p2p_distr_mpi.hpp 46.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
/******************************************************************************
*                                                                             *
*  Copyright 2019 Max Planck Institute for Dynamics and Self-Organization     *
*                                                                             *
*  This file is part of bfps.                                                 *
*                                                                             *
*  bfps is free software: you can redistribute it and/or modify               *
*  it under the terms of the GNU General Public License as published          *
*  by the Free Software Foundation, either version 3 of the License,          *
*  or (at your option) any later version.                                     *
*                                                                             *
*  bfps is distributed in the hope that it will be useful,                    *
*  but WITHOUT ANY WARRANTY; without even the implied warranty of             *
*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the              *
*  GNU General Public License for more details.                               *
*                                                                             *
*  You should have received a copy of the GNU General Public License          *
*  along with bfps.  If not, see <http://www.gnu.org/licenses/>               *
*                                                                             *
* Contact: Cristian.Lalescu@ds.mpg.de                                         *
*                                                                             *
******************************************************************************/



26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#ifndef P2P_DISTR_MPI_HPP
#define P2P_DISTR_MPI_HPP

#include <mpi.h>

#include <vector>
#include <memory>
#include <cassert>

#include <type_traits>
#include <omp.h>
#include <algorithm>

#include "scope_timer.hpp"
#include "particles_utils.hpp"
#include "p2p_tree.hpp"
42
#include "lock_free_bool_array.hpp"
43
44
45
46

template <class partsize_t, class real_number>
class p2p_distr_mpi {
protected:
Cristian Lalescu's avatar
Cristian Lalescu committed
47
    static const int MaxNbRhs = 10;
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

    enum MpiTag{
        TAG_NB_PARTICLES,
        TAG_POSITION_PARTICLES,
        TAG_RESULT_PARTICLES,
    };

    struct NeighborDescriptor{
        partsize_t nbParticlesToExchange;
        int destProc;
        int nbLevelsToExchange;
        bool isRecv;

        std::unique_ptr<real_number[]> toRecvAndMerge;
        std::unique_ptr<real_number[]> toCompute;
        std::unique_ptr<real_number[]> results;
    };

    enum Action{
67
        NOTHING_TODO = 512,
68
69
70
        RECV_PARTICLES,
        COMPUTE_PARTICLES,
        RELEASE_BUFFER_PARTICLES,
71
        MERGE_PARTICLES
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
    };

    MPI_Comm current_com;

    int my_rank;
    int nb_processes;
    int nb_processes_involved;

    const std::pair<int,int> current_partition_interval;
    const int current_partition_size;
    const std::array<size_t,3> field_grid_dim;

    std::unique_ptr<int[]> partition_interval_size_per_proc;
    std::unique_ptr<int[]> partition_interval_offset_per_proc;

    std::unique_ptr<partsize_t[]> current_offset_particles_for_partition;

    std::vector<std::pair<Action,int>> whatNext;
    std::vector<MPI_Request> mpiRequests;
    std::vector<NeighborDescriptor> neigDescriptors;

    std::array<real_number,3> spatial_box_width;
    std::array<real_number,3> spatial_box_offset;

96
    const real_number cutoff_radius_compute;
97
    const int nb_cells_factor;
98
99
100
    const real_number cutoff_radius;
    std::array<long int,3> nb_cell_levels;

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
    template <class DataType, int sizeElement>
    static void permute_copy(const partsize_t offsetIdx, const partsize_t nbElements,
                             const std::pair<long int,partsize_t> permutation[],
                             DataType data[], std::vector<unsigned char>* buffer){
        buffer->resize(nbElements*sizeof(DataType)*sizeElement);
        DataType* dataBuffer = reinterpret_cast<DataType*>(buffer->data());

        // Permute
        for(partsize_t idxPart = 0 ; idxPart < nbElements ; ++idxPart){
            const partsize_t srcData = permutation[idxPart].second;
            const partsize_t destData = idxPart;
            for(int idxVal = 0 ; idxVal < sizeElement ; ++idxVal){
                dataBuffer[destData*sizeElement + idxVal]
                        = data[srcData*sizeElement + idxVal];
            }
        }

        // Copy back
        for(partsize_t idxPart = 0 ; idxPart < nbElements ; ++idxPart){
            const partsize_t srcData = idxPart;
            const partsize_t destData = idxPart+offsetIdx;
            for(int idxVal = 0 ; idxVal < sizeElement ; ++idxVal){
                data[destData*sizeElement + idxVal]
                        = dataBuffer[srcData*sizeElement + idxVal];
            }
        }
    }

129
    static int foundGridFactor(const real_number in_cutoff_radius, const std::array<real_number,3>& in_spatial_box_width){
130
        int idx_factor = 1;
131
        while(in_cutoff_radius <= in_spatial_box_width[IDXC_Z]/real_number(idx_factor+1)){
132
133
            idx_factor += 1;
        }
134
        return idx_factor;
135
136
    }

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
public:
    ////////////////////////////////////////////////////////////////////////////

    p2p_distr_mpi(MPI_Comm in_current_com,
                     const std::pair<int,int>& in_current_partitions,
                     const std::array<size_t,3>& in_field_grid_dim,
                     const std::array<real_number,3>& in_spatial_box_width,
                     const std::array<real_number,3>& in_spatial_box_offset,
                     const real_number in_cutoff_radius)
        : current_com(in_current_com),
            my_rank(-1), nb_processes(-1),nb_processes_involved(-1),
            current_partition_interval(in_current_partitions),
            current_partition_size(current_partition_interval.second-current_partition_interval.first),
            field_grid_dim(in_field_grid_dim),
            spatial_box_width(in_spatial_box_width), spatial_box_offset(in_spatial_box_offset),
152
            cutoff_radius_compute(in_cutoff_radius),
153
            nb_cells_factor(foundGridFactor(in_cutoff_radius, in_spatial_box_width)),
154
            cutoff_radius(in_spatial_box_width[IDXC_Z]/real_number(nb_cells_factor)){
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

