DNS.py 49.2 KB
Newer Older
Cristian Lalescu's avatar
Cristian Lalescu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#######################################################################
#                                                                     #
#  Copyright 2015 Max Planck Institute                                #
#                 for Dynamics and Self-Organization                  #
#                                                                     #
#  This file is part of bfps.                                         #
#                                                                     #
#  bfps is free software: you can redistribute it and/or modify       #
#  it under the terms of the GNU General Public License as published  #
#  by the Free Software Foundation, either version 3 of the License,  #
#  or (at your option) any later version.                             #
#                                                                     #
#  bfps is distributed in the hope that it will be useful,            #
#  but WITHOUT ANY WARRANTY; without even the implied warranty of     #
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the      #
#  GNU General Public License for more details.                       #
#                                                                     #
#  You should have received a copy of the GNU General Public License  #
#  along with bfps.  If not, see <http://www.gnu.org/licenses/>       #
#                                                                     #
# Contact: Cristian.Lalescu@ds.mpg.de                                 #
#                                                                     #
#######################################################################



import os
import sys
import shutil
import subprocess
import argparse
import h5py
import math
import numpy as np
import warnings

import bfps
from ._code import _code
39
from bfps import tools
Cristian Lalescu's avatar
Cristian Lalescu committed
40
41
42
43
44
45
46
47

class DNS(_code):
    """This class is meant to stitch together the C++ code into a final source file,
    compile it, and handle all job launching.
    """
    def __init__(
            self,
            work_dir = './',
48
49
50
51
52
53
54
55
56
57
58
59
            simname = 'test'):
        _code.__init__(
                self,
                work_dir = work_dir,
                simname = simname)
        self.host_info = {'type'        : 'cluster',
                          'environment' : None,
                          'deltanprocs' : 1,
                          'queue'       : '',
                          'mail_address': '',
                          'mail_events' : None}
        self.generate_default_parameters()
Chichi Lalescu's avatar
Chichi Lalescu committed
60
        self.statistics = {}
61
62
63
64
        return None
    def set_precision(
            self,
            fluid_dtype):
Cristian Lalescu's avatar
Cristian Lalescu committed
65
66
67
68
69
70
71
72
73
74
        if fluid_dtype in [np.float32, np.float64]:
            self.fluid_dtype = fluid_dtype
        elif fluid_dtype in ['single', 'double']:
            if fluid_dtype == 'single':
                self.fluid_dtype = np.dtype(np.float32)
            elif fluid_dtype == 'double':
                self.fluid_dtype = np.dtype(np.float64)
        self.rtype = self.fluid_dtype
        if self.rtype == np.float32:
            self.ctype = np.dtype(np.complex64)
75
            self.C_field_dtype = 'float'
76
            self.fluid_precision = 'single'
Cristian Lalescu's avatar
Cristian Lalescu committed
77
78
        elif self.rtype == np.float64:
            self.ctype = np.dtype(np.complex128)
79
            self.C_field_dtype = 'double'
80
81
            self.fluid_precision = 'double'
        return None
82
83
    def write_src(
            self):
Cristian Lalescu's avatar
Cristian Lalescu committed
84
85
86
87
88
        self.version_message = (
                '/***********************************************************************\n' +
                '* this code automatically generated by bfps\n' +
                '* version {0}\n'.format(bfps.__version__) +
                '***********************************************************************/\n\n\n')
89
90
91
92
93
        self.include_list = [
                '"base.hpp"',
                '"scope_timer.hpp"',
                '"fftw_interface.hpp"',
                '"full_code/main_code.hpp"',
94
                '<cmath>',
95
96
97
98
99
100
101
102
103
                '<iostream>',
                '<hdf5.h>',
                '<string>',
                '<cstring>',
                '<fftw3-mpi.h>',
                '<omp.h>',
                '<cfenv>',
                '<cstdlib>',
                '"full_code/{0}.hpp"\n'.format(self.dns_type)]
Cristian Lalescu's avatar
Cristian Lalescu committed
104
        self.main = """
105
106
107
108
109
110
111
112
            int main(int argc, char *argv[])
            {{
                bool fpe = (
                    (getenv("BFPS_FPE_OFF") == nullptr) ||
                    (getenv("BFPS_FPE_OFF") != std::string("TRUE")));
                return main_code< {0} >(argc, argv, fpe);
            }}
            """.format(self.dns_type + '<{0}>'.format(self.C_field_dtype))
113
114
115
116
117
118
119
        self.includes = '\n'.join(
                ['#include ' + hh
