p2p_distr_mpi.hpp 57.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
#ifndef P2P_DISTR_MPI_HPP
#define P2P_DISTR_MPI_HPP

#include <mpi.h>

#include <vector>
#include <memory>
#include <cassert>

#include <type_traits>
#include <omp.h>
#include <algorithm>

#include "scope_timer.hpp"
#include "particles_utils.hpp"
#include "p2p_tree.hpp"

template <class partsize_t, class real_number>
class p2p_distr_mpi {
protected:
    static const int MaxNbRhs = 100;

    enum MpiTag{
        TAG_NB_PARTICLES,
        TAG_POSITION_PARTICLES,
        TAG_RESULT_PARTICLES,
    };

    struct NeighborDescriptor{
        partsize_t nbParticlesToExchange;
        int destProc;
        int nbLevelsToExchange;
        bool isRecv;

        std::unique_ptr<real_number[]> toRecvAndMerge;
        std::unique_ptr<real_number[]> toCompute;
        std::unique_ptr<real_number[]> results;
    };

    enum Action{
        NOTHING_TODO,
        RECV_PARTICLES,
        COMPUTE_PARTICLES,
        RELEASE_BUFFER_PARTICLES,
        MERGE_PARTICLES,

        RECV_MOVE_NB_LOW,
        RECV_MOVE_NB_UP,
        RECV_MOVE_LOW,
        RECV_MOVE_UP
    };

    MPI_Comm current_com;

    int my_rank;
    int nb_processes;
    int nb_processes_involved;

    const std::pair<int,int> current_partition_interval;
    const int current_partition_size;
    const std::array<size_t,3> field_grid_dim;

    std::unique_ptr<int[]> partition_interval_size_per_proc;
    std::unique_ptr<int[]> partition_interval_offset_per_proc;

    std::unique_ptr<partsize_t[]> current_offset_particles_for_partition;

    std::vector<std::pair<Action,int>> whatNext;
    std::vector<MPI_Request> mpiRequests;
    std::vector<NeighborDescriptor> neigDescriptors;

    std::array<real_number,3> spatial_box_width;
    std::array<real_number,3> spatial_box_offset;

75
    const real_number cutoff_radius_compute;
76
77
78
    const real_number cutoff_radius;
    std::array<long int,3> nb_cell_levels;

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    template <class DataType, int sizeElement>
    static void permute_copy(const partsize_t offsetIdx, const partsize_t nbElements,
                             const std::pair<long int,partsize_t> permutation[],
                             DataType data[], std::vector<unsigned char>* buffer){
        buffer->resize(nbElements*sizeof(DataType)*sizeElement);
        DataType* dataBuffer = reinterpret_cast<DataType*>(buffer->data());

        // Permute
        for(partsize_t idxPart = 0 ; idxPart < nbElements ; ++idxPart){
            const partsize_t srcData = permutation[idxPart].second;
            const partsize_t destData = idxPart;
            for(int idxVal = 0 ; idxVal < sizeElement ; ++idxVal){
                dataBuffer[destData*sizeElement + idxVal]
                        = data[srcData*sizeElement + idxVal];
            }
        }

        // Copy back
        for(partsize_t idxPart = 0 ; idxPart < nbElements ; ++idxPart){
            const partsize_t srcData = idxPart;
            const partsize_t destData = idxPart+offsetIdx;
            for(int idxVal = 0 ; idxVal < sizeElement ; ++idxVal){
                data[destData*sizeElement + idxVal]
                        = dataBuffer[srcData*sizeElement + idxVal];
            }
        }
    }

    static real_number getGridCutoff(const real_number in_cutoff_radius, const std::array<real_number,3>& in_spatial_box_width){
        int idx_factor = 1;
        while(in_cutoff_radius <= in_spatial_box_width[IDX_Z]/real_number(idx_factor+1)){
            idx_factor += 1;
        }
        return in_spatial_box_width[IDX_Z]/real_number(idx_factor);
    }

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
public:
    ////////////////////////////////////////////////////////////////////////////

    p2p_distr_mpi(MPI_Comm in_current_com,
                     const std::pair<int,int>& in_current_partitions,
                     const std::array<size_t,3>& in_field_grid_dim,
                     const std::array<real_number,3>& in_spatial_box_width,
                     const std::array<real_number,3>& in_spatial_box_offset,
                     const real_number in_cutoff_radius)
        : current_com(in_current_com),
            my_rank(-1), nb_processes(-1),nb_processes_involved(-1),
            current_partition_interval(in_current_partitions),
            current_partition_size(current_partition_interval.second-current_partition_interval.first),
            field_grid_dim(in_field_grid_dim),
            spatial_box_width(in_spatial_box_width), spatial_box_offset(in_spatial_box_offset),
130
131
            cutoff_radius_compute(in_cutoff_radius),
            cutoff_radius(getGridCutoff(in_cutoff_radius, in_spatial_box_width)){
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

        AssertMpi(MPI_Comm_rank(current_com, &my_rank));
        AssertMpi(MPI_Comm_size(current_com, &nb_processes));

        partition_interval_size_per_proc.reset(new int[nb_processes]);
        AssertMpi( MPI_Allgather( const_cast<int*>(&current_partition_size), 1, MPI_INT,
                                  partition_interval_size_per_proc.get(), 1, MPI_INT,
                                  current_com) );
        assert(partition_interval_size_per_proc[my_rank] == current_partition_size);

        partition_interval_offset_per_proc.reset(new int[nb_processes+1]);
        partition_interval_offset_per_proc[0] = 0;
        for(int idxProc = 0 ; idxProc < nb_processes ; ++idxProc){
            partition_interval_offset_per_proc[idxProc+1] = partition_interval_offset_per_proc[idxProc] + partition_interval_size_per_proc[idxProc];
        }

        current_offset_particles_for_partition.reset(new partsize_t[current_partition_size+1]);

        nb_processes_involved = nb_processes;
        while(nb_processes_involved != 0 && partition_interval_size_per_proc[nb_processes_involved-1] == 0){
            nb_processes_involved -= 1;
        }
        assert(nb_processes_involved != 0);
        for(int idx_proc_involved = 0 ; idx_proc_involved < nb_processes_involved ; ++idx_proc_involved){
            assert(partition_interval_size_per_proc[idx_proc_involved] != 0);
        }

        assert(int(field_grid_dim[IDX_Z]) == partition_interval_offset_per_proc[nb_processes_involved]);