        AssertMpi(MPI_Comm_rank(current_com, &my_rank));
        AssertMpi(MPI_Comm_size(current_com, &nb_processes));

        partition_interval_size_per_proc.reset(new int[nb_processes]);
        AssertMpi( MPI_Allgather( const_cast<int*>(&current_partition_size), 1, MPI_INT,
                                  partition_interval_size_per_proc.get(), 1, MPI_INT,
                                  current_com) );
        assert(partition_interval_size_per_proc[my_rank] == current_partition_size);

        partition_interval_offset_per_proc.reset(new int[nb_processes+1]);
        partition_interval_offset_per_proc[0] = 0;
        for(int idxProc = 0 ; idxProc < nb_processes ; ++idxProc){
            partition_interval_offset_per_proc[idxProc+1] = partition_interval_offset_per_proc[idxProc] + partition_interval_size_per_proc[idxProc];
        }

        current_offset_particles_for_partition.reset(new partsize_t[current_partition_size+1]);

        nb_processes_involved = nb_processes;
        while(nb_processes_involved != 0 && partition_interval_size_per_proc[nb_processes_involved-1] == 0){
            nb_processes_involved -= 1;
        }
        assert(nb_processes_involved != 0);
        for(int idx_proc_involved = 0 ; idx_proc_involved < nb_processes_involved ; ++idx_proc_involved){
            assert(partition_interval_size_per_proc[idx_proc_involved] != 0);
        }

182
        assert(int(field_grid_dim[IDXC_Z]) == partition_interval_offset_per_proc[nb_processes_involved]);
183

184
185
186
        nb_cell_levels[IDXC_X] = nb_cells_factor;
        nb_cell_levels[IDXC_Y] = nb_cells_factor;
        nb_cell_levels[IDXC_Z] = nb_cells_factor;
187
188
189
190
191
192
    }

    virtual ~p2p_distr_mpi(){}

    ////////////////////////////////////////////////////////////////////////////

193
194
195
196
197
198
199
200
    int getGridFactor() const{
        return nb_cells_factor;
    }

    real_number getGridCutoff() const{
        return cutoff_radius;
    }

201
    long int get_cell_coord_x_from_index(const long int index) const{
202
        return index % nb_cell_levels[IDXC_X];
203
204
205
    }

    long int get_cell_coord_y_from_index(const long int index) const{
206
207
        return (index % (nb_cell_levels[IDXC_X]*nb_cell_levels[IDXC_Y]))
                / nb_cell_levels[IDXC_X];
208
209
210
    }

    long int get_cell_coord_z_from_index(const long int index) const{
211
        return index / (nb_cell_levels[IDXC_X]*nb_cell_levels[IDXC_Y]);
212
213
214
    }

    long int first_cell_level_proc(const int dest_proc) const{
215
        const real_number field_section_width_z = spatial_box_width[IDXC_Z]/real_number(field_grid_dim[IDXC_Z]);
216
217
218
219
        return static_cast<long int>((field_section_width_z*real_number(partition_interval_offset_per_proc[dest_proc]))/cutoff_radius);
    }

    long int last_cell_level_proc(const int dest_proc) const{
220
        const real_number field_section_width_z = spatial_box_width[IDXC_Z]/real_number(field_grid_dim[IDXC_Z]);
221
        const long int limite = static_cast<long int>((field_section_width_z*real_number(partition_interval_offset_per_proc[dest_proc+1])
222
                                     - std::numeric_limits<real_number>::epsilon())/cutoff_radius);
223
224
225
226
227
        if(static_cast<real_number>(limite)*cutoff_radius
                == field_section_width_z*real_number(partition_interval_offset_per_proc[dest_proc+1])){
            return limite-1;
        }
        return limite;
228
229
    }

Cristian Lalescu's avatar
Cristian Lalescu committed
230
    real_number apply_pbc(real_number pos, IDX_COMPONENT_3D dim) const{
231
232
233
234
235
236
237
238
239
        while( pos < spatial_box_offset[dim] ){
            pos += spatial_box_width[dim];
        }
        while( spatial_box_width[dim]+spatial_box_offset[dim] <= pos){
            pos -= spatial_box_width[dim];
        }
        return pos;
    }

240
241
    std::array<long int,3> get_cell_coordinate(const real_number pos_x, const real_number pos_y,
                                               const real_number pos_z) const {
242
243
244
        const real_number diff_x = apply_pbc(pos_x,IDXC_X) - spatial_box_offset[IDXC_X];
        const real_number diff_y = apply_pbc(pos_y,IDXC_Y) - spatial_box_offset[IDXC_Y];
        const real_number diff_z = apply_pbc(pos_z,IDXC_Z) - spatial_box_offset[IDXC_Z];
245
        std::array<long int,3> coord;
246
247
248
        coord[IDXC_X] = static_cast<long int>(diff_x/cutoff_radius);
        coord[IDXC_Y] = static_cast<long int>(diff_y/cutoff_radius);
        coord[IDXC_Z] = static_cast<long int>(diff_z/cutoff_radius);
249
250
251
252
253
254
        return coord;
    }

