DNS.py 49.5 KB
Newer Older
Cristian Lalescu's avatar
Cristian Lalescu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#######################################################################
#                                                                     #
#  Copyright 2015 Max Planck Institute                                #
#                 for Dynamics and Self-Organization                  #
#                                                                     #
#  This file is part of bfps.                                         #
#                                                                     #
#  bfps is free software: you can redistribute it and/or modify       #
#  it under the terms of the GNU General Public License as published  #
#  by the Free Software Foundation, either version 3 of the License,  #
#  or (at your option) any later version.                             #
#                                                                     #
#  bfps is distributed in the hope that it will be useful,            #
#  but WITHOUT ANY WARRANTY; without even the implied warranty of     #
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the      #
#  GNU General Public License for more details.                       #
#                                                                     #
#  You should have received a copy of the GNU General Public License  #
#  along with bfps.  If not, see <http://www.gnu.org/licenses/>       #
#                                                                     #
# Contact: Cristian.Lalescu@ds.mpg.de                                 #
#                                                                     #
#######################################################################



import os
import sys
import shutil
import subprocess
import argparse
import h5py
import math
import numpy as np
import warnings

import bfps
from ._code import _code
39
from bfps import tools
Cristian Lalescu's avatar
Cristian Lalescu committed
40
41
42
43
44
45
46
47