        nb_cell_levels[IDX_X] = spatial_box_width[IDX_X]/cutoff_radius;
        nb_cell_levels[IDX_Y] = spatial_box_width[IDX_Y]/cutoff_radius;
        nb_cell_levels[IDX_Z] = spatial_box_width[IDX_Z]/cutoff_radius;
    }

    virtual ~p2p_distr_mpi(){}

    ////////////////////////////////////////////////////////////////////////////

    long int get_cell_coord_x_from_index(const long int index) const{
        return index % nb_cell_levels[IDX_X];
    }

    long int get_cell_coord_y_from_index(const long int index) const{
        return (index - get_cell_coord_z_from_index(index)*(nb_cell_levels[IDX_X]*nb_cell_levels[IDX_Y]))
                / nb_cell_levels[IDX_X];
    }

    long int get_cell_coord_z_from_index(const long int index) const{
        return index / (nb_cell_levels[IDX_X]*nb_cell_levels[IDX_Y]);
    }

    long int first_cell_level_proc(const int dest_proc) const{
        const real_number field_section_width_z = spatial_box_width[IDX_Z]/real_number(field_grid_dim[IDX_Z]);
        return static_cast<long int>((field_section_width_z*real_number(partition_interval_offset_per_proc[dest_proc]))/cutoff_radius);
    }

    long int last_cell_level_proc(const int dest_proc) const{
        const real_number field_section_width_z = spatial_box_width[IDX_Z]/real_number(field_grid_dim[IDX_Z]);
        return static_cast<long int>((field_section_width_z*real_number(partition_interval_offset_per_proc[dest_proc+1])
                                     - std::numeric_limits<real_number>::epsilon())/cutoff_radius);
    }

    std::array<long int,3> get_cell_coordinate(const real_number pos_x, const real_number pos_y,
                                               const real_number pos_z) const {
        const real_number diff_x = pos_x - spatial_box_offset[IDX_X];
        const real_number diff_y = pos_y - spatial_box_offset[IDX_Y];
        const real_number diff_z = pos_z - spatial_box_offset[IDX_Z];
        std::array<long int,3> coord;
        coord[IDX_X] = static_cast<long int>(diff_x/cutoff_radius);
        coord[IDX_Y] = static_cast<long int>(diff_y/cutoff_radius);
        coord[IDX_Z] = static_cast<long int>(diff_z/cutoff_radius);
        return coord;
    }

    long int get_cell_idx(const real_number pos_x, const real_number pos_y,
                          const real_number pos_z) const {
        std::array<long int,3> coord = get_cell_coordinate(pos_x, pos_y, pos_z);
        return ((coord[IDX_Z]*nb_cell_levels[IDX_Y])+coord[IDX_Y])*nb_cell_levels[IDX_X]+coord[IDX_X];
    }

    real_number compute_distance_r2(const real_number x1, const real_number y1, const real_number z1,
                                    const real_number x2, const real_number y2, const real_number z2) const {
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
214
215
216
217
        real_number diff_x = std::abs(x1-x2);
        while(diff_x > spatial_box_width[IDX_X]/2){
            diff_x = std::abs(diff_x - spatial_box_width[IDX_X]);
        }
218

Berenger Bramas's avatar
Debug    
Berenger Bramas committed
219
220
221
222
        real_number diff_y = std::abs(y1-y2);
        while(diff_y > spatial_box_width[IDX_Y]/2){
            diff_y = std::abs(diff_y - spatial_box_width[IDX_Y]);
        }
223

Berenger Bramas's avatar
Debug    
Berenger Bramas committed
224
225
226
        real_number diff_z = std::abs(z1-z2);
        while(diff_z > spatial_box_width[IDX_Z]/2){
            diff_z = std::abs(diff_z - spatial_box_width[IDX_Z]);
227
        }
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
228
229
230

        return (diff_x*diff_x) + (diff_y*diff_y) + (diff_z*diff_z);
    }
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

    template <class computer_class, int size_particle_positions, int size_particle_rhs>
    void compute_distr(computer_class& in_computer,
                       const partsize_t current_my_nb_particles_per_partition[],
                       real_number particles_positions[],
                       real_number particles_current_rhs[],
                       partsize_t inout_index_particles[]){
        TIMEZONE("compute_distr");

        // Some processes might not be involved
        if(nb_processes_involved <= my_rank){
            return;
        }

        const long int my_top_z_cell_level = last_cell_level_proc(my_rank);
        const long int my_down_z_cell_level = first_cell_level_proc(my_rank);
        const long int my_nb_cell_levels = 1+my_top_z_cell_level-my_down_z_cell_level;

        current_offset_particles_for_partition[0] = 0;
        partsize_t myTotalNbParticles = 0;
        for(int idxPartition = 0 ; idxPartition < current_partition_size ; ++idxPartition){
            myTotalNbParticles += current_my_nb_particles_per_partition[idxPartition];
            current_offset_particles_for_partition[idxPartition+1] = current_offset_particles_for_partition[idxPartition] + current_my_nb_particles_per_partition[idxPartition];
        }

        // Compute box idx for each particle
        std::unique_ptr<long int[]> particles_coord(new long int[current_offset_particles_for_partition[current_partition_size]]);

        {
            for(int idxPartition = 0 ; idxPartition < current_partition_size ; ++idxPartition){
                #pragma omp parallel for schedule(static)
                for(partsize_t idxPart = current_offset_particles_for_partition[idxPartition] ; idxPart < current_offset_particles_for_partition[idxPartition+1] ; ++idxPart ){
                    particles_coord[idxPart] = get_cell_idx(particles_positions[(idxPart)*size_particle_positions + IDX_X],
                                                                              particles_positions[(idxPart)*size_particle_positions + IDX_Y],
                                                                              particles_positions[(idxPart)*size_particle_positions + IDX_Z]);
                    assert(my_down_z_cell_level <= get_cell_coord_z_from_index(particles_coord[idxPart]));
                    assert(get_cell_coord_z_from_index(particles_coord[idxPart]) <= my_top_z_cell_level);
268
269
270
271
272
273
274
275
276
277
//                    if(inout_index_particles[idxPart] == 547){// TODO
//                        printf("Coord index %ld - %ld (tree index %ld)\n", idxPart, inout_index_particles[idxPart],particles_coord[idxPart]);
//                        printf(">> Box index %ld - %ld - %ld\n", get_cell_coord_x_from_index(particles_coord[idxPart]),
//                               get_cell_coord_y_from_index(particles_coord[idxPart]),
//                               get_cell_coord_z_from_index(particles_coord[idxPart]));
//                        printf(">> idxPartition %d\n", idxPartition);
//                        printf(">> position %e %e %e\n", particles_positions[(idxPart)*size_particle_positions + IDX_X],
//                                particles_positions[(idxPart)*size_particle_positions + IDX_Y],
//                                particles_positions[(idxPart)*size_particle_positions + IDX_Z]);
//                    }
278
279
280
                }
            }