    long int get_cell_idx(const real_number pos_x, const real_number pos_y,
                          const real_number pos_z) const {
        std::array<long int,3> coord = get_cell_coordinate(pos_x, pos_y, pos_z);
255
        return ((coord[IDXC_Z]*nb_cell_levels[IDXC_Y])+coord[IDXC_Y])*nb_cell_levels[IDXC_X]+coord[IDXC_X];
256
257
258
    }

    real_number compute_distance_r2(const real_number x1, const real_number y1, const real_number z1,
Berenger Bramas's avatar
Berenger Bramas committed
259
260
                                    const real_number x2, const real_number y2, const real_number z2,
                                    const real_number xshift_coef, const real_number yshift_coef, const real_number zshift_coef) const {
261
        real_number diff_x = std::abs(apply_pbc(x1,IDXC_X)-apply_pbc(x2,IDXC_X)+xshift_coef*spatial_box_width[IDXC_X]);
Berenger Bramas's avatar
Berenger Bramas committed
262
        assert(diff_x <= 2*cutoff_radius);
263

264
        real_number diff_y = std::abs(apply_pbc(y1,IDXC_X)-apply_pbc(y2,IDXC_X)+yshift_coef*spatial_box_width[IDXC_Y]);
Berenger Bramas's avatar
Berenger Bramas committed
265
        assert(diff_y <= 2*cutoff_radius);
266

267
        real_number diff_z = std::abs(apply_pbc(z1,IDXC_X)-apply_pbc(z2,IDXC_X)+zshift_coef*spatial_box_width[IDXC_Z]);
Berenger Bramas's avatar
Berenger Bramas committed
268
        assert(diff_z <= 2*cutoff_radius);
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
269
270
271

        return (diff_x*diff_x) + (diff_y*diff_y) + (diff_z*diff_z);
    }
272

273
    template <class computer_class, int size_particle_positions, int size_particle_rhs>
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
    void compute_distr(computer_class& in_computer,
                       const partsize_t current_my_nb_particles_per_partition[],
                       real_number particles_positions[],
                       real_number particles_current_rhs[],
                       partsize_t inout_index_particles[]){
        TIMEZONE("compute_distr");

        // Some processes might not be involved
        if(nb_processes_involved <= my_rank){
            return;
        }

        const long int my_top_z_cell_level = last_cell_level_proc(my_rank);
        const long int my_down_z_cell_level = first_cell_level_proc(my_rank);
        const long int my_nb_cell_levels = 1+my_top_z_cell_level-my_down_z_cell_level;

        current_offset_particles_for_partition[0] = 0;
        partsize_t myTotalNbParticles = 0;
        for(int idxPartition = 0 ; idxPartition < current_partition_size ; ++idxPartition){
            myTotalNbParticles += current_my_nb_particles_per_partition[idxPartition];
            current_offset_particles_for_partition[idxPartition+1] = current_offset_particles_for_partition[idxPartition] + current_my_nb_particles_per_partition[idxPartition];
        }

        // Compute box idx for each particle
        std::unique_ptr<long int[]> particles_coord(new long int[current_offset_particles_for_partition[current_partition_size]]);

        {
            for(int idxPartition = 0 ; idxPartition < current_partition_size ; ++idxPartition){
                #pragma omp parallel for schedule(static)
                for(partsize_t idxPart = current_offset_particles_for_partition[idxPartition] ; idxPart < current_offset_particles_for_partition[idxPartition+1] ; ++idxPart ){
304
305
306
                    particles_coord[idxPart] = get_cell_idx(particles_positions[(idxPart)*size_particle_positions + IDXC_X],
                                                                              particles_positions[(idxPart)*size_particle_positions + IDXC_Y],
                                                                              particles_positions[(idxPart)*size_particle_positions + IDXC_Z]);
307
308
309
310
311
                    assert(my_down_z_cell_level <= get_cell_coord_z_from_index(particles_coord[idxPart]));
                    assert(get_cell_coord_z_from_index(particles_coord[idxPart]) <= my_top_z_cell_level);
                }
            }

312
            std::vector<std::pair<long int,partsize_t>> part_to_sort;
313
314
315
316
317
318
319

            // Sort each partition in cells
            for(int idxPartition = 0 ; idxPartition < current_partition_size ; ++idxPartition){
                part_to_sort.clear();

                for(partsize_t idxPart = current_offset_particles_for_partition[idxPartition] ; idxPart < current_offset_particles_for_partition[idxPartition+1] ; ++idxPart ){
                    part_to_sort.emplace_back();
320
321
                    part_to_sort.back().first = particles_coord[idxPart];
                    part_to_sort.back().second = idxPart;
322
323
                }

324
                assert(partsize_t(part_to_sort.size()) == (current_my_nb_particles_per_partition[idxPartition]));
325
326

                std::sort(part_to_sort.begin(), part_to_sort.end(),
327
328
329
                          [](const std::pair<long int,partsize_t>& p1,
                             const std::pair<long int,partsize_t>& p2){
                    return p1.first < p2.first;
330
                });
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345