                 for hh in self.include_list])
        with open(self.name + '.cpp', 'w') as outfile:
            outfile.write(self.version_message + '\n\n')
            outfile.write(self.includes + '\n\n')
            outfile.write(self.main + '\n')
120
121
122
        return None
    def generate_default_parameters(self):
        # these parameters are relevant for all DNS classes
123
124
125
126
127
128
129
        self.parameters['dealias_type'] = int(1)
        self.parameters['dkx'] = float(1.0)
        self.parameters['dky'] = float(1.0)
        self.parameters['dkz'] = float(1.0)
        self.parameters['niter_todo'] = int(8)
        self.parameters['niter_stat'] = int(1)
        self.parameters['niter_out'] = int(8)
130
        self.parameters['checkpoints_per_file'] = int(1)
131
        self.parameters['dt'] = float(0.01)
132
        self.parameters['nu'] = float(0.1)
133
        self.parameters['fmode'] = int(1)
134
        self.parameters['famplitude'] = float(0.5)
Chichi Lalescu's avatar
Chichi Lalescu committed
135
        self.parameters['friction_coefficient'] = float(0.5)
Cristian Lalescu's avatar
Cristian Lalescu committed
136
137
        self.parameters['energy'] = float(0.5)
        self.parameters['injection_rate'] = float(0.4)
138
139
        self.parameters['fk0'] = float(2.0)
        self.parameters['fk1'] = float(4.0)
Cristian Lalescu's avatar
Cristian Lalescu committed
140
        self.parameters['forcing_type'] = 'fixed_energy_injection_rate'
141
142
143
144
        self.parameters['histogram_bins'] = int(256)
        self.parameters['max_velocity_estimate'] = float(1)
        self.parameters['max_vorticity_estimate'] = float(1)
        # parameters specific to particle version
145
146
147
148
149
150
        self.NSVEp_extra_parameters = {}
        self.NSVEp_extra_parameters['niter_part'] = int(1)
        self.NSVEp_extra_parameters['nparticles'] = int(10)
        self.NSVEp_extra_parameters['tracers0_integration_steps'] = int(4)
        self.NSVEp_extra_parameters['tracers0_neighbours'] = int(1)
        self.NSVEp_extra_parameters['tracers0_smoothness'] = int(1)
Cristian Lalescu's avatar
Cristian Lalescu committed
151
        #self.extra_parameters = {}
152
        #for key in ['NSVE', 'NSVE_no_output', 'NSVEparticles', 'NSVEparticles_no_output', 'NSVEcomplex_particles']:
Cristian Lalescu's avatar
Cristian Lalescu committed
153
        #    self.extra_parameters[key] = {}
154
        #for key in ['NSVEparticles', 'NSVEparticles_no_output', 'NSVEcomplex_particles']:
Cristian Lalescu's avatar
Cristian Lalescu committed
155
        #    self.extra_parameters[key].update(self.NSVEp_extra_parameters)
Cristian Lalescu's avatar
Cristian Lalescu committed
156
        return None
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
    def get_kspace(self):
        kspace = {}
        if self.parameters['dealias_type'] == 1:
            kMx = self.parameters['dkx']*(self.parameters['nx']//2 - 1)
            kMy = self.parameters['dky']*(self.parameters['ny']//2 - 1)
            kMz = self.parameters['dkz']*(self.parameters['nz']//2 - 1)
        else:
            kMx = self.parameters['dkx']*(self.parameters['nx']//3 - 1)
            kMy = self.parameters['dky']*(self.parameters['ny']//3 - 1)
            kMz = self.parameters['dkz']*(self.parameters['nz']//3 - 1)
        kspace['kM'] = max(kMx, kMy, kMz)
        kspace['dk'] = min(self.parameters['dkx'],
                           self.parameters['dky'],
                           self.parameters['dkz'])
        nshells = int(kspace['kM'] / kspace['dk']) + 2
        kspace['nshell'] = np.zeros(nshells, dtype = np.int64)
        kspace['kshell'] = np.zeros(nshells, dtype = np.float64)
        kspace['kx'] = np.arange( 0,
                                  self.parameters['nx']//2 + 1).astype(np.float64)*self.parameters['dkx']
        kspace['ky'] = np.arange(-self.parameters['ny']//2 + 1,
                                  self.parameters['ny']//2 + 1).astype(np.float64)*self.parameters['dky']
        kspace['ky'] = np.roll(kspace['ky'], self.parameters['ny']//2+1)
        kspace['kz'] = np.arange(-self.parameters['nz']//2 + 1,
                                  self.parameters['nz']//2 + 1).astype(np.float64)*self.parameters['dkz']
        kspace['kz'] = np.roll(kspace['kz'], self.parameters['nz']//2+1)
        return kspace
    def get_data_file_name(self):
        return os.path.join(self.work_dir, self.simname + '.h5')
    def get_data_file(self):
        return h5py.File(self.get_data_file_name(), 'r')
    def get_particle_file_name(self):
        return os.path.join(self.work_dir, self.simname + '_particles.h5')
    def get_particle_file(self):
        return h5py.File(self.get_particle_file_name(), 'r')
191
192
193
194
    def get_cache_file_name(self):
        return os.path.join(self.work_dir, self.simname + '_cache.h5')
    def get_cache_file(self):
        return h5py.File(self.get_cache_file_name(), 'r')
195
    def get_postprocess_file_name(self):
196
        return self.get_cache_file_name()
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
    def get_postprocess_file(self):
        return h5py.File(self.get_postprocess_file_name(), 'r')
    def compute_statistics(self, iter0 = 0, iter1 = None):
        """Run basic postprocessing on raw data.
        The energy spectrum :math:`E(t, k)` and the enstrophy spectrum
        :math:`\\frac{1}{2}\omega^2(t, k)` are computed from the