281
            std::vector<std::pair<long int,partsize_t>> part_to_sort;
282
283
284
285
286
287
288

            // Sort each partition in cells
            for(int idxPartition = 0 ; idxPartition < current_partition_size ; ++idxPartition){
                part_to_sort.clear();

                for(partsize_t idxPart = current_offset_particles_for_partition[idxPartition] ; idxPart < current_offset_particles_for_partition[idxPartition+1] ; ++idxPart ){
                    part_to_sort.emplace_back();
289
290
                    part_to_sort.back().first = particles_coord[idxPart];
                    part_to_sort.back().second = idxPart;
291
292
                }

293
                assert(part_to_sort.size() == (current_my_nb_particles_per_partition[idxPartition]));
294
295

                std::sort(part_to_sort.begin(), part_to_sort.end(),
296
297
298
                          [](const std::pair<long int,partsize_t>& p1,
                             const std::pair<long int,partsize_t>& p2){
                    return p1.first < p2.first;
299
                });
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318

//                for(partsize_t idxPart = 1 ; idxPart < (long int)part_to_sort.size() ; ++idxPart){// TODO
//                    assert(part_to_sort[idxPart-1].first <= part_to_sort[idxPart].first);
//                }

                // Permute array using buffer
                std::vector<unsigned char> buffer;
                permute_copy<real_number, size_particle_positions>(current_offset_particles_for_partition[idxPartition],
                                                                   current_my_nb_particles_per_partition[idxPartition],
                                                                   part_to_sort.data(), particles_positions, &buffer);
                permute_copy<real_number, size_particle_rhs>(current_offset_particles_for_partition[idxPartition],
                                                             current_my_nb_particles_per_partition[idxPartition],
                                                             part_to_sort.data(), particles_current_rhs, &buffer);
                permute_copy<partsize_t, 1>(current_offset_particles_for_partition[idxPartition],
                                            current_my_nb_particles_per_partition[idxPartition],
                                            part_to_sort.data(), inout_index_particles, &buffer);
                permute_copy<long int, 1>(current_offset_particles_for_partition[idxPartition],
                                            current_my_nb_particles_per_partition[idxPartition],
                                            part_to_sort.data(), particles_coord.get(), &buffer);
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
            }
        }

        // Build the tree
        p2p_tree<std::vector<std::pair<partsize_t,partsize_t>>> my_tree(nb_cell_levels);

        for(int idxPartition = 0 ; idxPartition < current_partition_size ; ++idxPartition){
            long int current_cell_idx = -1;
            partsize_t current_nb_particles_in_cell = 0;
            partsize_t current_cell_offset = 0;

            for(partsize_t idx_part = current_offset_particles_for_partition[idxPartition] ;
                            idx_part != current_offset_particles_for_partition[idxPartition+1]; ++idx_part){
                if(particles_coord[idx_part] != current_cell_idx){
                    if(current_nb_particles_in_cell){
                        my_tree.getCell(current_cell_idx).emplace_back(current_cell_offset,current_nb_particles_in_cell);
                    }
                    current_cell_idx = particles_coord[idx_part];
                    current_nb_particles_in_cell = 1;
                    current_cell_offset = idx_part;
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
//                    if(inout_index_particles[idx_part] == 547){// TODO
//                        printf("idxPartition %d\n", idxPartition);
//                        printf(">> Coord index %ld - %ld (tree index %ld)\n", idx_part, inout_index_particles[idx_part],particles_coord[idx_part]);
//                        printf(">> Box index %ld - %ld - %ld\n", get_cell_coord_x_from_index(particles_coord[idx_part]),
//                               get_cell_coord_y_from_index(particles_coord[idx_part]),
//                               get_cell_coord_z_from_index(particles_coord[idx_part]));
//                        printf(">> current_cell_offset %ld current_nb_particles_in_cell %ld\n", current_cell_offset, current_nb_particles_in_cell);
//                        printf(">> Position %e %e %e\n", particles_positions[idx_part*size_particle_positions + IDX_X],
//                                particles_positions[idx_part*size_particle_positions + IDX_Y],
//                                particles_positions[idx_part*size_particle_positions + IDX_Z]);
//                    }
//                    if(inout_index_particles[idx_part] == 356){// TODO
//                        printf("idxPartition %d\n", idxPartition);
//                        printf(">> Coord index %ld - %ld (tree index %ld)\n", idx_part, inout_index_particles[idx_part],particles_coord[idx_part]);
//                        printf(">> Box index %ld - %ld - %ld\n", get_cell_coord_x_from_index(particles_coord[idx_part]),
//                               get_cell_coord_y_from_index(particles_coord[idx_part]),
//                               get_cell_coord_z_from_index(particles_coord[idx_part]));
//                        printf(">> current_cell_offset %ld current_nb_particles_in_cell %ld\n", current_cell_offset, current_nb_particles_in_cell);
//                        printf(">> Position %e %e %e\n", particles_positions[idx_part*size_particle_positions + IDX_X],
//                                particles_positions[idx_part*size_particle_positions + IDX_Y],
//                                particles_positions[idx_part*size_particle_positions + IDX_Z]);
//                    }
                }
                else{
                    current_nb_particles_in_cell += 1;
364
365
366
367
368
369
370
371
                }
            }
            if(current_nb_particles_in_cell){
                my_tree.getCell(current_cell_idx).emplace_back(current_cell_offset,current_nb_particles_in_cell);

            }
        }

372
373
374
//        printf("[%d] go from cutoff level %ld to %ld\n",
//               my_rank, my_down_z_cell_level, my_top_z_cell_level); // TODO remove
//        fflush(stdout); // TODO
375
376