                // Permute array using buffer
                std::vector<unsigned char> buffer;
                permute_copy<real_number, size_particle_positions>(current_offset_particles_for_partition[idxPartition],
                                                                   current_my_nb_particles_per_partition[idxPartition],
                                                                   part_to_sort.data(), particles_positions, &buffer);
                permute_copy<real_number, size_particle_rhs>(current_offset_particles_for_partition[idxPartition],
                                                             current_my_nb_particles_per_partition[idxPartition],
                                                             part_to_sort.data(), particles_current_rhs, &buffer);
                permute_copy<partsize_t, 1>(current_offset_particles_for_partition[idxPartition],
                                            current_my_nb_particles_per_partition[idxPartition],
                                            part_to_sort.data(), inout_index_particles, &buffer);
                permute_copy<long int, 1>(current_offset_particles_for_partition[idxPartition],
                                            current_my_nb_particles_per_partition[idxPartition],
                                            part_to_sort.data(), particles_coord.get(), &buffer);
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
            }
        }

        // Build the tree
        p2p_tree<std::vector<std::pair<partsize_t,partsize_t>>> my_tree(nb_cell_levels);

        for(int idxPartition = 0 ; idxPartition < current_partition_size ; ++idxPartition){
            long int current_cell_idx = -1;
            partsize_t current_nb_particles_in_cell = 0;
            partsize_t current_cell_offset = 0;

            for(partsize_t idx_part = current_offset_particles_for_partition[idxPartition] ;
                            idx_part != current_offset_particles_for_partition[idxPartition+1]; ++idx_part){
                if(particles_coord[idx_part] != current_cell_idx){
                    if(current_nb_particles_in_cell){
                        my_tree.getCell(current_cell_idx).emplace_back(current_cell_offset,current_nb_particles_in_cell);
                    }
                    current_cell_idx = particles_coord[idx_part];
                    current_nb_particles_in_cell = 1;
                    current_cell_offset = idx_part;
366
367
368
                }
                else{
                    current_nb_particles_in_cell += 1;
369
370
371
372
373
374
375
376
377
                }
            }
            if(current_nb_particles_in_cell){
                my_tree.getCell(current_cell_idx).emplace_back(current_cell_offset,current_nb_particles_in_cell);

            }
        }

        // Offset per cell layers
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
378
        long int previous_index = 0;
379
        variable_used_only_in_assert(previous_index);
380
381
382
383
        std::unique_ptr<partsize_t[]> particles_offset_layers(new partsize_t[my_nb_cell_levels+1]());
        for(int idxPartition = 0 ; idxPartition < current_partition_size ; ++idxPartition){
            for(partsize_t idx_part = current_offset_particles_for_partition[idxPartition] ;
                            idx_part != current_offset_particles_for_partition[idxPartition+1]; ++idx_part){
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
384
385
386
387
388
389
                const long int part_box_z_index = get_cell_coord_z_from_index(particles_coord[idx_part]);
                assert(my_down_z_cell_level <= part_box_z_index);
                assert(part_box_z_index <= my_top_z_cell_level);
                particles_offset_layers[part_box_z_index+1-my_down_z_cell_level] += 1;
                assert(previous_index <= part_box_z_index);
                previous_index = part_box_z_index;
390
391
            }
        }
392
        for(long int idx_layer = 0 ; idx_layer < my_nb_cell_levels ; ++idx_layer){
393
394
395
396
397
398
399
400
401
402
403
404
405
            particles_offset_layers[idx_layer+1] += particles_offset_layers[idx_layer];
        }

        // Reset vectors
        assert(whatNext.size() == 0);
        assert(mpiRequests.size() == 0);
        neigDescriptors.clear();

        // Find process with at least one neighbor
        {
            int dest_proc = (my_rank+1)%nb_processes_involved;
            while(dest_proc != my_rank
                  && (my_top_z_cell_level == first_cell_level_proc(dest_proc)
406
                      || (my_top_z_cell_level+1)%nb_cell_levels[IDXC_Z] == first_cell_level_proc(dest_proc))){
407
408
409
                // Find if we have to send 1 or 2 cell levels
                int nb_levels_to_send = 1;
                if(my_nb_cell_levels > 1 // I have more than one level
410
                        && (my_top_z_cell_level-1+2)%nb_cell_levels[IDXC_Z] <= last_cell_level_proc(dest_proc)){
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
                    nb_levels_to_send += 1;
                }

                NeighborDescriptor descriptor;
                descriptor.destProc = dest_proc;
                descriptor.nbLevelsToExchange = nb_levels_to_send;
                descriptor.nbParticlesToExchange = particles_offset_layers[my_nb_cell_levels] - particles_offset_layers[my_nb_cell_levels-nb_levels_to_send];
                descriptor.isRecv = false;

                neigDescriptors.emplace_back(std::move(descriptor));

                dest_proc = (dest_proc+1)%nb_processes_involved;
            }

            int src_proc = (my_rank-1+nb_processes_involved)%nb_processes_involved;
            while(src_proc != my_rank
                  && (last_cell_level_proc(src_proc) == my_down_z_cell_level
428
                      || (last_cell_level_proc(src_proc)+1)%nb_cell_levels[IDXC_Z] == my_down_z_cell_level)){
429
430
431
                // Find if we have to send 1 or 2 cell levels
                int nb_levels_to_recv = 1;
                if(my_nb_cell_levels > 1 // I have more than one level
432
                        && first_cell_level_proc(src_proc) <= (my_down_z_cell_level-1+2)%nb_cell_levels[IDXC_Z]){
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
                    nb_levels_to_recv += 1;
                }

                NeighborDescriptor descriptor;
                descriptor.destProc = src_proc;
                descriptor.nbLevelsToExchange = nb_levels_to_recv;
                descriptor.nbParticlesToExchange = -1;
                descriptor.isRecv = true;

                neigDescriptors.emplace_back(std::move(descriptor));

                src_proc = (src_proc-1+nb_processes_involved)%nb_processes_involved;
            }
        }