        .. math::

            \sum_{k \\leq \\|\\mathbf{k}\\| \\leq k+dk}\\hat{u_i} \\hat{u_j}^*, \\hskip .5cm
            \sum_{k \\leq \\|\\mathbf{k}\\| \\leq k+dk}\\hat{\omega_i} \\hat{\\omega_j}^*

        tensors, and the enstrophy spectrum is also used to
        compute the dissipation :math:`\\varepsilon(t)`.
        These basic quantities are stored in a newly created HDF5 file,
212
        ``simname_cache.h5``.
213
214
215
        """
        if len(list(self.statistics.keys())) > 0:
            return None
Cristian Lalescu's avatar
Cristian Lalescu committed
216
217
218
219
220
221
222
223
224
        if not os.path.exists(self.get_data_file_name()):
            if os.path.exists(self.get_cache_file_name()):
                self.read_parameters(fname = self.get_cache_file_name())
                with self.get_cache_file() as pp_file:
                    for k in ['t',
                              'energy(t)',
                              'energy(k)',
                              'enstrophy(t)',
                              'enstrophy(k)',
225
                              'R_ij(t)',
Cristian Lalescu's avatar
Cristian Lalescu committed
226
227
                              'vel_max(t)',
                              'renergy(t)']:
228
                        if k in pp_file.keys():
Cristian Lalescu's avatar
Cristian Lalescu committed
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
                            self.statistics[k] = pp_file[k].value
                    self.statistics['kM'] = pp_file['kspace/kM'].value
                    self.statistics['dk'] = pp_file['kspace/dk'].value
                    self.statistics['kshell'] = pp_file['kspace/kshell'].value
                    self.statistics['nshell'] = pp_file['kspace/nshell'].value
        else:
            self.read_parameters()
            with self.get_data_file() as data_file:
                if 'moments' not in data_file['statistics'].keys():
                    return None
                iter0 = min((data_file['statistics/moments/velocity'].shape[0] *
                             self.parameters['niter_stat']-1),
                            iter0)
                if type(iter1) == type(None):
                    iter1 = data_file['iteration'].value
                else:
                    iter1 = min(data_file['iteration'].value, iter1)
                ii0 = iter0 // self.parameters['niter_stat']
                ii1 = iter1 // self.parameters['niter_stat']
                self.statistics['kshell'] = data_file['kspace/kshell'].value
                self.statistics['nshell'] = data_file['kspace/nshell'].value
                for kk in [-1, -2]:
                    if (self.statistics['kshell'][kk] == 0):
                        self.statistics['kshell'][kk] = np.nan
                self.statistics['kM'] = data_file['kspace/kM'].value
                self.statistics['dk'] = data_file['kspace/dk'].value
                computation_needed = True
                pp_file = h5py.File(self.get_postprocess_file_name(), 'a')
                if not ('parameters' in pp_file.keys()):
                    data_file.copy('parameters', pp_file)
                    data_file.copy('kspace', pp_file)
                if 'ii0' in pp_file.keys():
                    computation_needed =  not (ii0 == pp_file['ii0'].value and
                                               ii1 == pp_file['ii1'].value)
                    if computation_needed:
                        for k in ['t', 'vel_max(t)', 'renergy(t)',
                                  'energy(t)', 'enstrophy(t)',
                                  'energy(k)', 'enstrophy(k)',
                                  'energy(t, k)',
                                  'enstrophy(t, k)',
                                  'R_ij(t)',
                                  'ii0', 'ii1', 'iter0', 'iter1']:
                            if k in pp_file.keys():
                                del pp_file[k]
                if computation_needed:
                    pp_file['iter0'] = iter0
                    pp_file['iter1'] = iter1
                    pp_file['ii0'] = ii0
                    pp_file['ii1'] = ii1
                    pp_file['t'] = (self.parameters['dt']*
                                    self.parameters['niter_stat']*
                                    (np.arange(ii0, ii1+1).astype(np.float)))
                    phi_ij = data_file['statistics/spectra/velocity_velocity'][ii0:ii1+1]
                    pp_file['R_ij(t)'] = np.sum(phi_ij, axis = 1)
                    energy_tk = (
                        phi_ij[:, :, 0, 0] +
                        phi_ij[:, :, 1, 1] +
                        phi_ij[:, :, 2, 2])/2
                    pp_file['energy(t)'] = np.sum(energy_tk, axis = 1)
                    pp_file['energy(k)'] = np.mean(energy_tk, axis = 0)*(4*np.pi*self.statistics['kshell']**2) / (self.statistics['dk']*self.statistics['nshell'])
                    enstrophy_tk = (
                        data_file['statistics/spectra/vorticity_vorticity'][ii0:ii1+1, :, 0, 0] +
                        data_file['statistics/spectra/vorticity_vorticity'][ii0:ii1+1, :, 1, 1] +
                        data_file['statistics/spectra/vorticity_vorticity'][ii0:ii1+1, :, 2, 2])/2
                    pp_file['enstrophy(t)'] = np.sum(enstrophy_tk, axis = 1)
                    pp_file['enstrophy(k)'] = np.mean(enstrophy_tk, axis = 0)*(4*np.pi*self.statistics['kshell']**2) / (self.statistics['dk']*self.statistics['nshell'])
                    pp_file['vel_max(t)'] = data_file['statistics/moments/velocity'][ii0:ii1+1, 9, 3]
                    pp_file['renergy(t)'] = data_file['statistics/moments/velocity'][ii0:ii1+1, 2, 3]/2
        for k in ['t',
                  'energy(t)',
                  'energy(k)',
                  'enstrophy(t)',
                  'enstrophy(k)',
                  'R_ij(t)',
                  'vel_max(t)',
                  'renergy(t)']:
            if k in pp_file.keys():
                self.statistics[k] = pp_file[k].value
        # sanity check --- Parseval theorem check
        assert(np.max(np.abs(
                self.statistics['renergy(t)'] -
                self.statistics['energy(t)']) / self.statistics['energy(t)']) < 1e-5)
        self.compute_time_averages()
312
        return None
313
314
315
316
317
318
319
320
321
322
    def compute_Reynolds_stress_invariants(
            self):
        Rij = self.statistics['R_ij(t)']
        Rij /= (2*self.statistics['energy(t)'][:, None, None])
        Rij[:, 0, 0] -= 1./3
        Rij[:, 1, 1] -= 1./3
        Rij[:, 2, 2] -= 1./3
        self.statistics['I2(t)'] = np.sqrt(np.einsum('...ij,...ij', Rij, Rij, optimize = True) / 6)
        self.statistics['I3(t)'] = np.cbrt(np.einsum('...ij,...jk,...ki', Rij, Rij, Rij, optimize = True) / 6)
        return None
323
324
325
326
    def compute_time_averages(self):
        """Compute easy stats.

        Further computation of statistics based on the contents of
327
        ``simname_cache.h5``.
328
329
330
331
332
333
        Standard quantities are as follows
        (consistent with [Ishihara]_):

        .. math::

            U_{\\textrm{int}}(t) = \\sqrt{\\frac{2E(t)}{3}}, \\hskip .5cm
334
335
336
            L_{\\textrm{int}} = \\frac{\pi}{2U_{int}^2} \\int \\frac{dk}{k} E(k), \\hskip .5cm
            T_{\\textrm{int}} =
            \\frac{L_{\\textrm{int}}}{U_{\\textrm{int}}}
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355

            \\eta_K = \\left(\\frac{\\nu^3}{\\varepsilon}\\right)^{1/4}, \\hskip .5cm
            \\tau_K = \\left(\\frac{\\nu}{\\varepsilon}\\right)^{1/2}, \\hskip .5cm
            \\lambda = \\sqrt{\\frac{15 \\nu U_{\\textrm{int}}^2}{\\varepsilon}}

            Re = \\frac{U_{\\textrm{int}} L_{\\textrm{int}}}{\\nu}, \\hskip
            .5cm
            R_{\\lambda} = \\frac{U_{\\textrm{int}} \\lambda}{\\nu}