class DNS(_code):
    """This class is meant to stitch together the C++ code into a final source file,
    compile it, and handle all job launching.
    """
    def __init__(
            self,
            work_dir = './',
48
49
50
51
52
53
54
55
56
57
58
59
            simname = 'test'):
        _code.__init__(
                self,
                work_dir = work_dir,
                simname = simname)
        self.host_info = {'type'        : 'cluster',
                          'environment' : None,
                          'deltanprocs' : 1,
                          'queue'       : '',
                          'mail_address': '',
                          'mail_events' : None}
        self.generate_default_parameters()
Chichi Lalescu's avatar
Chichi Lalescu committed
60
        self.statistics = {}
61
62
63
64
        return None
    def set_precision(
            self,
            fluid_dtype):
Cristian Lalescu's avatar
Cristian Lalescu committed
65
66
67
68
69
70
71
72
73
74
        if fluid_dtype in [np.float32, np.float64]:
            self.fluid_dtype = fluid_dtype
        elif fluid_dtype in ['single', 'double']:
            if fluid_dtype == 'single':
                self.fluid_dtype = np.dtype(np.float32)
            elif fluid_dtype == 'double':
                self.fluid_dtype = np.dtype(np.float64)
        self.rtype = self.fluid_dtype
        if self.rtype == np.float32:
            self.ctype = np.dtype(np.complex64)
75
            self.C_field_dtype = 'float'
76
            self.fluid_precision = 'single'
Cristian Lalescu's avatar
Cristian Lalescu committed
77
78
        elif self.rtype == np.float64:
            self.ctype = np.dtype(np.complex128)
79
            self.C_field_dtype = 'double'
80
81
            self.fluid_precision = 'double'
        return None
82
83
    def write_src(
            self):
Cristian Lalescu's avatar
Cristian Lalescu committed
84
85
86
87
88
        self.version_message = (
                '/***********************************************************************\n' +
                '* this code automatically generated by bfps\n' +
                '* version {0}\n'.format(bfps.__version__) +
                '***********************************************************************/\n\n\n')
89
90
91
92
93
        self.include_list = [
                '"base.hpp"',
                '"scope_timer.hpp"',
                '"fftw_interface.hpp"',
                '"full_code/main_code.hpp"',
94
                '<cmath>',
95
96
97
98
99
100
101
102
103
                '<iostream>',
                '<hdf5.h>',
                '<string>',
                '<cstring>',
                '<fftw3-mpi.h>',
                '<omp.h>',
                '<cfenv>',
                '<cstdlib>',
                '"full_code/{0}.hpp"\n'.format(self.dns_type)]
Cristian Lalescu's avatar
Cristian Lalescu committed
104
        self.main = """
105
106
107
108
109
110
111
112
            int main(int argc, char *argv[])
            {{
                bool fpe = (
                    (getenv("BFPS_FPE_OFF") == nullptr) ||
                    (getenv("BFPS_FPE_OFF") != std::string("TRUE")));
                return main_code< {0} >(argc, argv, fpe);
            }}
            """.format(self.dns_type + '<{0}>'.format(self.C_field_dtype))
113
114
115
116
117
118
119
        self.includes = '\n'.join(
                ['#include ' + hh
                 for hh in self.include_list])
        with open(self.name + '.cpp', 'w') as outfile:
            outfile.write(self.version_message + '\n\n')
            outfile.write(self.includes + '\n\n')
            outfile.write(self.main + '\n')
120
121
122
        return None
    def generate_default_parameters(self):
        # these parameters are relevant for all DNS classes
Chichi Lalescu's avatar
Chichi Lalescu committed
123
        self.parameters['fftw_plan_rigor'] = 'FFTW_ESTIMATE'
124
125
126
127
128
129
130
        self.parameters['dealias_type'] = int(1)
        self.parameters['dkx'] = float(1.0)
        self.parameters['dky'] = float(1.0)
        self.parameters['dkz'] = float(1.0)
        self.parameters['niter_todo'] = int(8)
        self.parameters['niter_stat'] = int(1)
        self.parameters['niter_out'] = int(8)
131
        self.parameters['checkpoints_per_file'] = int(1)
132
        self.parameters['dt'] = float(0.01)
133
        self.parameters['nu'] = float(0.1)
134
        self.parameters['fmode'] = int(1)
135
        self.parameters['famplitude'] = float(0.5)
Chichi Lalescu's avatar
Chichi Lalescu committed
136
        self.parameters['friction_coefficient'] = float(0.5)
Cristian Lalescu's avatar
Cristian Lalescu committed
137
138
        self.parameters['energy'] = float(0.5)