        //////////////////////////////////////////////////////////////////////
        /// Exchange the number of particles in each partition
        /// Could involve only here but I do not think it will be a problem
        //////////////////////////////////////////////////////////////////////

        assert(whatNext.size() == 0);
        assert(mpiRequests.size() == 0);
455
456
457
458
#ifndef NDEBUG // Just for assertion
        std::vector<int> willsend(nb_processes_involved, 0);
        std::vector<int> willrecv(nb_processes_involved, 0);
#endif
459
460
461
462
463
464
465
466
467
468
469

        for(int idxDescr = 0 ; idxDescr < int(neigDescriptors.size()) ; ++idxDescr){
            NeighborDescriptor& descriptor = neigDescriptors[idxDescr];

            if(descriptor.isRecv == false){
                whatNext.emplace_back(std::pair<Action,int>{NOTHING_TODO, -1});
                mpiRequests.emplace_back();
                AssertMpi(MPI_Isend(const_cast<partsize_t*>(&descriptor.nbParticlesToExchange),
                                    1, particles_utils::GetMpiType(partsize_t()),
                                    descriptor.destProc, TAG_NB_PARTICLES,
                                    current_com, &mpiRequests.back()));
470
471
472
#ifndef NDEBUG // Just for assertion
                willsend[descriptor.destProc] += 1;
#endif
473
474
475
476
                if(descriptor.nbParticlesToExchange){
                    whatNext.emplace_back(std::pair<Action,int>{NOTHING_TODO, -1});
                    mpiRequests.emplace_back();
                    assert(descriptor.nbParticlesToExchange*size_particle_positions < std::numeric_limits<int>::max());
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
477
                    AssertMpi(MPI_Isend(const_cast<real_number*>(&particles_positions[particles_offset_layers[my_nb_cell_levels-descriptor.nbLevelsToExchange]*size_particle_positions]),
478
479
480
481
482
483
                              int(descriptor.nbParticlesToExchange*size_particle_positions), particles_utils::GetMpiType(real_number()),
                              descriptor.destProc, TAG_POSITION_PARTICLES,
                              current_com, &mpiRequests.back()));

                    assert(descriptor.toRecvAndMerge == nullptr);
                    descriptor.toRecvAndMerge.reset(new real_number[descriptor.nbParticlesToExchange*size_particle_rhs]);
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
484
                    whatNext.emplace_back(std::pair<Action,int>{MERGE_PARTICLES, idxDescr});
485
486
487
488
489
490
491
492
                    mpiRequests.emplace_back();
                    assert(descriptor.nbParticlesToExchange*size_particle_rhs < std::numeric_limits<int>::max());
                    AssertMpi(MPI_Irecv(descriptor.toRecvAndMerge.get(), int(descriptor.nbParticlesToExchange*size_particle_rhs),
                                        particles_utils::GetMpiType(real_number()), descriptor.destProc, TAG_RESULT_PARTICLES,
                                        current_com, &mpiRequests.back()));
                }
            }
            else{
493
494
495
#ifndef NDEBUG // Just for assertion
                willrecv[descriptor.destProc] += 1;
#endif
496
497
498
499
500
501
502
503
                whatNext.emplace_back(std::pair<Action,int>{RECV_PARTICLES, idxDescr});
                mpiRequests.emplace_back();
                AssertMpi(MPI_Irecv(&descriptor.nbParticlesToExchange,
                      1, particles_utils::GetMpiType(partsize_t()), descriptor.destProc, TAG_NB_PARTICLES,
                      current_com, &mpiRequests.back()));
            }
        }

504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
#ifndef NDEBUG // Just for assertion
        {
            if(myrank == 0){
                std::vector<int> willsendall(nb_processes_involved*nb_processes_involved, 0);// TODO debug
                std::vector<int> willrecvall(nb_processes_involved*nb_processes_involved, 0);// TODO debug

                MPI_Gather(willrecv.data(), nb_processes_involved, MPI_INT, willrecvall.data(),
                            nb_processes_involved, MPI_INT, 0, MPI_COMM_WORLD);
                MPI_Gather(willsend.data(), nb_processes_involved, MPI_INT, willsendall.data(),
                            nb_processes_involved, MPI_INT, 0, MPI_COMM_WORLD);

                for(int idxproc = 0 ; idxproc < nb_processes_involved ; ++idxproc){
                    for(int idxtest = 0 ; idxtest < nb_processes_involved ; ++idxtest){
                        assert(willsendall[idxproc*nb_processes_involved + idxtest]
                                == willrecvall[idxtest*nb_processes_involved + idxproc]);
                    }
                }
            }
            else{
                MPI_Gather(willrecv.data(), nb_processes_involved, MPI_INT, nullptr,
                            0, MPI_INT, 0, MPI_COMM_WORLD);
                MPI_Gather(willsend.data(), nb_processes_involved, MPI_INT, nullptr,
                            0, MPI_INT, 0, MPI_COMM_WORLD);
            }
        }
#endif

531
532
        lock_free_bool_array cells_locker(512);

533
534
535
536
537
        std::vector<std::unique_ptr<computer_class>> computer_for_all_threads(omp_get_num_threads()-1);
        for(int idxThread = 1 ; idxThread < omp_get_num_threads() ; ++idxThread){
            computer_for_all_threads[idxThread-1].reset(new computer_class(in_computer));
        }