        // Offset per cell layers
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
377
        long int previous_index = 0;
378
379
380
381
        std::unique_ptr<partsize_t[]> particles_offset_layers(new partsize_t[my_nb_cell_levels+1]());
        for(int idxPartition = 0 ; idxPartition < current_partition_size ; ++idxPartition){
            for(partsize_t idx_part = current_offset_particles_for_partition[idxPartition] ;
                            idx_part != current_offset_particles_for_partition[idxPartition+1]; ++idx_part){
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
382
383
384
385
386
387
                const long int part_box_z_index = get_cell_coord_z_from_index(particles_coord[idx_part]);
                assert(my_down_z_cell_level <= part_box_z_index);
                assert(part_box_z_index <= my_top_z_cell_level);
                particles_offset_layers[part_box_z_index+1-my_down_z_cell_level] += 1;
                assert(previous_index <= part_box_z_index);
                previous_index = part_box_z_index;
388
389
            }
        }
390
391
392
393
        for(long int idx_layer = 0 ; idx_layer < my_nb_cell_levels ; ++idx_layer){
//            printf("[%d] nb particles in cutoff level %ld are %ld\n",
//                   my_rank, idx_layer, particles_offset_layers[idx_layer+1]); // TODO remove
//            fflush(stdout); // TODO
394
395
396
397
398
399
400
401
402
403
            particles_offset_layers[idx_layer+1] += particles_offset_layers[idx_layer];
        }

        // Reset vectors
        assert(whatNext.size() == 0);
        assert(mpiRequests.size() == 0);
        neigDescriptors.clear();

        // Find process with at least one neighbor
        {
404
405
406
//            std::cout << my_rank << " my_top_z_cell_level " << my_top_z_cell_level << std::endl;
//            std::cout << my_rank << " my_down_z_cell_level " << my_down_z_cell_level << std::endl;
//            std::cout.flush();// TODO
407
408
409
410
411
412
413
414
415
416
417
418

            int dest_proc = (my_rank+1)%nb_processes_involved;
            while(dest_proc != my_rank
                  && (my_top_z_cell_level == first_cell_level_proc(dest_proc)
                      || (my_top_z_cell_level+1)%nb_cell_levels[IDX_Z] == first_cell_level_proc(dest_proc))){
                // Find if we have to send 1 or 2 cell levels
                int nb_levels_to_send = 1;
                if(my_nb_cell_levels > 1 // I have more than one level
                        && (my_top_z_cell_level-1+2)%nb_cell_levels[IDX_Z] <= last_cell_level_proc(dest_proc)){
                    nb_levels_to_send += 1;
                }

419
420
421
422
//                std::cout << my_rank << " dest_proc " << dest_proc << std::endl;
//                std::cout << my_rank << " first_cell_level_proc(dest_proc) " << first_cell_level_proc(dest_proc) << std::endl;
//                std::cout << my_rank << " last_cell_level_proc(dest_proc) " << last_cell_level_proc(dest_proc) << std::endl;
//                std::cout.flush();// TODO
423
424
425
426
427
428
429

                NeighborDescriptor descriptor;
                descriptor.destProc = dest_proc;
                descriptor.nbLevelsToExchange = nb_levels_to_send;
                descriptor.nbParticlesToExchange = particles_offset_layers[my_nb_cell_levels] - particles_offset_layers[my_nb_cell_levels-nb_levels_to_send];
                descriptor.isRecv = false;

430
431
432
433
434
435
436
//                std::cout << my_rank << "SEND" << std::endl;
//                std::cout << "descriptor.destProc " << descriptor.destProc << std::endl;
//                std::cout << "descriptor.nbLevelsToExchange " << descriptor.nbLevelsToExchange << std::endl;
//                std::cout << "descriptor.nbParticlesToExchange " << descriptor.nbParticlesToExchange << std::endl;
//                std::cout << "descriptor.isRecv " << descriptor.isRecv << std::endl;
//                std::cout << "neigDescriptors.size() " << neigDescriptors.size() << std::endl;
//                std::cout.flush();// TODO
437
438
439
440
441

                neigDescriptors.emplace_back(std::move(descriptor));

                dest_proc = (dest_proc+1)%nb_processes_involved;
            }
442
443
444
//            std::cout << my_rank << " NO dest_proc " << dest_proc << std::endl;
//            std::cout << my_rank << " NO first_cell_level_proc(dest_proc) " << first_cell_level_proc(dest_proc) << std::endl;
//            std::cout.flush();// TODO
445
446
447
448
449
450
451
452
453
454
455
456

            int src_proc = (my_rank-1+nb_processes_involved)%nb_processes_involved;
            while(src_proc != my_rank
                  && (last_cell_level_proc(src_proc) == my_down_z_cell_level
                      || (last_cell_level_proc(src_proc)+1)%nb_cell_levels[IDX_Z] == my_down_z_cell_level)){
                // Find if we have to send 1 or 2 cell levels
                int nb_levels_to_recv = 1;
                if(my_nb_cell_levels > 1 // I have more than one level
                        && first_cell_level_proc(src_proc) <= (my_down_z_cell_level-1+2)%nb_cell_levels[IDX_Z]){
                    nb_levels_to_recv += 1;
                }

457
458
459
//                std::cout << my_rank << " src_proc " << src_proc << std::endl;
//                std::cout << my_rank << " first_cell_level_proc(src_proc) " << first_cell_level_proc(src_proc) << std::endl;
//                std::cout.flush();// TODO
460
461
462
463
464
465
466
467
468

                NeighborDescriptor descriptor;
                descriptor.destProc = src_proc;
                descriptor.nbLevelsToExchange = nb_levels_to_recv;
                descriptor.nbParticlesToExchange = -1;
                descriptor.isRecv = true;

                neigDescriptors.emplace_back(std::move(descriptor));

469
470
471
472
473
474
475
476
//                std::cout << my_rank << "] RECV" << std::endl;
//                std::cout << "descriptor.destProc " << descriptor.destProc << std::endl;
//                std::cout << "descriptor.nbLevelsToExchange " << descriptor.nbLevelsToExchange << std::endl;
//                std::cout << "descriptor.nbParticlesToExchange " << descriptor.nbParticlesToExchange << std::endl;
//                std::cout << "descriptor.nbParticlesToExchange " << descriptor.nbParticlesToExchange << std::endl;
//                std::cout << "descriptor.isRecv " << descriptor.isRecv << std::endl;
//                std::cout << "neigDescriptors.size() " << neigDescriptors.size() << std::endl;
//                std::cout.flush();// TODO
477
478
479

                src_proc = (src_proc-1+nb_processes_involved)%nb_processes_involved;
            }
480
481
482
//            std::cout << my_rank << " NO src_proc " << src_proc << std::endl;
//            std::cout << my_rank << " NO first_cell_level_proc(src_proc) " << first_cell_level_proc(src_proc) << std::endl;
//            std::cout.flush();// TODO
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
        }