        self.parameters['injection_rate'] = float(0.4)
139
140
        self.parameters['fk0'] = float(2.0)
        self.parameters['fk1'] = float(4.0)
Cristian Lalescu's avatar
Cristian Lalescu committed
141
        self.parameters['forcing_type'] = 'fixed_energy_injection_rate'
142
143
144
145
        self.parameters['histogram_bins'] = int(256)
        self.parameters['max_velocity_estimate'] = float(1)
        self.parameters['max_vorticity_estimate'] = float(1)
        # parameters specific to particle version
146
147
148
149
150
151
        self.NSVEp_extra_parameters = {}
        self.NSVEp_extra_parameters['niter_part'] = int(1)
        self.NSVEp_extra_parameters['nparticles'] = int(10)
        self.NSVEp_extra_parameters['tracers0_integration_steps'] = int(4)
        self.NSVEp_extra_parameters['tracers0_neighbours'] = int(1)
        self.NSVEp_extra_parameters['tracers0_smoothness'] = int(1)
152
153
154
155
156
        self.NSVEp_extra_parameters['tracers0_enable_p2p'] = int(0)
        self.NSVEp_extra_parameters['tracers0_enable_inner'] = int(0)
        self.NSVEp_extra_parameters['tracers0_enable_vorticity_omega'] = int(0)
        self.NSVEp_extra_parameters['tracers0_cutoff'] = float(1)
        self.NSVEp_extra_parameters['tracers0_inner_v0'] = float(1)
Cristian Lalescu's avatar
Cristian Lalescu committed
157
        self.NSVEp_extra_parameters['tracers0_lambda'] = float(1)
Cristian Lalescu's avatar
Cristian Lalescu committed
158
        #self.extra_parameters = {}
159
        #for key in ['NSVE', 'NSVE_no_output', 'NSVEparticles', 'NSVEparticles_no_output', 'NSVEcomplex_particles']:
Cristian Lalescu's avatar
Cristian Lalescu committed
160
        #    self.extra_parameters[key] = {}
161
        #for key in ['NSVEparticles', 'NSVEparticles_no_output', 'NSVEcomplex_particles']:
Cristian Lalescu's avatar
Cristian Lalescu committed
162
        #    self.extra_parameters[key].update(self.NSVEp_extra_parameters)
Cristian Lalescu's avatar
Cristian Lalescu committed
163
        return None
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
    def get_kspace(self):
        kspace = {}
        if self.parameters['dealias_type'] == 1:
            kMx = self.parameters['dkx']*(self.parameters['nx']//2 - 1)
            kMy = self.parameters['dky']*(self.parameters['ny']//2 - 1)
            kMz = self.parameters['dkz']*(self.parameters['nz']//2 - 1)
        else:
            kMx = self.parameters['dkx']*(self.parameters['nx']//3 - 1)
            kMy = self.parameters['dky']*(self.parameters['ny']//3 - 1)
            kMz = self.parameters['dkz']*(self.parameters['nz']//3 - 1)
        kspace['kM'] = max(kMx, kMy, kMz)
        kspace['dk'] = min(self.parameters['dkx'],
                           self.parameters['dky'],
                           self.parameters['dkz'])
        nshells = int(kspace['kM'] / kspace['dk']) + 2
        kspace['nshell'] = np.zeros(nshells, dtype = np.int64)
        kspace['kshell'] = np.zeros(nshells, dtype = np.float64)
        kspace['kx'] = np.arange( 0,
                                  self.parameters['nx']//2 + 1).astype(np.float64)*self.parameters['dkx']
        kspace['ky'] = np.arange(-self.parameters['ny']//2 + 1,
                                  self.parameters['ny']//2 + 1).astype(np.float64)*self.parameters['dky']
        kspace['ky'] = np.roll(kspace['ky'], self.parameters['ny']//2+1)
        kspace['kz'] = np.arange(-self.parameters['nz']//2 + 1,
                                  self.parameters['nz']//2 + 1).astype(np.float64)*self.parameters['dkz']
        kspace['kz'] = np.roll(kspace['kz'], self.parameters['nz']//2+1)
        return kspace
    def get_data_file_name(self):
        return os.path.join(self.work_dir, self.simname + '.h5')
    def get_data_file(self):
        return h5py.File(self.get_data_file_name(), 'r')
    def get_particle_file_name(self):
        return os.path.join(self.work_dir, self.simname + '_particles.h5')
    def get_particle_file(self):
        return h5py.File(self.get_particle_file_name(), 'r')
198
199
200
201
    def get_cache_file_name(self):
        return os.path.join(self.work_dir, self.simname + '_cache.h5')
    def get_cache_file(self):
        return h5py.File(self.get_cache_file_name(), 'r')
202
    def get_postprocess_file_name(self):
203
        return self.get_cache_file_name()
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
    def get_postprocess_file(self):
        return h5py.File(self.get_postprocess_file_name(), 'r')
    def compute_statistics(self, iter0 = 0, iter1 = None):
        """Run basic postprocessing on raw data.
        The energy spectrum :math:`E(t, k)` and the enstrophy spectrum
        :math:`\\frac{1}{2}\omega^2(t, k)` are computed from the