538
539
540
        TIMEZONE_OMP_INIT_PREPARALLEL(omp_get_max_threads())
        #pragma omp parallel default(shared)
        {
541
            computer_class& computer_thread = (omp_get_thread_num() == 0 ? in_computer : *computer_for_all_threads[omp_get_thread_num()-1]);
542
543
544
            #pragma omp master
            {
                while(mpiRequests.size()){
Berenger Bramas's avatar
Berenger Bramas committed
545
                    TIMEZONE("wait-loop");
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
                    assert(mpiRequests.size() == whatNext.size());

                    int idxDone = int(mpiRequests.size());
                    {
                        TIMEZONE("wait");
                        AssertMpi(MPI_Waitany(int(mpiRequests.size()), mpiRequests.data(), &idxDone, MPI_STATUSES_IGNORE));
                    }
                    const std::pair<Action, int> releasedAction = whatNext[idxDone];
                    std::swap(mpiRequests[idxDone], mpiRequests[mpiRequests.size()-1]);
                    std::swap(whatNext[idxDone], whatNext[mpiRequests.size()-1]);
                    mpiRequests.pop_back();
                    whatNext.pop_back();

                    //////////////////////////////////////////////////////////////////////
                    /// Data to exchange particles
                    //////////////////////////////////////////////////////////////////////
                    if(releasedAction.first == RECV_PARTICLES){
Berenger Bramas's avatar
Berenger Bramas committed
563
                        TIMEZONE("post-recv-particles");
564
                        NeighborDescriptor& descriptor = neigDescriptors[releasedAction.second];
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
565
                        assert(descriptor.isRecv);
566
567
568
569
570
571
572
                        const int destProc = descriptor.destProc;
                        const partsize_t NbParticlesToReceive = descriptor.nbParticlesToExchange;
                        assert(NbParticlesToReceive != -1);
                        assert(descriptor.toCompute == nullptr);

                        if(NbParticlesToReceive){
                            descriptor.toCompute.reset(new real_number[NbParticlesToReceive*size_particle_positions]);
573
                            whatNext.emplace_back(std::pair<Action,int>{COMPUTE_PARTICLES, releasedAction.second});
574
575
576
577
578
579
580
581
582
583
584
585
                            mpiRequests.emplace_back();
                            assert(NbParticlesToReceive*size_particle_positions < std::numeric_limits<int>::max());
                            AssertMpi(MPI_Irecv(descriptor.toCompute.get(), int(NbParticlesToReceive*size_particle_positions),
                                                particles_utils::GetMpiType(real_number()), destProc, TAG_POSITION_PARTICLES,
                                                current_com, &mpiRequests.back()));
                        }
                    }

                    //////////////////////////////////////////////////////////////////////
                    /// Computation
                    //////////////////////////////////////////////////////////////////////
                    if(releasedAction.first == COMPUTE_PARTICLES){
Berenger Bramas's avatar
Berenger Bramas committed
586
                        TIMEZONE("compute-particles");
587
                        NeighborDescriptor& descriptor = neigDescriptors[releasedAction.second];
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
588
                        assert(descriptor.isRecv);
589
590
591
592
                        const partsize_t NbParticlesToReceive = descriptor.nbParticlesToExchange;

                        assert(descriptor.toCompute != nullptr);
                        descriptor.results.reset(new real_number[NbParticlesToReceive*size_particle_rhs]);
593
                        computer_thread.template init_result_array<size_particle_rhs>(descriptor.results.get(), NbParticlesToReceive);
594
595
596
597

                        // Compute
                        partsize_t idxPart = 0;
                        while(idxPart != NbParticlesToReceive){
598
599
600
                            const long int current_cell_idx = get_cell_idx(descriptor.toCompute[idxPart*size_particle_positions + IDXC_X],
                                                                           descriptor.toCompute[idxPart*size_particle_positions + IDXC_Y],
                                                                           descriptor.toCompute[idxPart*size_particle_positions + IDXC_Z]);
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
601
                            partsize_t nb_parts_in_cell = 1;
602
                            while(idxPart+nb_parts_in_cell != NbParticlesToReceive
603
604
605
                                  && current_cell_idx == get_cell_idx(descriptor.toCompute[(idxPart+nb_parts_in_cell)*size_particle_positions + IDXC_X],
                                                                     descriptor.toCompute[(idxPart+nb_parts_in_cell)*size_particle_positions + IDXC_Y],
                                                                     descriptor.toCompute[(idxPart+nb_parts_in_cell)*size_particle_positions + IDXC_Z])){
606
607
608
                                nb_parts_in_cell += 1;
                            }

609
610
611
612
613
614
                            #pragma omp task default(shared) firstprivate(idxPart, nb_parts_in_cell, current_cell_idx)
                            {
                                const std::vector<std::pair<partsize_t,partsize_t>>* neighbors[27];
                                long int neighbors_indexes[27];
                                std::array<real_number,3> shift[27];
                                const int nbNeighbors = my_tree.getNeighbors(current_cell_idx, neighbors, neighbors_indexes, shift, true);
615

616
                                // with other interval
617
                                for(int idx_neighbor = 0 ; idx_neighbor < nbNeighbors ; ++idx_neighbor){
618
619
620
621
622
                                    cells_locker.lock(neighbors_indexes[idx_neighbor]);

