583
584
585
586
587
588
589
590
591
592
593
594
    def add_parser_arguments(
            self,
            parser):
        subparsers = parser.add_subparsers(
                dest = 'DNS_class',
                help = 'type of simulation to run')
        subparsers.required = True
        parser_NSVE = subparsers.add_parser(
                'NSVE',
                help = 'plain Navier-Stokes vorticity formulation')
        self.simulation_parser_arguments(parser_NSVE)
        self.job_parser_arguments(parser_NSVE)
        self.parameters_to_parser_arguments(parser_NSVE)

595
596
597
598
599
600
601
602
603
604
605
606
607
608
        parser_NSVE_no_output = subparsers.add_parser(
                'NSVE_no_output',
                help = 'plain Navier-Stokes vorticity formulation, checkpoints are NOT SAVED')
        self.simulation_parser_arguments(parser_NSVE_no_output)
        self.job_parser_arguments(parser_NSVE_no_output)
        self.parameters_to_parser_arguments(parser_NSVE_no_output)

        parser_NSVEparticles_no_output = subparsers.add_parser(
                'NSVEparticles_no_output',
                help = 'plain Navier-Stokes vorticity formulation, with basic fluid tracers, checkpoints are NOT SAVED')
        self.simulation_parser_arguments(parser_NSVEparticles_no_output)
        self.job_parser_arguments(parser_NSVEparticles_no_output)
        self.particle_parser_arguments(parser_NSVEparticles_no_output)
        self.parameters_to_parser_arguments(parser_NSVEparticles_no_output)
609
        self.parameters_to_parser_arguments(
610
                parser_NSVEparticles_no_output,
611
                self.NSVEp_extra_parameters)
612
613
614
615
616
617
618
619
620
621
622

        parser_NSVEp2 = subparsers.add_parser(
                'NSVEparticles',
                help = 'plain Navier-Stokes vorticity formulation, with basic fluid tracers')
        self.simulation_parser_arguments(parser_NSVEp2)
        self.job_parser_arguments(parser_NSVEp2)
        self.particle_parser_arguments(parser_NSVEp2)
        self.parameters_to_parser_arguments(parser_NSVEp2)
        self.parameters_to_parser_arguments(
                parser_NSVEp2,
                self.NSVEp_extra_parameters)
623
        return None
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
    def prepare_launch(
            self,
            args = []):
        """Set up reasonable parameters.

        With the default Lundgren forcing applied in the band [2, 4],
        we can estimate the dissipation, therefore we can estimate
        :math:`k_M \\eta_K` and constrain the viscosity.

        In brief, the command line parameter :math:`k_M \\eta_K` is
        used in the following formula for :math:`\\nu` (:math:`N` is the
        number of real space grid points per coordinate):

        .. math::

            \\nu = \\left(\\frac{2 k_M \\eta_K}{N} \\right)^{4/3}

        With this choice, the average dissipation :math:`\\varepsilon`
        will be close to 0.4, and the integral scale velocity will be
        close to 0.77, yielding the approximate value for the Taylor
        microscale and corresponding Reynolds number:

        .. math::

            \\lambda \\approx 4.75\\left(\\frac{2 k_M \\eta_K}{N} \\right)^{4/6}, \\hskip .5in
            R_\\lambda \\approx 3.7 \\left(\\frac{N}{2 k_M \\eta_K} \\right)^{4/6}