        .. math::

            \sum_{k \\leq \\|\\mathbf{k}\\| \\leq k+dk}\\hat{u_i} \\hat{u_j}^*, \\hskip .5cm
            \sum_{k \\leq \\|\\mathbf{k}\\| \\leq k+dk}\\hat{\omega_i} \\hat{\\omega_j}^*

        tensors, and the enstrophy spectrum is also used to
        compute the dissipation :math:`\\varepsilon(t)`.
        These basic quantities are stored in a newly created HDF5 file,
219
        ``simname_cache.h5``.
220
221
222
        """
        if len(list(self.statistics.keys())) > 0:
            return None
Cristian Lalescu's avatar
Cristian Lalescu committed
223
224
225
226
227
228
229
230
231
        if not os.path.exists(self.get_data_file_name()):
            if os.path.exists(self.get_cache_file_name()):
                self.read_parameters(fname = self.get_cache_file_name())
                with self.get_cache_file() as pp_file:
                    for k in ['t',
                              'energy(t)',
                              'energy(k)',
                              'enstrophy(t)',
                              'enstrophy(k)',
232
                              'R_ij(t)',
Cristian Lalescu's avatar
Cristian Lalescu committed
233
234
                              'vel_max(t)',
                              'renergy(t)']:
235
                        if k in pp_file.keys():
Cristian Lalescu's avatar
Cristian Lalescu committed
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
                            self.statistics[k] = pp_file[k].value
                    self.statistics['kM'] = pp_file['kspace/kM'].value
                    self.statistics['dk'] = pp_file['kspace/dk'].value
                    self.statistics['kshell'] = pp_file['kspace/kshell'].value
                    self.statistics['nshell'] = pp_file['kspace/nshell'].value
        else:
            self.read_parameters()
            with self.get_data_file() as data_file:
                if 'moments' not in data_file['statistics'].keys():
                    return None
                iter0 = min((data_file['statistics/moments/velocity'].shape[0] *
                             self.parameters['niter_stat']-1),
                            iter0)
                if type(iter1) == type(None):
                    iter1 = data_file['iteration'].value
                else:
                    iter1 = min(data_file['iteration'].value, iter1)
                ii0 = iter0 // self.parameters['niter_stat']
                ii1 = iter1 // self.parameters['niter_stat']
                self.statistics['kshell'] = data_file['kspace/kshell'].value
                self.statistics['nshell'] = data_file['kspace/nshell'].value
                for kk in [-1, -2]:
                    if (self.statistics['kshell'][kk] == 0):
                        self.statistics['kshell'][kk] = np.nan
                self.statistics['kM'] = data_file['kspace/kM'].value
                self.statistics['dk'] = data_file['kspace/dk'].value
                computation_needed = True
                pp_file = h5py.File(self.get_postprocess_file_name(), 'a')
                if not ('parameters' in pp_file.keys()):
                    data_file.copy('parameters', pp_file)
                    data_file.copy('kspace', pp_file)
                if 'ii0' in pp_file.keys():
                    computation_needed =  not (ii0 == pp_file['ii0'].value and
                                               ii1 == pp_file['ii1'].value)
                    if computation_needed:
                        for k in ['t', 'vel_max(t)', 'renergy(t)',
                                  'energy(t)', 'enstrophy(t)',
                                  'energy(k)', 'enstrophy(k)',
                                  'energy(t, k)',
                                  'enstrophy(t, k)',
                                  'R_ij(t)',
                                  'ii0', 'ii1', 'iter0', 'iter1']:
                            if k in pp_file.keys():
                                del pp_file[k]
                if computation_needed:
                    pp_file['iter0'] = iter0
                    pp_file['iter1'] = iter1
                    pp_file['ii0'] = ii0
                    pp_file['ii1'] = ii1
                    pp_file['t'] = (self.parameters['dt']*
                                    self.parameters['niter_stat']*
                                    (np.arange(ii0, ii1+1).astype(np.float)))
                    phi_ij = data_file['statistics/spectra/velocity_velocity'][ii0:ii1+1]
                    pp_file['R_ij(t)'] = np.sum(phi_ij, axis = 1)
                    energy_tk = (
                        phi_ij[:, :, 0, 0] +
                        phi_ij[:, :, 1, 1] +
                        phi_ij[:, :, 2, 2])/2
                    pp_file['energy(t)'] = np.sum(energy_tk, axis = 1)
                    pp_file['energy(k)'] = np.mean(energy_tk, axis = 0)*(4*np.pi*self.statistics['kshell']**2) / (self.statistics['dk']*self.statistics['nshell'])
                    enstrophy_tk = (
                        data_file['statistics/spectra/vorticity_vorticity'][ii0:ii1+1, :, 0, 0] +
                        data_file['statistics/spectra/vorticity_vorticity'][ii0:ii1+1, :, 1, 1] +
                        data_file['statistics/spectra/vorticity_vorticity'][ii0:ii1+1, :, 2, 2])/2
                    pp_file['enstrophy(t)'] = np.sum(enstrophy_tk, axis = 1)
                    pp_file['enstrophy(k)'] = np.mean(enstrophy_tk, axis = 0)*(4*np.pi*self.statistics['kshell']**2) / (self.statistics['dk']*self.statistics['nshell'])
                    pp_file['vel_max(t)'] = data_file['statistics/moments/velocity'][ii0:ii1+1, 9, 3]
                    pp_file['renergy(t)'] = data_file['statistics/moments/velocity'][ii0:ii1+1, 2, 3]/2
        for k in ['t',
                  'energy(t)',
                  'energy(k)',
                  'enstrophy(t)',
                  'enstrophy(k)',
                  'R_ij(t)',
                  'vel_max(t)',
                  'renergy(t)']:
            if k in pp_file.keys():
                self.statistics[k] = pp_file[k].value
        # sanity check --- Parseval theorem check
        assert(np.max(np.abs(
                self.statistics['renergy(t)'] -
                self.statistics['energy(t)']) / self.statistics['energy(t)']) < 1e-5)
        self.compute_time_averages()
319
        return None
320
321
    def compute_Reynolds_stress_invariants(
            self):
Cristian Lalescu's avatar
Cristian Lalescu committed
322
323
324
        """
        see Choi and Lumley, JFM v436 p59 (2001)
        """
325
326
327
328
329
330
331
332
        Rij = self.statistics['R_ij(t)']
        Rij /= (2*self.statistics['energy(t)'][:, None, None])
        Rij[:, 0, 0] -= 1./3
        Rij[:, 1, 1] -= 1./3
        Rij[:, 2, 2] -= 1./3
        self.statistics['I2(t)'] = np.sqrt(np.einsum('...ij,...ij', Rij, Rij, optimize = True) / 6)
        self.statistics['I3(t)'] = np.cbrt(np.einsum('...ij,...jk,...ki', Rij, Rij, Rij, optimize = True) / 6)
        return None
333
334
335
336
    def compute_time_averages(self):
        """Compute easy stats.