        .. [Ishihara] T. Ishihara et al,
                      *Small-scale statistics in high-resolution direct numerical
                      simulation of turbulence: Reynolds number dependence of
                      one-point velocity gradient statistics*.
                      J. Fluid Mech.,
                      **592**, 335-366, 2007
        """
        self.statistics['Uint(t)'] = np.sqrt(2*self.statistics['energy(t)'] / 3)
        for key in ['energy',
                    'enstrophy',
356
357
                    'mean_trS2',
                    'Uint']:
358
359
            if key + '(t)' in self.statistics.keys():
                self.statistics[key] = np.average(self.statistics[key + '(t)'], axis = 0)
360
        self.statistics['vel_max'] = np.max(self.statistics['vel_max(t)'])
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
        for suffix in ['', '(t)']:
            self.statistics['diss'    + suffix] = (self.parameters['nu'] *
                                                   self.statistics['enstrophy' + suffix]*2)
            self.statistics['etaK'    + suffix] = (self.parameters['nu']**3 /
                                                   self.statistics['diss' + suffix])**.25
            self.statistics['tauK'    + suffix] =  (self.parameters['nu'] /
                                                    self.statistics['diss' + suffix])**.5
            self.statistics['lambda' + suffix] = (15 * self.parameters['nu'] *
                                                  self.statistics['Uint' + suffix]**2 /
                                                  self.statistics['diss' + suffix])**.5
            self.statistics['Rlambda' + suffix] = (self.statistics['Uint' + suffix] *
                                                   self.statistics['lambda' + suffix] /
                                                   self.parameters['nu'])
            self.statistics['kMeta' + suffix] = (self.statistics['kM'] *
                                                 self.statistics['etaK' + suffix])
            if self.parameters['dealias_type'] == 1:
                self.statistics['kMeta' + suffix] *= 0.8
Cristian Lalescu's avatar
Cristian Lalescu committed
378
        self.statistics['Lint'] = ((np.pi /
379
380
381
382
383
384
                                    (2*self.statistics['Uint']**2)) *
                                   np.nansum(self.statistics['energy(k)'] /
                                                self.statistics['kshell']))
        self.statistics['Re'] = (self.statistics['Uint'] *
                                 self.statistics['Lint'] /
                                 self.parameters['nu'])
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
        self.statistics['Tint'] = self.statistics['Lint'] / self.statistics['Uint']
        self.statistics['Taylor_microscale'] = self.statistics['lambda']
        return None
    def set_plt_style(
            self,
            style = {'dashes' : (None, None)}):
        self.style.update(style)
        return None
    def convert_complex_from_binary(
            self,
            field_name = 'vorticity',
            iteration = 0,
            file_name = None):
        """read the Fourier representation of a vector field.

        Read the binary file containing iteration ``iteration`` of the
        field ``field_name``, and write it in a ``.h5`` file.
        """
        data = np.memmap(
                os.path.join(self.work_dir,
                             self.simname + '_{0}_i{1:0>5x}'.format('c' + field_name, iteration)),
                dtype = self.ctype,
                mode = 'r',
                shape = (self.parameters['ny'],
                         self.parameters['nz'],
                         self.parameters['nx']//2+1,
                         3))
        if type(file_name) == type(None):
            file_name = self.simname + '_{0}_i{1:0>5x}.h5'.format('c' + field_name, iteration)
            file_name = os.path.join(self.work_dir, file_name)
        f = h5py.File(file_name, 'a')
        f[field_name + '/complex/{0}'.format(iteration)] = data
        f.close()
        return None
    def write_par(
            self,
            iter0 = 0,
422
423
            particle_ic = None,
            particles_off = False):
424
425
426
        assert (self.parameters['niter_todo'] % self.parameters['niter_stat'] == 0)
        assert (self.parameters['niter_todo'] % self.parameters['niter_out']  == 0)
        assert (self.parameters['niter_out']  % self.parameters['niter_stat'] == 0)
427
        if self.dns_type in ['NSVEparticles_no_output', 'NSVEcomplex_particles', 'NSVEparticles']:
428
429
            assert (self.parameters['niter_todo'] % self.parameters['niter_part'] == 0)
            assert (self.parameters['niter_out']  % self.parameters['niter_part'] == 0)
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
        _code.write_par(self, iter0 = iter0)
        with h5py.File(self.get_data_file_name(), 'r+') as ofile:
            ofile['bfps_info/exec_name'] = self.name
            kspace = self.get_kspace()
            for k in kspace.keys():
                ofile['kspace/' + k] = kspace[k]
            nshells = kspace['nshell'].shape[0]
            kspace = self.get_kspace()
            nshells = kspace['nshell'].shape[0]
            vec_stat_datasets = ['velocity', 'vorticity']
            scal_stat_datasets = []
            for k in vec_stat_datasets:
                time_chunk = 2**20//(8*3*3*nshells)
                time_chunk = max(time_chunk, 1)
                ofile.create_dataset('statistics/spectra/' + k + '_' + k,
                                     (1, nshells, 3, 3),
                                     chunks = (time_chunk, nshells, 3, 3),
                                     maxshape = (None, nshells, 3, 3),
                                     dtype = np.float64)
                time_chunk = 2**20//(8*4*10)
                time_chunk = max(time_chunk, 1)
                a = ofile.create_dataset('statistics/moments/' + k,
                                     (1, 10, 4),
                                     chunks = (time_chunk, 10, 4),
                                     maxshape = (None, 10, 4),
                                     dtype = np.float64)
                time_chunk = 2**20//(8*4*self.parameters['histogram_bins'])
                time_chunk = max(time_chunk, 1)
                ofile.create_dataset('statistics/histograms/' + k,
                                     (1,
                                      self.parameters['histogram_bins'],
                                      4),
                                     chunks = (time_chunk,
                                               self.parameters['histogram_bins'],
                                               4),
                                     maxshape = (None,
                                                 self.parameters['histogram_bins'],
                                                 4),
                                     dtype = np.int64)
            ofile['checkpoint'] = int(0)
470
        if (self.dns_type in ['NSVE', 'NSVE_no_output']) or particles_off:
471
472
473
474
475
476
477
478
479
480
481
            return None