        //////////////////////////////////////////////////////////////////////
        /// Exchange the number of particles in each partition
        /// Could involve only here but I do not think it will be a problem
        //////////////////////////////////////////////////////////////////////

        assert(whatNext.size() == 0);
        assert(mpiRequests.size() == 0);


        for(int idxDescr = 0 ; idxDescr < int(neigDescriptors.size()) ; ++idxDescr){
            NeighborDescriptor& descriptor = neigDescriptors[idxDescr];

            if(descriptor.isRecv == false){
                whatNext.emplace_back(std::pair<Action,int>{NOTHING_TODO, -1});
                mpiRequests.emplace_back();
                AssertMpi(MPI_Isend(const_cast<partsize_t*>(&descriptor.nbParticlesToExchange),
                                    1, particles_utils::GetMpiType(partsize_t()),
                                    descriptor.destProc, TAG_NB_PARTICLES,
                                    current_com, &mpiRequests.back()));

                if(descriptor.nbParticlesToExchange){
506
507
508
509
510
//                    std::cout << my_rank << "] SEND_PARTICLES" << std::endl;
//                    std::cout << "descriptor.nbParticlesToExchange " << descriptor.nbParticlesToExchange << std::endl;
//                    std::cout << "descriptor.destProc " << descriptor.destProc << std::endl;
//                    std::cout << "idxDescr " << idxDescr << std::endl;
//                    std::cout << "send from part " << particles_offset_layers[my_nb_cell_levels-descriptor.nbLevelsToExchange] << std::endl;
511
512
513
514

                    whatNext.emplace_back(std::pair<Action,int>{NOTHING_TODO, -1});
                    mpiRequests.emplace_back();
                    assert(descriptor.nbParticlesToExchange*size_particle_positions < std::numeric_limits<int>::max());
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
515
                    AssertMpi(MPI_Isend(const_cast<real_number*>(&particles_positions[particles_offset_layers[my_nb_cell_levels-descriptor.nbLevelsToExchange]*size_particle_positions]),
516
517
518
519
520
521
                              int(descriptor.nbParticlesToExchange*size_particle_positions), particles_utils::GetMpiType(real_number()),
                              descriptor.destProc, TAG_POSITION_PARTICLES,
                              current_com, &mpiRequests.back()));

                    assert(descriptor.toRecvAndMerge == nullptr);
                    descriptor.toRecvAndMerge.reset(new real_number[descriptor.nbParticlesToExchange*size_particle_rhs]);
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
522
                    whatNext.emplace_back(std::pair<Action,int>{MERGE_PARTICLES, idxDescr});
523
524
525
526
527
528
529
530
                    mpiRequests.emplace_back();
                    assert(descriptor.nbParticlesToExchange*size_particle_rhs < std::numeric_limits<int>::max());
                    AssertMpi(MPI_Irecv(descriptor.toRecvAndMerge.get(), int(descriptor.nbParticlesToExchange*size_particle_rhs),
                                        particles_utils::GetMpiType(real_number()), descriptor.destProc, TAG_RESULT_PARTICLES,
                                        current_com, &mpiRequests.back()));
                }
            }
            else{
531
532
//                std::cout << "RECV_PARTICLES " << RECV_PARTICLES << std::endl;
//                std::cout << "idxDescr " << idxDescr << std::endl;
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
                whatNext.emplace_back(std::pair<Action,int>{RECV_PARTICLES, idxDescr});
                mpiRequests.emplace_back();
                AssertMpi(MPI_Irecv(&descriptor.nbParticlesToExchange,
                      1, particles_utils::GetMpiType(partsize_t()), descriptor.destProc, TAG_NB_PARTICLES,
                      current_com, &mpiRequests.back()));
            }
        }

        TIMEZONE_OMP_INIT_PREPARALLEL(omp_get_max_threads())
        #pragma omp parallel default(shared)
        {
            #pragma omp master
            {
                while(mpiRequests.size()){
                    assert(mpiRequests.size() == whatNext.size());

                    int idxDone = int(mpiRequests.size());
                    {
                        TIMEZONE("wait");
                        AssertMpi(MPI_Waitany(int(mpiRequests.size()), mpiRequests.data(), &idxDone, MPI_STATUSES_IGNORE));
                    }
                    const std::pair<Action, int> releasedAction = whatNext[idxDone];
                    std::swap(mpiRequests[idxDone], mpiRequests[mpiRequests.size()-1]);
                    std::swap(whatNext[idxDone], whatNext[mpiRequests.size()-1]);
                    mpiRequests.pop_back();
                    whatNext.pop_back();

                    //////////////////////////////////////////////////////////////////////
                    /// Data to exchange particles
                    //////////////////////////////////////////////////////////////////////
                    if(releasedAction.first == RECV_PARTICLES){
                        NeighborDescriptor& descriptor = neigDescriptors[releasedAction.second];
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
565
                        assert(descriptor.isRecv);
566
567
568
569
570
                        const int destProc = descriptor.destProc;
                        const partsize_t NbParticlesToReceive = descriptor.nbParticlesToExchange;
                        assert(NbParticlesToReceive != -1);
                        assert(descriptor.toCompute == nullptr);

571
572
573
574
//                        std::cout << my_rank << "] RECV_PARTICLES" << std::endl;
//                        std::cout << "descriptor.nbParticlesToExchange " << descriptor.nbParticlesToExchange << std::endl;
//                        std::cout << "descriptor.destProc " << descriptor.destProc << std::endl;
//                        std::cout << "releasedAction.second " << releasedAction.second << std::endl;
575
576

                        if(NbParticlesToReceive){
577
//                            std::cout << "MPI_Irecv " << std::endl;
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
                            descriptor.toCompute.reset(new real_number[NbParticlesToReceive*size_particle_positions]);
                            whatNext.emplace_back(std::pair<Action,int>{COMPUTE_PARTICLES, releasedAction.second});
                            mpiRequests.emplace_back();
                            assert(NbParticlesToReceive*size_particle_positions < std::numeric_limits<int>::max());
                            AssertMpi(MPI_Irecv(descriptor.toCompute.get(), int(NbParticlesToReceive*size_particle_positions),
                                                particles_utils::GetMpiType(real_number()), destProc, TAG_POSITION_PARTICLES,
                                                current_com, &mpiRequests.back()));
                        }
                    }