        Further computation of statistics based on the contents of
337
        ``simname_cache.h5``.
338
339
340
341
342
343
        Standard quantities are as follows
        (consistent with [Ishihara]_):

        .. math::

            U_{\\textrm{int}}(t) = \\sqrt{\\frac{2E(t)}{3}}, \\hskip .5cm
344
345
346
            L_{\\textrm{int}} = \\frac{\pi}{2U_{int}^2} \\int \\frac{dk}{k} E(k), \\hskip .5cm
            T_{\\textrm{int}} =
            \\frac{L_{\\textrm{int}}}{U_{\\textrm{int}}}
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365

            \\eta_K = \\left(\\frac{\\nu^3}{\\varepsilon}\\right)^{1/4}, \\hskip .5cm
            \\tau_K = \\left(\\frac{\\nu}{\\varepsilon}\\right)^{1/2}, \\hskip .5cm
            \\lambda = \\sqrt{\\frac{15 \\nu U_{\\textrm{int}}^2}{\\varepsilon}}

            Re = \\frac{U_{\\textrm{int}} L_{\\textrm{int}}}{\\nu}, \\hskip
            .5cm
            R_{\\lambda} = \\frac{U_{\\textrm{int}} \\lambda}{\\nu}

        .. [Ishihara] T. Ishihara et al,
                      *Small-scale statistics in high-resolution direct numerical
                      simulation of turbulence: Reynolds number dependence of
                      one-point velocity gradient statistics*.
                      J. Fluid Mech.,
                      **592**, 335-366, 2007
        """
        self.statistics['Uint(t)'] = np.sqrt(2*self.statistics['energy(t)'] / 3)
        for key in ['energy',
                    'enstrophy',
366
367
                    'mean_trS2',
                    'Uint']:
368
369
            if key + '(t)' in self.statistics.keys():
                self.statistics[key] = np.average(self.statistics[key + '(t)'], axis = 0)
370
        self.statistics['vel_max'] = np.max(self.statistics['vel_max(t)'])
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
        for suffix in ['', '(t)']:
            self.statistics['diss'    + suffix] = (self.parameters['nu'] *
                                                   self.statistics['enstrophy' + suffix]*2)
            self.statistics['etaK'    + suffix] = (self.parameters['nu']**3 /
                                                   self.statistics['diss' + suffix])**.25
            self.statistics['tauK'    + suffix] =  (self.parameters['nu'] /
                                                    self.statistics['diss' + suffix])**.5
            self.statistics['lambda' + suffix] = (15 * self.parameters['nu'] *
                                                  self.statistics['Uint' + suffix]**2 /
                                                  self.statistics['diss' + suffix])**.5
            self.statistics['Rlambda' + suffix] = (self.statistics['Uint' + suffix] *
                                                   self.statistics['lambda' + suffix] /
                                                   self.parameters['nu'])
            self.statistics['kMeta' + suffix] = (self.statistics['kM'] *
                                                 self.statistics['etaK' + suffix])
            if self.parameters['dealias_type'] == 1:
                self.statistics['kMeta' + suffix] *= 0.8
Cristian Lalescu's avatar
Cristian Lalescu committed
388
        self.statistics['Lint'] = ((np.pi /
389
390
391
392
393
394
                                    (2*self.statistics['Uint']**2)) *
                                   np.nansum(self.statistics['energy(k)'] /
                                                self.statistics['kshell']))
        self.statistics['Re'] = (self.statistics['Uint'] *
                                 self.statistics['Lint'] /
                                 self.parameters['nu'])
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
        self.statistics['Tint'] = self.statistics['Lint'] / self.statistics['Uint']
        self.statistics['Taylor_microscale'] = self.statistics['lambda']
        return None
    def set_plt_style(
            self,
            style = {'dashes' : (None, None)}):
        self.style.update(style)
        return None
    def convert_complex_from_binary(
            self,
            field_name = 'vorticity',
            iteration = 0,
            file_name = None):
        """read the Fourier representation of a vector field.