        if type(particle_ic) == type(None):
            pbase_shape = (self.parameters['nparticles'],)
            number_of_particles = self.parameters['nparticles']
        else:
            pbase_shape = particle_ic.shape[:-1]
            assert(particle_ic.shape[-1] == 3)
            number_of_particles = 1
            for val in pbase_shape[1:]:
                number_of_particles *= val
482
        ncomponents = 3
483
        if self.dns_type in ['NSVEcomplex_particles']:
484
            ncomponents = 6
485
486
487
488
489
490
491
492
493
494
        with h5py.File(self.get_checkpoint_0_fname(), 'a') as ofile:
            s = 0
            ofile.create_group('tracers{0}'.format(s))
            ofile.create_group('tracers{0}/rhs'.format(s))
            ofile.create_group('tracers{0}/state'.format(s))
            ofile['tracers{0}/rhs'.format(s)].create_dataset(
                    '0',
                    shape = (
                        (self.parameters['tracers{0}_integration_steps'.format(s)],) +
                        pbase_shape +
495
                        (ncomponents,)),
496
497
498
499
500
                    dtype = np.float)
            ofile['tracers{0}/state'.format(s)].create_dataset(
                    '0',
                    shape = (
                        pbase_shape +
501
                        (ncomponents,)),
502
503
                    dtype = np.float)
        return None
504
    def job_parser_arguments(
505
506
            self,
            parser):
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
        parser.add_argument(
                '--ncpu',
                type = int,
                dest = 'ncpu',
                default = -1)
        parser.add_argument(
                '--np', '--nprocesses',
                metavar = 'NPROCESSES',
                help = 'number of mpi processes to use',
                type = int,
                dest = 'nb_processes',
                default = 4)
        parser.add_argument(
                '--ntpp', '--nthreads-per-process',
                type = int,
                dest = 'nb_threads_per_process',
                metavar = 'NTHREADS_PER_PROCESS',
                help = 'number of threads to use per MPI process',
                default = 1)
        parser.add_argument(
                '--no-submit',
                action = 'store_true',
                dest = 'no_submit')
        parser.add_argument(
                '--environment',
                type = str,
                dest = 'environment',
                default = None)
        parser.add_argument(
                '--minutes',
                type = int,
                dest = 'minutes',
                default = 5,
                help = 'If environment supports it, this is the requested wall-clock-limit.')
        parser.add_argument(
               '--njobs',
               type = int, dest = 'njobs',
               default = 1)
        return None
    def simulation_parser_arguments(
            self,
            parser):
        parser.add_argument(
                '--simname',
                type = str, dest = 'simname',
                default = 'test')
        parser.add_argument(
554
               '-n', '--grid-size',
555
556
557
558
559
               type = int,
               dest = 'n',
               default = 32,
               metavar = 'N',
               help = 'code is run by default in a grid of NxNxN')
560
561
562
563
564
565
566
567
        for coord in ['x', 'y', 'z']:
            parser.add_argument(
                   '--L{0}'.format(coord), '--box-length-{0}'.format(coord),
                   type = float,
                   dest = 'L{0}'.format(coord),
                   default = 2.0,
                   metavar = 'length{0}'.format(coord),
                   help = 'length of the box in the {0} direction will be `length{0} x pi`'.format(coord))
568
569
570
571
572
573
574
575
576
        parser.add_argument(
                '--wd',
                type = str, dest = 'work_dir',
                default = './')
        parser.add_argument(
                '--precision',
                choices = ['single', 'double'],
                type = str,
                default = 'single')
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
        parser.add_argument(
                '--src-wd',
                type = str,
                dest = 'src_work_dir',
                default = '')
        parser.add_argument(
                '--src-simname',
                type = str,
                dest = 'src_simname',
                default = '')
        parser.add_argument(
                '--src-iteration',
                type = int,
                dest = 'src_iteration',
                default = 0)
        parser.add_argument(
               '--kMeta',
               type = float,
               dest = 'kMeta',
               default = 2.0)
        parser.add_argument(
               '--dtfactor',
               type = float,
               dest = 'dtfactor',
               default = 0.5,
               help = 'dt is computed as DTFACTOR / N')
603
604
605
606
        return None
    def particle_parser_arguments(
            self,
            parser):
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
        parser.add_argument(
               '--particle-rand-seed',
               type = int,
               dest = 'particle_rand_seed',
               default = None)
        parser.add_argument(
               '--pclouds',
               type = int,
               dest = 'pclouds',
               default = 1,
               help = ('number of particle clouds. Particle "clouds" '
                       'consist of particles distributed according to '
                       'pcloud-type.'))
        parser.add_argument(
                '--pcloud-type',
                choices = ['random-cube',
                           'regular-cube'],
                dest = 'pcloud_type',
                default = 'random-cube')
        parser.add_argument(
               '--particle-cloud-size',
               type = float,
               dest = 'particle_cloud_size',
               default = 2*np.pi)
        return None
632
633
634
635
636
637
638
639
640
641
642
643
644
645
    def add_parser_arguments(
            self,
            parser):
        subparsers = parser.add_subparsers(
                dest = 'DNS_class',
                help = 'type of simulation to run')
        subparsers.required = True
        parser_NSVE = subparsers.add_parser(
                'NSVE',
                help = 'plain Navier-Stokes vorticity formulation')
        self.simulation_parser_arguments(parser_NSVE)
        self.job_parser_arguments(parser_NSVE)
        self.parameters_to_parser_arguments(parser_NSVE)

646
647
648
649
650
651
652
653
654
655
        parser_NSVE_no_output = subparsers.add_parser(
                'NSVE_no_output',
                help = 'plain Navier-Stokes vorticity formulation, checkpoints are NOT SAVED')
        self.simulation_parser_arguments(parser_NSVE_no_output)
        self.job_parser_arguments(parser_NSVE_no_output)
        self.parameters_to_parser_arguments(parser_NSVE_no_output)

        parser_NSVEparticles_no_output = subparsers.add_parser(
                'NSVEparticles_no_output',
                help = 'plain Navier-Stokes vorticity formulation, with basic fluid tracers, checkpoints are NOT SAVED')
656
657
658
659

        parser_NSVEp2 = subparsers.add_parser(
                'NSVEparticles',
                help = 'plain Navier-Stokes vorticity formulation, with basic fluid tracers')
660
661

        parser_NSVEp2p = subparsers.add_parser(
662
663
                'NSVEcomplex_particles',
                help = 'plain Navier-Stokes vorticity formulation, with oriented active particles')
Cristian Lalescu's avatar
Cristian Lalescu committed
664

665
666
667
668
669
        parser_NSVEp_extra = subparsers.add_parser(
                'NSVEp_extra_sampling',
                help = 'plain Navier-Stokes vorticity formulation, with basic fluid tracers, that sample velocity gradient, as well as pressure and its derivatives.')

        for parser in ['NSVEparticles_no_output', 'NSVEp2', 'NSVEp2p', 'NSVEp_extra']:
Cristian Lalescu's avatar
Cristian Lalescu committed
670
671
672
673
674
675
676
            eval('self.simulation_parser_arguments({0})'.format('parser_' + parser))
            eval('self.job_parser_arguments({0})'.format('parser_' + parser))
            eval('self.particle_parser_arguments({0})'.format('parser_' + parser))
            eval('self.parameters_to_parser_arguments({0})'.format('parser_' + parser))
            eval('self.parameters_to_parser_arguments('
                    'parser_{0},'
                    'self.NSVEp_extra_parameters)'.format(parser))
677
        return None
678
679
    def prepare_launch(
            self,
680
681
            args = [],
            extra_parameters = None):
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
        """Set up reasonable parameters.