                                    for(size_t idx_2 = 0 ; idx_2 < (*neighbors[idx_neighbor]).size() ; ++idx_2){
                                        for(partsize_t idx_p1 = 0 ; idx_p1 < nb_parts_in_cell ; ++idx_p1){
                                            for(partsize_t idx_p2 = 0 ; idx_p2 < (*neighbors[idx_neighbor])[idx_2].second ; ++idx_p2){
623
624
625
626
627
628
629
                                                const real_number dist_r2 = compute_distance_r2(descriptor.toCompute[(idxPart+idx_p1)*size_particle_positions + IDXC_X],
                                                                                                descriptor.toCompute[(idxPart+idx_p1)*size_particle_positions + IDXC_Y],
                                                                                                descriptor.toCompute[(idxPart+idx_p1)*size_particle_positions + IDXC_Z],
                                                                                                particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions + IDXC_X],
                                                                                                particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions + IDXC_Y],
                                                                                                particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions + IDXC_Z],
                                                                                                shift[idx_neighbor][IDXC_X], shift[idx_neighbor][IDXC_Y], shift[idx_neighbor][IDXC_Z]);
630
                                                if(dist_r2 < cutoff_radius_compute*cutoff_radius_compute){
631
                                                    computer_thread.template compute_interaction<size_particle_positions, size_particle_rhs>(
632
633
634
635
                                                                        &descriptor.toCompute[(idxPart+idx_p1)*size_particle_positions],
                                                                        &descriptor.results[(idxPart+idx_p1)*size_particle_rhs],
                                                                        &particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions],
                                                                        &particles_current_rhs[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_rhs],
636
                                                                        dist_r2, cutoff_radius_compute, shift[idx_neighbor][IDXC_X], shift[idx_neighbor][IDXC_Y], shift[idx_neighbor][IDXC_Z]);
637
                                                }
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
638
                                            }
639
640
                                        }
                                    }
641
642

                                    cells_locker.unlock(neighbors_indexes[idx_neighbor]);
643
644
645
646
647
648
                                }
                            }

                            idxPart += nb_parts_in_cell;
                        }

649
650
                        #pragma omp taskwait

651
652
653
654
655
656
657
658
                        // Send back
                        const int destProc = descriptor.destProc;
                        whatNext.emplace_back(std::pair<Action,int>{RELEASE_BUFFER_PARTICLES, releasedAction.second});
                        mpiRequests.emplace_back();
                        assert(NbParticlesToReceive*size_particle_rhs < std::numeric_limits<int>::max());
                        AssertMpi(MPI_Isend(descriptor.results.get(), int(NbParticlesToReceive*size_particle_rhs),
                                            particles_utils::GetMpiType(real_number()), destProc, TAG_RESULT_PARTICLES,
                                            current_com, &mpiRequests.back()));
Cristian Lalescu's avatar
Cristian Lalescu committed
659
                        delete[] descriptor.toCompute.release();
660
661
                    }
                    //////////////////////////////////////////////////////////////////////
662
                    /// Release memory that was sent back
663
                    //////////////////////////////////////////////////////////////////////
664
665
                    if(releasedAction.first == RELEASE_BUFFER_PARTICLES){
                        NeighborDescriptor& descriptor = neigDescriptors[releasedAction.second];
666
                        assert(descriptor.results != nullptr);
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
667
                        assert(descriptor.isRecv);
Cristian Lalescu's avatar
Cristian Lalescu committed
668
                        delete[] descriptor.results.release();
669
670
671
672
                    }
                    //////////////////////////////////////////////////////////////////////
                    /// Merge
                    //////////////////////////////////////////////////////////////////////
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
673
                    if(releasedAction.first == MERGE_PARTICLES){
Berenger Bramas's avatar
Berenger Bramas committed
674
                        TIMEZONE("merge");
675
                        NeighborDescriptor& descriptor = neigDescriptors[releasedAction.second];
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
676
                        assert(descriptor.isRecv == false);
677
                        assert(descriptor.toRecvAndMerge != nullptr);
678
                        computer_thread.template reduce_particles_rhs<size_particle_rhs>(&particles_current_rhs[particles_offset_layers[my_nb_cell_levels-descriptor.nbLevelsToExchange]*size_particle_rhs],
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
679
                                descriptor.toRecvAndMerge.get(), descriptor.nbParticlesToExchange);
Cristian Lalescu's avatar
Cristian Lalescu committed
680
                        delete[] descriptor.toRecvAndMerge.release();
681
682
683
684
685
686
687
688
                    }
                }
            }
        }

        assert(whatNext.size() == 0);
        assert(mpiRequests.size() == 0);

689
690
691
692
693
694
695
        {
            computer_class& computer_thread = (omp_get_thread_num() == 0 ? in_computer : *computer_for_all_threads[omp_get_thread_num()-1]);
            // Compute self data
            for(const auto& iter_cell : my_tree){
                TIMEZONE("proceed-leaf");
                const long int currenct_cell_idx = iter_cell.first;
                const std::vector<std::pair<partsize_t,partsize_t>>* intervals_ptr = &iter_cell.second;
696