                    //////////////////////////////////////////////////////////////////////
                    /// Computation
                    //////////////////////////////////////////////////////////////////////
                    if(releasedAction.first == COMPUTE_PARTICLES){
                        NeighborDescriptor& descriptor = neigDescriptors[releasedAction.second];
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
593
                        assert(descriptor.isRecv);
594
595
596
597
                        const partsize_t NbParticlesToReceive = descriptor.nbParticlesToExchange;

                        assert(descriptor.toCompute != nullptr);
                        descriptor.results.reset(new real_number[NbParticlesToReceive*size_particle_rhs]);
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
598
                        in_computer.template init_result_array<size_particle_rhs>(descriptor.results.get(), NbParticlesToReceive);
599
600
601
602
603
604
605

                        // Compute
                        partsize_t idxPart = 0;
                        while(idxPart != NbParticlesToReceive){
                            const long int current_cell_idx = get_cell_idx(descriptor.toCompute[idxPart*size_particle_positions + IDX_X],
                                                                           descriptor.toCompute[idxPart*size_particle_positions + IDX_Y],
                                                                           descriptor.toCompute[idxPart*size_particle_positions + IDX_Z]);
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
606
                            partsize_t nb_parts_in_cell = 1;
607
608
609
610
611
612
613
614
                            while(idxPart+nb_parts_in_cell != NbParticlesToReceive
                                  && current_cell_idx == get_cell_idx(descriptor.toCompute[(idxPart+nb_parts_in_cell)*size_particle_positions + IDX_X],
                                                                     descriptor.toCompute[(idxPart+nb_parts_in_cell)*size_particle_positions + IDX_Y],
                                                                     descriptor.toCompute[(idxPart+nb_parts_in_cell)*size_particle_positions + IDX_Z])){
                                nb_parts_in_cell += 1;
                            }

                            const std::vector<std::pair<partsize_t,partsize_t>>* neighbors[27];
615
616
                            long int neighbors_indexes[27];
                            const int nbNeighbors = my_tree.getNeighbors(current_cell_idx, neighbors, neighbors_indexes, true);
617

618
619
620
621
622
623
624
625
626
627
628
629
//                            for(int idx_test = 0 ; idx_test < nb_parts_in_cell ; ++idx_test){ // TODO
//                                real_number totest[3] = {8.570442e-01, 7.173084e-02, 8.279754e-03};
//                                if(int(descriptor.toCompute[(idxPart+idx_test)*size_particle_positions + IDX_X]*1000) == int(totest[0]*1000)
//                                        && int(descriptor.toCompute[(idxPart+idx_test)*size_particle_positions + IDX_Y]*1000) == int(totest[1]*1000)
//                                        && int(descriptor.toCompute[(idxPart+idx_test)*size_particle_positions + IDX_Z]*1000) == int(totest[2]*1000)){
//                                    printf("Found a pos %ld\n", idxPart+idx_test);
//                                    printf("pos %e %e %e\n",
//                                           descriptor.toCompute[(idxPart+idx_test)*size_particle_positions + IDX_X],
//                                            descriptor.toCompute[(idxPart+idx_test)*size_particle_positions + IDX_Y],
//                                            descriptor.toCompute[(idxPart+idx_test)*size_particle_positions + IDX_Z]);
//                                }
//                            }
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
630

631
632
633
634
635
636
637
638
639
640
641
                            // with other interval
                            for(size_t idx_neighbor = 0 ; idx_neighbor < nbNeighbors ; ++idx_neighbor){
                                for(size_t idx_2 = 0 ; idx_2 < (*neighbors[idx_neighbor]).size() ; ++idx_2){
                                    for(partsize_t idx_p1 = 0 ; idx_p1 < nb_parts_in_cell ; ++idx_p1){
                                        for(partsize_t idx_p2 = 0 ; idx_p2 < (*neighbors[idx_neighbor])[idx_2].second ; ++idx_p2){
                                            const real_number dist_r2 = compute_distance_r2(descriptor.toCompute[(idxPart+idx_p1)*size_particle_positions + IDX_X],
                                                                                            descriptor.toCompute[(idxPart+idx_p1)*size_particle_positions + IDX_Y],
                                                                                            descriptor.toCompute[(idxPart+idx_p1)*size_particle_positions + IDX_Z],
                                                                                            particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions + IDX_X],
                                                                                            particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions + IDX_Y],
                                                                                            particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions + IDX_Z]);
642
                                            if(dist_r2 < cutoff_radius_compute*cutoff_radius_compute){
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
643
644
645
646
647
648
649
650
                                                in_computer.template compute_interaction<size_particle_positions,size_particle_rhs>(
                                                                    &descriptor.toCompute[(idxPart+idx_p1)*size_particle_positions],
                                                                    &descriptor.results[(idxPart+idx_p1)*size_particle_rhs],
                                                                    &particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions],
                                                                    &particles_current_rhs[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_rhs],
                                                                    dist_r2);
                                            }

651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
//                                            if(inout_index_particles[(*neighbors[idx_neighbor])[idx_2].first+idx_p2] == 356){// TODO
//                                                printf("test interaction between :\n");
//                                                printf("index %ld (%ld) pos %e %e %e\n",
//                                                       (idxPart+idx_p1), -1L,
//                                                       descriptor.toCompute[(idxPart+idx_p1)*size_particle_positions + IDX_X],
//                                                       descriptor.toCompute[(idxPart+idx_p1)*size_particle_positions + IDX_Y],
//                                                       descriptor.toCompute[(idxPart+idx_p1)*size_particle_positions + IDX_Z]);
//                                                printf("index %ld (%ld) pos %e %e %e\n",
//                                                       ((*neighbors[idx_neighbor])[idx_2].first+idx_p2),
//                                                       inout_index_particles[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)],
//                                                       particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions + IDX_X],
//                                                       particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions + IDX_Y],
//                                                       particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions + IDX_Z]);
//                                                printf("Radius = %e (%e)\n", sqrt(dist_r2), dist_r2);
//                                            }
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
                                        }
                                    }
                                }
                            }