        """
        opt = _code.prepare_launch(self, args = args)
653
654
655
656
        self.set_precision(opt.precision)
        self.dns_type = opt.DNS_class
        self.name = self.dns_type + '-' + self.fluid_precision + '-v' + bfps.__version__
        # merge parameters if needed
657
        if self.dns_type in ['NSVEparticles', 'NSVEparticles_no_output']:
658
659
            for k in self.NSVEp_extra_parameters.keys():
                self.parameters[k] = self.NSVEp_extra_parameters[k]
660
661
662
663
664
665
666
667
668
669
670
        self.parameters['nu'] = (opt.kMeta * 2 / opt.n)**(4./3)
        self.parameters['dt'] = (opt.dtfactor / opt.n)
        # custom famplitude for 288 and 576
        if opt.n == 288:
            self.parameters['famplitude'] = 0.45
        elif opt.n == 576:
            self.parameters['famplitude'] = 0.47
        if ((self.parameters['niter_todo'] % self.parameters['niter_out']) != 0):
            self.parameters['niter_out'] = self.parameters['niter_todo']
        if len(opt.src_work_dir) == 0:
            opt.src_work_dir = os.path.realpath(opt.work_dir)
671
672
673
674
675
676
        if type(opt.dkx) == type(None):
            opt.dkx = 2. / opt.Lx
        if type(opt.dky) == type(None):
            opt.dky = 2. / opt.Ly
        if type(opt.dkx) == type(None):
            opt.dkz = 2. / opt.Lz
677
678
679
680
681
682
683
684
685
686
        if type(opt.nx) == type(None):
            opt.nx = opt.n
        if type(opt.ny) == type(None):
            opt.ny = opt.n
        if type(opt.nz) == type(None):
            opt.nz = opt.n
        if type(opt.checkpoints_per_file) == type(None):
            # hardcoded FFTW complex representation size
            field_size = 3*(opt.nx+2)*opt.ny*opt.nz*self.fluid_dtype.itemsize
            checkpoint_size = field_size
687
            if self.dns_type in ['NSVEparticles', 'NSVEparticles_no_output']:
688
689
690
                rhs_size = self.parameters['tracers0_integration_steps']
                if type(opt.tracers0_integration_steps) != type(None):
                    rhs_size = opt.tracers0_integration_steps
691
692
693
694
                nparticles = opt.nparticles
                if type(nparticles) == type(None):
                    nparticles = self.NSVEp_extra_parameters['nparticles']
                particle_size = (1+rhs_size)*3*nparticles*8
695
696
697
                checkpoint_size += particle_size
            if checkpoint_size < 1e9:
                opt.checkpoints_per_file = int(1e9 / checkpoint_size)
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
        self.pars_from_namespace(opt)
        return opt
    def launch(
            self,
            args = [],
            **kwargs):
        opt = self.prepare_launch(args = args)
        self.launch_jobs(opt = opt, **kwargs)
        return None
    def get_checkpoint_0_fname(self):
        return os.path.join(
                    self.work_dir,
                    self.simname + '_checkpoint_0.h5')
    def generate_tracer_state(
            self,
            rseed = None,
714
715
716
717
            species = 0):
        with h5py.File(self.get_checkpoint_0_fname(), 'a') as data_file:
            dset = data_file[
                'tracers{0}/state/0'.format(species)]
718
719
            if not type(rseed) == type(None):
                np.random.seed(rseed)
720
721
722
723
724
725
726
727
728
729
730
731
732
733
            nn = self.parameters['nparticles']
            cc = int(0)
            batch_size = int(1e6)
            while nn > 0:
                if nn > batch_size:
                    dset[cc*batch_size:(cc+1)*batch_size] = np.random.random(
                            (batch_size, 3))*2*np.pi
                    nn -= batch_size
                else:
                    dset[cc*batch_size:cc*batch_size+nn] = np.random.random(
                            (nn, 3))*2*np.pi
                    nn = 0
                cc += 1
        return None
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
    def generate_vector_field(
            self,
            rseed = 7547,
            spectra_slope = 1.,
            amplitude = 1.,
            iteration = 0,
            field_name = 'vorticity',
            write_to_file = False,
            # to switch to constant field, use generate_data_3D_uniform
            # for scalar_generator
            scalar_generator = tools.generate_data_3D):
        """generate vector field.

        The generated field is not divergence free, but it has the proper
        shape.

        :param rseed: seed for random number generator
        :param spectra_slope: spectrum of field will look like k^(-p)
        :param amplitude: all amplitudes are multiplied with this value
        :param iteration: the field is written at this iteration
        :param field_name: the name of the field being generated
        :param write_to_file: should we write the field to file?
        :param scalar_generator: which function to use for generating the
            individual components.
            Possible values: bfps.tools.generate_data_3D,
            bfps.tools.generate_data_3D_uniform
        :type rseed: int
        :type spectra_slope: float
        :type amplitude: float
        :type iteration: int
        :type field_name: str
        :type write_to_file: bool
        :type scalar_generator: function