        With the default Lundgren forcing applied in the band [2, 4],
        we can estimate the dissipation, therefore we can estimate
        :math:`k_M \\eta_K` and constrain the viscosity.

        In brief, the command line parameter :math:`k_M \\eta_K` is
        used in the following formula for :math:`\\nu` (:math:`N` is the
        number of real space grid points per coordinate):

        .. math::

            \\nu = \\left(\\frac{2 k_M \\eta_K}{N} \\right)^{4/3}

        With this choice, the average dissipation :math:`\\varepsilon`
        will be close to 0.4, and the integral scale velocity will be
        close to 0.77, yielding the approximate value for the Taylor
        microscale and corresponding Reynolds number:

        .. math::

            \\lambda \\approx 4.75\\left(\\frac{2 k_M \\eta_K}{N} \\right)^{4/6}, \\hskip .5in
            R_\\lambda \\approx 3.7 \\left(\\frac{N}{2 k_M \\eta_K} \\right)^{4/6}

        """
        opt = _code.prepare_launch(self, args = args)
708
709
710
711
        self.set_precision(opt.precision)
        self.dns_type = opt.DNS_class
        self.name = self.dns_type + '-' + self.fluid_precision + '-v' + bfps.__version__
        # merge parameters if needed
712
        if self.dns_type in ['NSVEparticles', 'NSVEcomplex_particles', 'NSVEparticles_no_output', 'NSVEp_extra_sampling']:
713
714
            for k in self.NSVEp_extra_parameters.keys():
                self.parameters[k] = self.NSVEp_extra_parameters[k]
715
716
717
718
        if type(extra_parameters) != type(None):
            if self.dns_type in extra_parameters.keys():
                for k in extra_parameters[self.dns_type].keys():
                    self.parameters[k] = extra_parameters[self.dns_type][k]
719
720
721
722
        if ((self.parameters['niter_todo'] % self.parameters['niter_out']) != 0):
            self.parameters['niter_out'] = self.parameters['niter_todo']
        if len(opt.src_work_dir) == 0:
            opt.src_work_dir = os.path.realpath(opt.work_dir)
723
724
725
726
        if type(opt.dkx) == type(None):
            opt.dkx = 2. / opt.Lx
        if type(opt.dky) == type(None):
            opt.dky = 2. / opt.Ly
Cristian Lalescu's avatar
Cristian Lalescu committed
727
        if type(opt.dkz) == type(None):
728
            opt.dkz = 2. / opt.Lz
729
730
731
732
733
734
        if type(opt.nx) == type(None):
            opt.nx = opt.n
        if type(opt.ny) == type(None):
            opt.ny = opt.n
        if type(opt.nz) == type(None):
            opt.nz = opt.n
735
736
737
738
739
740
        if type(opt.fk0) == type(None):
            opt.fk0 = self.parameters['fk0']
        if type(opt.fk1) == type(None):
            opt.fk1 = self.parameters['fk1']
        if type(opt.injection_rate) == type(None):
            opt.injection_rate = self.parameters['injection_rate']
Cristian Lalescu's avatar
Cristian Lalescu committed
741
        if type(opt.dealias_type) == type(None):
742
            opt.dealias_type = self.parameters['dealias_type']
743
744
745
746
747
        if (opt.nx > opt.n or
            opt.ny > opt.n or
            opt.nz > opt.n):
            opt.n = min(opt.nx, opt.ny, opt.nz)
            print("Warning: '-n' parameter changed to minimum of nx, ny, nz. This affects the computation of nu.")
Chichi Lalescu's avatar
Chichi Lalescu committed
748
        self.parameters['dt'] = (opt.dtfactor / opt.n)
749
        self.parameters['nu'] = (opt.kMeta * 2 / opt.n)**(4./3)
Cristian Lalescu's avatar
Cristian Lalescu committed
750
751
752
753
754
        # check value of kMax
        kM = opt.n * 0.5
        if opt.dealias_type == 1:
            kM *= 0.8
        # tweak forcing/viscosity based on forcint type
Cristian Lalescu's avatar
Cristian Lalescu committed
755
        if opt.forcing_type == 'linear':
756
757
758
759
760
            # custom famplitude for 288 and 576
            if opt.n == 288:
                self.parameters['famplitude'] = 0.45
            elif opt.n == 576:
                self.parameters['famplitude'] = 0.47
Cristian Lalescu's avatar
Cristian Lalescu committed
761
        elif opt.forcing_type == 'fixed_energy_injection_rate':
762
763
            # use the fact that mean dissipation rate is equal to injection rate
            self.parameters['nu'] = (
Cristian Lalescu's avatar
Cristian Lalescu committed
764
                    opt.injection_rate *
765
                    (opt.kMeta / kM)**4)**(1./3)
766
        elif opt.forcing_type == 'fixed_energy':
Cristian Lalescu's avatar
Cristian Lalescu committed
767
768
            kf = 1. / (1./opt.fk0 +
                       1./opt.fk1)
769
770
771
772
            self.parameters['nu'] = (
                    (opt.kMeta / kM)**(4./3) *
                    (np.pi / kf)**(1./3) *
                    (2*self.parameters['energy'] / 3)**0.5)
773
774
775
776
        if type(opt.checkpoints_per_file) == type(None):
            # hardcoded FFTW complex representation size
            field_size = 3*(opt.nx+2)*opt.ny*opt.nz*self.fluid_dtype.itemsize
            checkpoint_size = field_size
777
            if self.dns_type in ['NSVEparticles', 'NSVEcomplex_particles', 'NSVEparticles_no_output', 'NSVEp_extra_sampling']:
778
779
780
                rhs_size = self.parameters['tracers0_integration_steps']
                if type(opt.tracers0_integration_steps) != type(None):
                    rhs_size = opt.tracers0_integration_steps
781
782
783
784
                nparticles = opt.nparticles
                if type(nparticles) == type(None):
                    nparticles = self.NSVEp_extra_parameters['nparticles']
                particle_size = (1+rhs_size)*3*nparticles*8
785
786
787
                checkpoint_size += particle_size
            if checkpoint_size < 1e9:
                opt.checkpoints_per_file = int(1e9 / checkpoint_size)
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
        self.pars_from_namespace(opt)
        return opt
    def launch(
            self,
            args = [],
            **kwargs):
        opt = self.prepare_launch(args = args)
        self.launch_jobs(opt = opt, **kwargs)
        return None
    def get_checkpoint_0_fname(self):
        return os.path.join(
                    self.work_dir,
                    self.simname + '_checkpoint_0.h5')
    def generate_tracer_state(
            self,
            rseed = None,
804
805
806
807
            species = 0):
        with h5py.File(self.get_checkpoint_0_fname(), 'a') as data_file:
            dset = data_file[
                'tracers{0}/state/0'.format(species)]
808
809
            if not type(rseed) == type(None):
                np.random.seed(rseed)
810
811
812
            nn = self.parameters['nparticles']
            cc = int(0)
            batch_size = int(1e6)
813
814
815
816
817
818
            def get_random_phases(npoints):
                return np.random.random(
                            (npoints, 3))*2*np.pi
            def get_random_versors(npoints):
                bla = np.random.normal(
                        size = (npoints, 3))
819
                bla  /= np.sum(bla**2, axis = 1)[:, None]**.5
820
                return bla
821
822
            while nn > 0:
                if nn > batch_size:
823
824
825
                    dset[cc*batch_size:(cc+1)*batch_size, :3] = get_random_phases(batch_size)
                    if dset.shape[1] == 6:
                        dset[cc*batch_size:(cc+1)*batch_size, 3:] = get_random_versors(batch_size)
826
827
                    nn -= batch_size
                else:
828
829
830
                    dset[cc*batch_size:cc*batch_size+nn, :3] = get_random_phases(nn)
                    if dset.shape[1] == 6:
                        dset[cc*batch_size:cc*batch_size+nn, 3:] = get_random_versors(nn)
831
832
833
                    nn = 0
                cc += 1
        return None
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
    def generate_vector_field(
            self,
            rseed = 7547,
            spectra_slope = 1.,
            amplitude = 1.,
            iteration = 0,
            field_name = 'vorticity',
            write_to_file = False,
            # to switch to constant field, use generate_data_3D_uniform
            # for scalar_generator
            scalar_generator = tools.generate_data_3D):
        """generate vector field.