                            idxPart += nb_parts_in_cell;
                        }

                        // Send back
                        const int destProc = descriptor.destProc;
                        whatNext.emplace_back(std::pair<Action,int>{RELEASE_BUFFER_PARTICLES, releasedAction.second});
                        mpiRequests.emplace_back();
                        assert(NbParticlesToReceive*size_particle_rhs < std::numeric_limits<int>::max());
                        AssertMpi(MPI_Isend(descriptor.results.get(), int(NbParticlesToReceive*size_particle_rhs),
                                            particles_utils::GetMpiType(real_number()), destProc, TAG_RESULT_PARTICLES,
                                            current_com, &mpiRequests.back()));
                    }
                    //////////////////////////////////////////////////////////////////////
                    /// Computation
                    //////////////////////////////////////////////////////////////////////
                    if(releasedAction.first == RELEASE_BUFFER_PARTICLES){
                        NeighborDescriptor& descriptor = neigDescriptors[releasedAction.second];
                        assert(descriptor.toCompute != nullptr);
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
689
                        assert(descriptor.isRecv);
690
691
692
693
694
                        descriptor.toCompute.release();
                    }
                    //////////////////////////////////////////////////////////////////////
                    /// Merge
                    //////////////////////////////////////////////////////////////////////
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
695
                    if(releasedAction.first == MERGE_PARTICLES){
696
                        NeighborDescriptor& descriptor = neigDescriptors[releasedAction.second];
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
697
                        assert(descriptor.isRecv == false);
698
                        assert(descriptor.toRecvAndMerge != nullptr);
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
699
700
                        in_computer.template reduce_particles_rhs<size_particle_rhs>(&particles_current_rhs[particles_offset_layers[my_nb_cell_levels-descriptor.nbLevelsToExchange]*size_particle_rhs],
                                descriptor.toRecvAndMerge.get(), descriptor.nbParticlesToExchange);
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
                        descriptor.toRecvAndMerge.release();
                    }
                }
            }
        }

        assert(whatNext.size() == 0);
        assert(mpiRequests.size() == 0);

        // Compute self data
        for(const auto& iter_cell : my_tree){
            const std::vector<std::pair<partsize_t,partsize_t>>& intervals = iter_cell.second;

            for(size_t idx_1 = 0 ; idx_1 < intervals.size() ; ++idx_1){
                // self interval
                for(partsize_t idx_p1 = 0 ; idx_p1 < intervals[idx_1].second ; ++idx_p1){
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
//                    if(((inout_index_particles[(intervals[idx_1].first+idx_p1)] == 356))){// TODO
//                        printf("box %ld:\n", iter_cell.first);
//                        printf("intervals.size() %lu:\n", intervals.size());
//                        printf("intervals[idx_1].second %ld:\n", intervals[idx_1].second);
//                        printf("index %ld (%ld) pos %e %e %e\n",
//                               (intervals[idx_1].first+idx_p1), inout_index_particles[(intervals[idx_1].first+idx_p1)],
//                               particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_X],
//                               particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_Y],
//                               particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_Z]);
//                    }
//                    if(((inout_index_particles[(intervals[idx_1].first+idx_p1)] == 547))){// TODO
//                        printf("box %ld:\n", iter_cell.first);
//                        printf("intervals.size() %lu:\n", intervals.size());
//                        printf("intervals[idx_1].second %ld:\n", intervals[idx_1].second);
//                        printf("index %ld (%ld) pos %e %e %e\n",
//                               (intervals[idx_1].first+idx_p1), inout_index_particles[(intervals[idx_1].first+idx_p1)],
//                               particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_X],
//                               particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_Y],
//                               particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_Z]);
//                    }


739
740
741
742
743
744
745
                    for(partsize_t idx_p2 = idx_p1+1 ; idx_p2 < intervals[idx_1].second ; ++idx_p2){
                        const real_number dist_r2 = compute_distance_r2(particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_X],
                                                                        particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_Y],
                                                                        particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_Z],
                                                                        particles_positions[(intervals[idx_1].first+idx_p2)*size_particle_positions + IDX_X],
                                                                        particles_positions[(intervals[idx_1].first+idx_p2)*size_particle_positions + IDX_Y],
                                                                        particles_positions[(intervals[idx_1].first+idx_p2)*size_particle_positions + IDX_Z]);
746
                        if(dist_r2 < cutoff_radius_compute*cutoff_radius_compute){
747
748
749
750
751
752
753
                            in_computer.template compute_interaction<size_particle_positions,size_particle_rhs>(
                                                &particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions],
                                                &particles_current_rhs[(intervals[idx_1].first+idx_p1)*size_particle_rhs],
                                                &particles_positions[(intervals[idx_1].first+idx_p2)*size_particle_positions],
                                                &particles_current_rhs[(intervals[idx_1].first+idx_p2)*size_particle_rhs],
                                                dist_r2);
                        }
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774

//                        if(((inout_index_particles[(intervals[idx_1].first+idx_p1)] == 356)
//                                || inout_index_particles[(intervals[idx_1].first+idx_p2)] == 356)/*
//                                && ((inout_index_particles[(intervals[idx_1].first+idx_p1)] == 1832)
//                                    || inout_index_particles[(intervals[idx_1].first+idx_p2)] == 1832)
//                                && ((inout_index_particles[(intervals[idx_1].first+idx_p1)] == 547)
//                                    || inout_index_particles[(intervals[idx_1].first+idx_p2)] == 547)*/){// TODO
//                            printf("print between :\n");
//                            printf("index %ld (%ld) pos %e %e %e\n",
//                                   (intervals[idx_1].first+idx_p1), inout_index_particles[(intervals[idx_1].first+idx_p1)],
//                                   particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_X],
//                                   particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_Y],
//                                   particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_Z]);
//                            printf("index %ld (%ld) pos %e %e %e\n",
//                                   (intervals[idx_1].first+idx_p2),
//                                   inout_index_particles[(intervals[idx_1].first+idx_p2)],
//                                   particles_positions[(intervals[idx_1].first+idx_p2)*size_particle_positions + IDX_X],
//                                   particles_positions[(intervals[idx_1].first+idx_p2)*size_particle_positions + IDX_Y],
//                                   particles_positions[(intervals[idx_1].first+idx_p2)*size_particle_positions + IDX_Z]);
//                            printf("Radius = %e (%e)\n", sqrt(dist_r2), dist_r2);
//                        }
775
776
777
778
779
780
781
782
783
784
785
786
787
                    }
                }