        Read the binary file containing iteration ``iteration`` of the
        field ``field_name``, and write it in a ``.h5`` file.
        """
        data = np.memmap(
                os.path.join(self.work_dir,
                             self.simname + '_{0}_i{1:0>5x}'.format('c' + field_name, iteration)),
                dtype = self.ctype,
                mode = 'r',
                shape = (self.parameters['ny'],
                         self.parameters['nz'],
                         self.parameters['nx']//2+1,
                         3))
        if type(file_name) == type(None):
            file_name = self.simname + '_{0}_i{1:0>5x}.h5'.format('c' + field_name, iteration)
            file_name = os.path.join(self.work_dir, file_name)
        f = h5py.File(file_name, 'a')
        f[field_name + '/complex/{0}'.format(iteration)] = data
        f.close()
        return None
    def write_par(
            self,
            iter0 = 0,
432
433
            particle_ic = None,
            particles_off = False):
434
435
436
        assert (self.parameters['niter_todo'] % self.parameters['niter_stat'] == 0)
        assert (self.parameters['niter_todo'] % self.parameters['niter_out']  == 0)
        assert (self.parameters['niter_out']  % self.parameters['niter_stat'] == 0)
437
        if self.dns_type in ['NSVEparticles_no_output', 'NSVEcomplex_particles', 'NSVEparticles']:
438
439
            assert (self.parameters['niter_todo'] % self.parameters['niter_part'] == 0)
            assert (self.parameters['niter_out']  % self.parameters['niter_part'] == 0)
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
        _code.write_par(self, iter0 = iter0)
        with h5py.File(self.get_data_file_name(), 'r+') as ofile:
            ofile['bfps_info/exec_name'] = self.name
            kspace = self.get_kspace()
            for k in kspace.keys():
                ofile['kspace/' + k] = kspace[k]
            nshells = kspace['nshell'].shape[0]
            kspace = self.get_kspace()
            nshells = kspace['nshell'].shape[0]
            vec_stat_datasets = ['velocity', 'vorticity']
            scal_stat_datasets = []
            for k in vec_stat_datasets:
                time_chunk = 2**20//(8*3*3*nshells)
                time_chunk = max(time_chunk, 1)
                ofile.create_dataset('statistics/spectra/' + k + '_' + k,
                                     (1, nshells, 3, 3),
                                     chunks = (time_chunk, nshells, 3, 3),
                                     maxshape = (None, nshells, 3, 3),
                                     dtype = np.float64)
                time_chunk = 2**20//(8*4*10)
                time_chunk = max(time_chunk, 1)
                a = ofile.create_dataset('statistics/moments/' + k,
                                     (1, 10, 4),
                                     chunks = (time_chunk, 10, 4),
                                     maxshape = (None, 10, 4),
                                     dtype = np.float64)
                time_chunk = 2**20//(8*4*self.parameters['histogram_bins'])
                time_chunk = max(time_chunk, 1)
                ofile.create_dataset('statistics/histograms/' + k,
                                     (1,
                                      self.parameters['histogram_bins'],
                                      4),
                                     chunks = (time_chunk,
                                               self.parameters['histogram_bins'],
                                               4),
                                     maxshape = (None,
                                                 self.parameters['histogram_bins'],
                                                 4),
                                     dtype = np.int64)
            ofile['checkpoint'] = int(0)
480
        if (self.dns_type in ['NSVE', 'NSVE_no_output']) or particles_off:
481
482
483
484
485
486
487
488
489
490
491
            return None