        The generated field is not divergence free, but it has the proper
        shape.

        :param rseed: seed for random number generator
        :param spectra_slope: spectrum of field will look like k^(-p)
        :param amplitude: all amplitudes are multiplied with this value
        :param iteration: the field is written at this iteration
        :param field_name: the name of the field being generated
        :param write_to_file: should we write the field to file?
        :param scalar_generator: which function to use for generating the
            individual components.
            Possible values: bfps.tools.generate_data_3D,
            bfps.tools.generate_data_3D_uniform
        :type rseed: int
        :type spectra_slope: float
        :type amplitude: float
        :type iteration: int
        :type field_name: str
        :type write_to_file: bool
        :type scalar_generator: function

        :returns: ``Kdata``, a complex valued 4D ``numpy.array`` that uses the
            transposed FFTW layout.
            Kdata[ky, kz, kx, i] is the amplitude of mode (kx, ky, kz) for
            the i-th component of the field.
            (i.e. x is the fastest index and z the slowest index in the
            real-space representation).
        """
        np.random.seed(rseed)
        Kdata00 = scalar_generator(
877
878
879
                self.parameters['nz'],
                self.parameters['ny'],
                self.parameters['nx'],
880
881
882
                p = spectra_slope,
                amplitude = amplitude).astype(self.ctype)
        Kdata01 = scalar_generator(
883
884
885
                self.parameters['nz'],
                self.parameters['ny'],
                self.parameters['nx'],
886
887
888
                p = spectra_slope,
                amplitude = amplitude).astype(self.ctype)
        Kdata02 = scalar_generator(
889
890
891
                self.parameters['nz'],
                self.parameters['ny'],
                self.parameters['nx'],
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
                p = spectra_slope,
                amplitude = amplitude).astype(self.ctype)
        Kdata0 = np.zeros(
                Kdata00.shape + (3,),
                Kdata00.dtype)
        Kdata0[..., 0] = Kdata00
        Kdata0[..., 1] = Kdata01
        Kdata0[..., 2] = Kdata02
        Kdata1 = tools.padd_with_zeros(
                Kdata0,
                self.parameters['nz'],
                self.parameters['ny'],
                self.parameters['nx'])
        if write_to_file:
            Kdata1.tofile(
                    os.path.join(self.work_dir,
                                 self.simname + "_c{0}_i{1:0>5x}".format(field_name, iteration)))
        return Kdata1
910
911
912
913
914
915
916
917
918
919
920
    def copy_complex_field(
            self,
            src_file_name,
            src_dset_name,
            dst_file,
            dst_dset_name,
            make_link = True):
        # I define a min_shape thingie, but for now I only trust this method for
        # the case of increasing/decreasing by the same factor in all directions.
        # in principle we could write something more generic, but i'm not sure
        # how complicated that would be
921
922
        dst_shape = (self.parameters['ny'],
                     self.parameters['nz'],
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
                     (self.parameters['nx']+2) // 2,
                     3)
        src_file = h5py.File(src_file_name, 'r')
        if (src_file[src_dset_name].shape == dst_shape):
            if make_link and (src_file[src_dset_name].dtype == self.ctype):
                dst_file[dst_dset_name] = h5py.ExternalLink(
                        src_file_name,
                        src_dset_name)
            else:
                dst_file.create_dataset(
                        dst_dset_name,
                        shape = dst_shape,
                        dtype = self.ctype,
                        fillvalue = 0.0)
                for kz in range(src_file[src_dset_name].shape[0]):
                    dst_file[dst_dset_name][kz] = src_file[src_dset_name][kz]
        else:
            min_shape = (min(dst_shape[0], src_file[src_dset_name].shape[0]),
                         min(dst_shape[1], src_file[src_dset_name].shape[1]),
                         min(dst_shape[2], src_file[src_dset_name].shape[2]),
                         3)
944
            src_shape = src_file[src_dset_name].shape
945
946
947
            dst_file.create_dataset(
                    dst_dset_name,
                    shape = dst_shape,
948
949
                    dtype = np.dtype(self.ctype),
                    fillvalue = complex(0))
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
            for kz in range(min_shape[0]//2):
                dst_file[dst_dset_name][kz,:min_shape[1]//2, :min_shape[2]] = \
                        src_file[src_dset_name][kz, :min_shape[1]//2, :min_shape[2]]
                dst_file[dst_dset_name][kz,
                                        dst_shape[1] - min_shape[1]//2+1:,
                                        :min_shape[2]] = \
                        src_file[src_dset_name][kz,
                                                src_shape[1] - min_shape[1]//2+1,
                                                :min_shape[2]]
                if kz > 0:
                    dst_file[dst_dset_name][-kz,:min_shape[1]//2, :min_shape[2]] = \
                            src_file[src_dset_name][-kz, :min_shape[1]//2, :min_shape[2]]
                    dst_file[dst_dset_name][-kz,
                                            dst_shape[1] - min_shape[1]//2+1:,