                // with other interval
                for(size_t idx_2 = idx_1+1 ; idx_2 < intervals.size() ; ++idx_2){
                    for(partsize_t idx_p1 = 0 ; idx_p1 < intervals[idx_1].second ; ++idx_p1){
                        for(partsize_t idx_p2 = 0 ; idx_p2 < intervals[idx_2].second ; ++idx_p2){
                            const real_number dist_r2 = compute_distance_r2(particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_X],
                                                                            particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_Y],
                                                                            particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_Z],
                                                                            particles_positions[(intervals[idx_2].first+idx_p2)*size_particle_positions + IDX_X],
                                                                            particles_positions[(intervals[idx_2].first+idx_p2)*size_particle_positions + IDX_Y],
                                                                            particles_positions[(intervals[idx_2].first+idx_p2)*size_particle_positions + IDX_Z]);
788
                            if(dist_r2 < cutoff_radius_compute*cutoff_radius_compute){
789
790
791
792
793
794
795
                                in_computer.template compute_interaction<size_particle_positions,size_particle_rhs>(
                                                    &particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions],
                                                    &particles_current_rhs[(intervals[idx_1].first+idx_p1)*size_particle_rhs],
                                                    &particles_positions[(intervals[idx_2].first+idx_p2)*size_particle_positions],
                                                    &particles_current_rhs[(intervals[idx_2].first+idx_p2)*size_particle_rhs],
                                                    dist_r2);
                            }
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816

//                            if(((inout_index_particles[(intervals[idx_1].first+idx_p1)] == 356)
//                                    || inout_index_particles[(intervals[idx_2].first+idx_p2)] == 356)/*
//                                    && ((inout_index_particles[(intervals[idx_1].first+idx_p1)] == 547)
//                                        || inout_index_particles[(intervals[idx_2].first+idx_p2)] == 547)
//                                    && ((inout_index_particles[(intervals[idx_1].first+idx_p1)] == 1832)
//                                        || inout_index_particles[(intervals[idx_2].first+idx_p2)] == 1832)*/){// TODO
//                                printf("print between :\n");
//                                printf("index %ld (%ld) pos %e %e %e\n",
//                                       (intervals[idx_1].first+idx_p1), inout_index_particles[(intervals[idx_1].first+idx_p1)],
//                                       particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_X],
//                                       particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_Y],
//                                       particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_Z]);
//                                printf("index %ld (%ld) pos %e %e %e\n",
//                                       (intervals[idx_2].first+idx_p2),
//                                       inout_index_particles[(intervals[idx_2].first+idx_p2)],
//                                       particles_positions[(intervals[idx_2].first+idx_p2)*size_particle_positions + IDX_X],
//                                       particles_positions[(intervals[idx_2].first+idx_p2)*size_particle_positions + IDX_Y],
//                                       particles_positions[(intervals[idx_2].first+idx_p2)*size_particle_positions + IDX_Z]);
//                                printf("Radius = %e (%e)\n", sqrt(dist_r2), dist_r2);
//                            }
817
818
819
820
821
822
823
824
                        }
                    }
                }
            }


            const long int currenct_cell_idx = iter_cell.first;
            const std::vector<std::pair<partsize_t,partsize_t>>* neighbors[27];
825
826
827
            long int neighbors_indexes[27];
            const int nbNeighbors = my_tree.getNeighbors(currenct_cell_idx, neighbors, neighbors_indexes, false);

828
829
830
831
832
833
//            if(((currenct_cell_idx == 785))){// TODO
//                printf("box %ld:\n", iter_cell.first);
//                printf("intervals.size() %lu:\n", intervals.size());
//                printf("nbNeighbors %d\n",nbNeighbors);
//            }

834
835
836
            for(size_t idx_1 = 0 ; idx_1 < intervals.size() ; ++idx_1){
                // with other interval
                for(size_t idx_neighbor = 0 ; idx_neighbor < nbNeighbors ; ++idx_neighbor){
837
838
839
840
841
842
843
844
845
846
                    if(currenct_cell_idx < neighbors_indexes[idx_neighbor]){
                        for(size_t idx_2 = 0 ; idx_2 < (*neighbors[idx_neighbor]).size() ; ++idx_2){
                            for(partsize_t idx_p1 = 0 ; idx_p1 < intervals[idx_1].second ; ++idx_p1){
                                for(partsize_t idx_p2 = 0 ; idx_p2 < (*neighbors[idx_neighbor])[idx_2].second ; ++idx_p2){
                                    const real_number dist_r2 = compute_distance_r2(particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_X],
                                                                                    particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_Y],
                                                                                    particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_Z],
                                                                                    particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions + IDX_X],
                                                                                    particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions + IDX_Y],
                                                                                    particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions + IDX_Z]);
847
                                    if(dist_r2 < cutoff_radius_compute*cutoff_radius_compute){
848
849
850
851
852
853
854
                                        in_computer.template compute_interaction<size_particle_positions,size_particle_rhs>(
                                                            &particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions],
                                                            &particles_current_rhs[(intervals[idx_1].first+idx_p1)*size_particle_rhs],
                                                            &particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions],
                                                            &particles_current_rhs[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_rhs],
                                                            dist_r2);
                                    }
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875

//                                    if(((inout_index_particles[(intervals[idx_1].first+idx_p1)] == 356)
//                                            || inout_index_particles[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)] == 356)/*
//                                        && (inout_index_particles[(intervals[idx_1].first+idx_p1)] == 547)
//                                            || inout_index_particles[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)] == 547
//                                        && (inout_index_particles[(intervals[idx_1].first+idx_p1)] == 1832)
//                                            || inout_index_particles[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)] == 1832*/){// TODO
//                                        printf("print between :\n");
//                                        printf("index %ld (%ld) pos %e %e %e\n",
//                                               (intervals[idx_1].first+idx_p1), inout_index_particles[(intervals[idx_1].first+idx_p1)],
//                                               particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_X],
//                                               particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_Y],
//                                               particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_Z]);
//                                        printf("index %ld (%ld) pos %e %e %e\n",
//                                               ((*neighbors[idx_neighbor])[idx_2].first+idx_p2),
//                                               inout_index_particles[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)],
//                                               particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions + IDX_X],
//                                               particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions + IDX_Y],
//                                               particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions + IDX_Z]);
//                                        printf("Radius = %e (%e)\n", sqrt(dist_r2), dist_r2);
//                                    }
876
877
878
879
880
881
882
883
884
885
886
                                }
                            }
                        }
                    }
                }
            }
        }
    }
};

#endif