697
698
699
700
701
    #pragma omp task default(shared) firstprivate(currenct_cell_idx, intervals_ptr)
                {
                    const std::vector<std::pair<partsize_t,partsize_t>>& intervals = (*intervals_ptr);

                    cells_locker.lock(currenct_cell_idx);
702

703
704
                    for(size_t idx_1 = 0 ; idx_1 < intervals.size() ; ++idx_1){
                        // self interval
705
                        for(partsize_t idx_p1 = 0 ; idx_p1 < intervals[idx_1].second ; ++idx_p1){
706
                            for(partsize_t idx_p2 = idx_p1+1 ; idx_p2 < intervals[idx_1].second ; ++idx_p2){
707
708
709
                                const real_number dist_r2 = compute_distance_r2(particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDXC_X],
                                                                                particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDXC_Y],
                                                                                particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDXC_Z],
710
711
712
                                                                                particles_positions[(intervals[idx_1].first+idx_p2)*size_particle_positions + IDXC_X],
                                                                                particles_positions[(intervals[idx_1].first+idx_p2)*size_particle_positions + IDXC_Y],
                                                                                particles_positions[(intervals[idx_1].first+idx_p2)*size_particle_positions + IDXC_Z],
713
714
                                                                                0, 0, 0);
                                if(dist_r2 < cutoff_radius_compute*cutoff_radius_compute){
715
                                    computer_thread.template compute_interaction<size_particle_positions,size_particle_rhs>(
716
717
                                                        &particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions],
                                                        &particles_current_rhs[(intervals[idx_1].first+idx_p1)*size_particle_rhs],
718
719
                                                        &particles_positions[(intervals[idx_1].first+idx_p2)*size_particle_positions],
                                                        &particles_current_rhs[(intervals[idx_1].first+idx_p2)*size_particle_rhs],
720
                                                        dist_r2, cutoff_radius_compute, 0, 0, 0);
721
722
                                }
                            }
723
                        }
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746

                        // with other interval
                        for(size_t idx_2 = idx_1+1 ; idx_2 < intervals.size() ; ++idx_2){
                            for(partsize_t idx_p1 = 0 ; idx_p1 < intervals[idx_1].second ; ++idx_p1){
                                for(partsize_t idx_p2 = 0 ; idx_p2 < intervals[idx_2].second ; ++idx_p2){
                                    const real_number dist_r2 = compute_distance_r2(particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDXC_X],
                                                                                    particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDXC_Y],
                                                                                    particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDXC_Z],
                                                                                    particles_positions[(intervals[idx_2].first+idx_p2)*size_particle_positions + IDXC_X],
                                                                                    particles_positions[(intervals[idx_2].first+idx_p2)*size_particle_positions + IDXC_Y],
                                                                                    particles_positions[(intervals[idx_2].first+idx_p2)*size_particle_positions + IDXC_Z],
                                                                                    0, 0, 0);
                                    if(dist_r2 < cutoff_radius_compute*cutoff_radius_compute){
                                        computer_thread.template compute_interaction<size_particle_positions,size_particle_rhs>(
                                                            &particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions],
                                                            &particles_current_rhs[(intervals[idx_1].first+idx_p1)*size_particle_rhs],
                                                            &particles_positions[(intervals[idx_2].first+idx_p2)*size_particle_positions],
                                                            &particles_current_rhs[(intervals[idx_2].first+idx_p2)*size_particle_rhs],
                                                            dist_r2, cutoff_radius_compute, 0, 0, 0);
                                    }
                                }
                            }
                        }
747
748
                    }

749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
                    const std::vector<std::pair<partsize_t,partsize_t>>* neighbors[27];
                    long int neighbors_indexes[27];
                    std::array<real_number,3> shift[27];
                    const int nbNeighbors = my_tree.getNeighbors(currenct_cell_idx, neighbors, neighbors_indexes, shift, false);

                    for(size_t idx_1 = 0 ; idx_1 < intervals.size() ; ++idx_1){
                        // with other interval
                        for(int idx_neighbor = 0 ; idx_neighbor < nbNeighbors ; ++idx_neighbor){
                            if(currenct_cell_idx < neighbors_indexes[idx_neighbor]){
                                cells_locker.lock(neighbors_indexes[idx_neighbor]);

                                for(size_t idx_2 = 0 ; idx_2 < (*neighbors[idx_neighbor]).size() ; ++idx_2){
                                    for(partsize_t idx_p1 = 0 ; idx_p1 < intervals[idx_1].second ; ++idx_p1){
                                        for(partsize_t idx_p2 = 0 ; idx_p2 < (*neighbors[idx_neighbor])[idx_2].second ; ++idx_p2){
                                            const real_number dist_r2 = compute_distance_r2(particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDXC_X],
                                                                                            particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDXC_Y],
                                                                                            particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDXC_Z],
                                                                                            particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions + IDXC_X],
                                                                                            particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions + IDXC_Y],
                                                                                            particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions + IDXC_Z],
                                                                                            shift[idx_neighbor][IDXC_X], shift[idx_neighbor][IDXC_Y], shift[idx_neighbor][IDXC_Z]);
                                            if(dist_r2 < cutoff_radius_compute*cutoff_radius_compute){
                                                computer_thread.template compute_interaction<size_particle_positions,size_particle_rhs>(
                                                                    &particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions],
                                                                    &particles_current_rhs[(intervals[idx_1].first+idx_p1)*size_particle_rhs],
                                                                    &particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions],
                                                                    &particles_current_rhs[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_rhs],
                                                                    dist_r2, cutoff_radius_compute, shift[idx_neighbor][IDXC_X], shift[idx_neighbor][IDXC_Y], shift[idx_neighbor][IDXC_Z]);
                                            }
778
                                        }
779
                                    }
780
                                }
781
                                cells_locker.unlock(neighbors_indexes[idx_neighbor]);
782
783
784
                            }
                        }
                    }
785

786
787
                    cells_locker.unlock(currenct_cell_idx);
                }
788
789
            }
        }
790
791
792
793

        for(int idxThread = 1 ; idxThread < omp_get_num_threads() ; ++idxThread){
            in_computer.merge(*computer_for_all_threads[idxThread-1]);
        }
794
795
796
797
    }
};

#endif