                                            :min_shape[2]] = \
                            src_file[src_dset_name][-kz,
                                                    src_shape[1] - min_shape[1]//2+1,
                                                    :min_shape[2]]
968
        return None
969
970
971
972
973
974
975
976
977
    def generate_particle_data(
            self,
            opt = None):
        if self.parameters['nparticles'] > 0:
            self.generate_tracer_state(
                    species = 0,
                    rseed = opt.particle_rand_seed)
            if not os.path.exists(self.get_particle_file_name()):
                with h5py.File(self.get_particle_file_name(), 'w') as particle_file:
Cristian Lalescu's avatar
Cristian Lalescu committed
978
                    particle_file.create_group('tracers0/position')
979
980
                    particle_file.create_group('tracers0/velocity')
                    particle_file.create_group('tracers0/acceleration')
981
                    if self.dns_type in ['NSVEcomplex_particles']:
982
                        particle_file.create_group('tracers0/orientation')
983
                        particle_file.create_group('tracers0/velocity_gradient')
984
985
986
987
988
                    if self.dns_type in ['NSVEp_extra_sampling']:
                        particle_file.create_group('tracers0/velocity_gradient')
                        particle_file.create_group('tracers0/pressure')
                        particle_file.create_group('tracers0/pressure_gradient')
                        particle_file.create_group('tracers0/pressure_Hessian')
989
        return None
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
    def launch_jobs(
            self,
            opt = None,
            particle_initial_condition = None):
        if not os.path.exists(os.path.join(self.work_dir, self.simname + '.h5')):
            # take care of fields' initial condition
            if not os.path.exists(self.get_checkpoint_0_fname()):
                f = h5py.File(self.get_checkpoint_0_fname(), 'w')
                if len(opt.src_simname) > 0:
                    source_cp = 0
                    src_file = 'not_a_file'
                    while True:
                        src_file = os.path.join(
                            os.path.realpath(opt.src_work_dir),
                            opt.src_simname + '_checkpoint_{0}.h5'.format(source_cp))
                        f0 = h5py.File(src_file, 'r')
                        if '{0}'.format(opt.src_iteration) in f0['vorticity/complex'].keys():
                            f0.close()
                            break
                        source_cp += 1
1010
                    self.copy_complex_field(
1011
                            src_file,
1012
1013
1014
                            'vorticity/complex/{0}'.format(opt.src_iteration),
                            f,
                            'vorticity/complex/{0}'.format(0))
1015
1016
1017
1018
1019
1020
1021
                else:
                    data = self.generate_vector_field(
                           write_to_file = False,
                           spectra_slope = 2.0,
                           amplitude = 0.05)
                    f['vorticity/complex/{0}'.format(0)] = data
                f.close()
1022
            ## take care of particles' initial condition
1023
            #if self.dns_type in ['NSVEparticles', 'NSVEparticles_no_output']:
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
            #    if opt.pclouds > 1:
            #        np.random.seed(opt.particle_rand_seed)
            #        if opt.pcloud_type == 'random-cube':
            #            particle_initial_condition = (
            #                np.random.random((opt.pclouds, 1, 3))*2*np.pi +
            #                np.random.random((1, self.parameters['nparticles'], 3))*opt.particle_cloud_size)
            #        elif opt.pcloud_type == 'regular-cube':
            #            onedarray = np.linspace(
            #                    -opt.particle_cloud_size/2,
            #                    opt.particle_cloud_size/2,
            #                    self.parameters['nparticles'])
            #            particle_initial_condition = np.zeros(
            #                    (opt.pclouds,
            #                     self.parameters['nparticles'],
            #                     self.parameters['nparticles'],
            #                     self.parameters['nparticles'], 3),
            #                    dtype = np.float64)
            #            particle_initial_condition[:] = \
            #                np.random.random((opt.pclouds, 1, 1, 1, 3))*2*np.pi
            #            particle_initial_condition[..., 0] += onedarray[None, None, None, :]
            #            particle_initial_condition[..., 1] += onedarray[None, None, :, None]
            #            particle_initial_condition[..., 2] += onedarray[None, :, None, None]
1046
            self.write_par(
1047
                    particle_ic = None)
1048
            if self.dns_type in ['NSVEparticles', 'NSVEcomplex_particles', 'NSVEparticles_no_output', 'NSVEp_extra_sampling']:
1049
                self.generate_particle_data(opt = opt)
1050
1051
1052
1053
1054
1055
1056
1057
        self.run(
                nb_processes = opt.nb_processes,
                nb_threads_per_process = opt.nb_threads_per_process,
                njobs = opt.njobs,
                hours = opt.minutes // 60,
                minutes = opt.minutes % 60,
                no_submit = opt.no_submit)
        return None
Cristian Lalescu's avatar
Cristian Lalescu committed
1058