        :returns: ``Kdata``, a complex valued 4D ``numpy.array`` that uses the
            transposed FFTW layout.
            Kdata[ky, kz, kx, i] is the amplitude of mode (kx, ky, kz) for
            the i-th component of the field.
            (i.e. x is the fastest index and z the slowest index in the
            real-space representation).
        """
        np.random.seed(rseed)
        Kdata00 = scalar_generator(
                self.parameters['nz']//2,
                self.parameters['ny']//2,
                self.parameters['nx']//2,
                p = spectra_slope,
                amplitude = amplitude).astype(self.ctype)
        Kdata01 = scalar_generator(
                self.parameters['nz']//2,
                self.parameters['ny']//2,
                self.parameters['nx']//2,
                p = spectra_slope,
                amplitude = amplitude).astype(self.ctype)
        Kdata02 = scalar_generator(
                self.parameters['nz']//2,
                self.parameters['ny']//2,
                self.parameters['nx']//2,
                p = spectra_slope,
                amplitude = amplitude).astype(self.ctype)
        Kdata0 = np.zeros(
                Kdata00.shape + (3,),
                Kdata00.dtype)
        Kdata0[..., 0] = Kdata00
        Kdata0[..., 1] = Kdata01
        Kdata0[..., 2] = Kdata02
        Kdata1 = tools.padd_with_zeros(
                Kdata0,
                self.parameters['nz'],
                self.parameters['ny'],
                self.parameters['nx'])
        if write_to_file:
            Kdata1.tofile(
                    os.path.join(self.work_dir,
                                 self.simname + "_c{0}_i{1:0>5x}".format(field_name, iteration)))
        return Kdata1
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
    def copy_complex_field(
            self,
            src_file_name,
            src_dset_name,
            dst_file,
            dst_dset_name,
            make_link = True):
        # I define a min_shape thingie, but for now I only trust this method for
        # the case of increasing/decreasing by the same factor in all directions.
        # in principle we could write something more generic, but i'm not sure
        # how complicated that would be
        dst_shape = (self.parameters['nz'],
                     self.parameters['ny'],
                     (self.parameters['nx']+2) // 2,
                     3)
        src_file = h5py.File(src_file_name, 'r')
        if (src_file[src_dset_name].shape == dst_shape):
            if make_link and (src_file[src_dset_name].dtype == self.ctype):
                dst_file[dst_dset_name] = h5py.ExternalLink(
                        src_file_name,
                        src_dset_name)
            else:
                dst_file.create_dataset(
                        dst_dset_name,
                        shape = dst_shape,
                        dtype = self.ctype,
                        fillvalue = 0.0)
                for kz in range(src_file[src_dset_name].shape[0]):
                    dst_file[dst_dset_name][kz] = src_file[src_dset_name][kz]
        else:
            print('aloha')
            min_shape = (min(dst_shape[0], src_file[src_dset_name].shape[0]),
                         min(dst_shape[1], src_file[src_dset_name].shape[1]),
                         min(dst_shape[2], src_file[src_dset_name].shape[2]),
                         3)
845
            print(self.ctype)
846
847
848
            dst_file.create_dataset(
                    dst_dset_name,
                    shape = dst_shape,
849
850
                    dtype = np.dtype(self.ctype),
                    fillvalue = complex(0))
851
852
853
854
            for kz in range(min_shape[0]):
                dst_file[dst_dset_name][kz,:min_shape[1], :min_shape[2]] = \
                        src_file[src_dset_name][kz, :min_shape[1], :min_shape[2]]
        return None
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
    def launch_jobs(
            self,
            opt = None,
            particle_initial_condition = None):
        if not os.path.exists(os.path.join(self.work_dir, self.simname + '.h5')):
            # take care of fields' initial condition
            if not os.path.exists(self.get_checkpoint_0_fname()):
                f = h5py.File(self.get_checkpoint_0_fname(), 'w')
                if len(opt.src_simname) > 0:
                    source_cp = 0
                    src_file = 'not_a_file'
                    while True:
                        src_file = os.path.join(
                            os.path.realpath(opt.src_work_dir),
                            opt.src_simname + '_checkpoint_{0}.h5'.format(source_cp))
                        f0 = h5py.File(src_file, 'r')
                        if '{0}'.format(opt.src_iteration) in f0['vorticity/complex'].keys():
                            f0.close()
                            break
                        source_cp += 1
875
                    self.copy_complex_field(
876
                            src_file,
877
878
879
                            'vorticity/complex/{0}'.format(opt.src_iteration),
                            f,
                            'vorticity/complex/{0}'.format(0))
880
881
882
883
884
885
886
                else:
                    data = self.generate_vector_field(
                           write_to_file = False,
                           spectra_slope = 2.0,
                           amplitude = 0.05)
                    f['vorticity/complex/{0}'.format(0)] = data
                f.close()
887
            ## take care of particles' initial condition
888
            #if self.dns_type in ['NSVEparticles', 'NSVEparticles_no_output']:
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
            #    if opt.pclouds > 1:
            #        np.random.seed(opt.particle_rand_seed)
            #        if opt.pcloud_type == 'random-cube':
            #            particle_initial_condition = (
            #                np.random.random((opt.pclouds, 1, 3))*2*np.pi +
            #                np.random.random((1, self.parameters['nparticles'], 3))*opt.particle_cloud_size)
            #        elif opt.pcloud_type == 'regular-cube':
            #            onedarray = np.linspace(
            #                    -opt.particle_cloud_size/2,
            #                    opt.particle_cloud_size/2,
            #                    self.parameters['nparticles'])
            #            particle_initial_condition = np.zeros(
            #                    (opt.pclouds,
            #                     self.parameters['nparticles'],
            #                     self.parameters['nparticles'],
            #                     self.parameters['nparticles'], 3),
            #                    dtype = np.float64)
            #            particle_initial_condition[:] = \
            #                np.random.random((opt.pclouds, 1, 1, 1, 3))*2*np.pi
            #            particle_initial_condition[..., 0] += onedarray[None, None, None, :]
            #            particle_initial_condition[..., 1] += onedarray[None, None, :, None]
            #            particle_initial_condition[..., 2] += onedarray[None, :, None, None]
911
            self.write_par(
912
                    particle_ic = None)
913
            if self.dns_type in ['NSVEparticles', 'NSVEparticles_no_output']:
914
                if self.parameters['nparticles'] > 0:
915
                    self.generate_tracer_state(
916
                            species = 0,
917
                            rseed = opt.particle_rand_seed)
918
919
920
921
922
923
924
925
        self.run(
                nb_processes = opt.nb_processes,
                nb_threads_per_process = opt.nb_threads_per_process,
                njobs = opt.njobs,
                hours = opt.minutes // 60,
                minutes = opt.minutes % 60,
                no_submit = opt.no_submit)
        return None
Cristian Lalescu's avatar
Cristian Lalescu committed
926