        if type(particle_ic) == type(None):
            pbase_shape = (self.parameters['nparticles'],)
            number_of_particles = self.parameters['nparticles']
        else:
            pbase_shape = particle_ic.shape[:-1]
            assert(particle_ic.shape[-1] == 3)
            number_of_particles = 1
            for val in pbase_shape[1:]:
                number_of_particles *= val
492
        ncomponents = 3
493
        if self.dns_type in ['NSVEcomplex_particles']:
494
            ncomponents = 6
495
496
497
498
499
500
501
502
503
504
        with h5py.File(self.get_checkpoint_0_fname(), 'a') as ofile:
            s = 0
            ofile.create_group('tracers{0}'.format(s))
            ofile.create_group('tracers{0}/rhs'.format(s))
            ofile.create_group('tracers{0}/state'.format(s))
            ofile['tracers{0}/rhs'.format(s)].create_dataset(
                    '0',
                    shape = (
                        (self.parameters['tracers{0}_integration_steps'.format(s)],) +
                        pbase_shape +
505
                        (ncomponents,)),
506
507
508
509
510
                    dtype = np.float)
            ofile['tracers{0}/state'.format(s)].create_dataset(
                    '0',
                    shape = (
                        pbase_shape +
511
                        (ncomponents,)),
512
513
                    dtype = np.float)
        return None
514
    def job_parser_arguments(
515
516
            self,
            parser):
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
        parser.add_argument(
                '--ncpu',
                type = int,
                dest = 'ncpu',
                default = -1)
        parser.add_argument(
                '--np', '--nprocesses',
                metavar = 'NPROCESSES',
                help = 'number of mpi processes to use',
                type = int,
                dest = 'nb_processes',
                default = 4)
        parser.add_argument(
                '--ntpp', '--nthreads-per-process',
                type = int,
                dest = 'nb_threads_per_process',
                metavar = 'NTHREADS_PER_PROCESS',
                help = 'number of threads to use per MPI process',
                default = 1)
536
537
538
539
        parser.add_argument(
                '--no-debug',
                action = 'store_true',
                dest = 'no_debug')
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
        parser.add_argument(
                '--no-submit',
                action = 'store_true',
                dest = 'no_submit')
        parser.add_argument(
                '--environment',
                type = str,
                dest = 'environment',
                default = None)
        parser.add_argument(
                '--minutes',
                type = int,
                dest = 'minutes',
                default = 5,
                help = 'If environment supports it, this is the requested wall-clock-limit.')
        parser.add_argument(
               '--njobs',
               type = int, dest = 'njobs',
               default = 1)
        return None
    def simulation_parser_arguments(
            self,
            parser):
        parser.add_argument(
                '--simname',
                type = str, dest = 'simname',
                default = 'test')
        parser.add_argument(
568
               '-n', '--grid-size',
569
570
571
572
573
               type = int,
               dest = 'n',
               default = 32,
               metavar = 'N',
               help = 'code is run by default in a grid of NxNxN')
574
575
576
577
578
579
580
581
        for coord in ['x', 'y', 'z']:
            parser.add_argument(
                   '--L{0}'.format(coord), '--box-length-{0}'.format(coord),
                   type = float,
                   dest = 'L{0}'.format(coord),
                   default = 2.0,
                   metavar = 'length{0}'.format(coord),
                   help = 'length of the box in the {0} direction will be `length{0} x pi`'.format(coord))
582
583
584
585
586
587
588
589
590
        parser.add_argument(
                '--wd',
                type = str, dest = 'work_dir',
                default = './')
        parser.add_argument(
                '--precision',
                choices = ['single', 'double'],
                type = str,
                default = 'single')
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
        parser.add_argument(
                '--src-wd',
                type = str,
                dest = 'src_work_dir',
                default = '')
        parser.add_argument(
                '--src-simname',
                type = str,
                dest = 'src_simname',
                default = '')
        parser.add_argument(
                '--src-iteration',
                type = int,
                dest = 'src_iteration',
                default = 0)
        parser.add_argument(
               '--kMeta',
               type = float,
               dest = 'kMeta',
               default = 2.0)
        parser.add_argument(
               '--dtfactor',
               type = float,
               dest = 'dtfactor',
               default = 0.5,
               help = 'dt is computed as DTFACTOR / N')
617
618
619
620
        return None
    def particle_parser_arguments(
            self,
            parser):
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
        parser.add_argument(
               '--particle-rand-seed',
               type = int,
               dest = 'particle_rand_seed',
               default = None)
        parser.add_argument(
               '--pclouds',
               type = int,
               dest = 'pclouds',
               default = 1,
               help = ('number of particle clouds. Particle "clouds" '
                       'consist of particles distributed according to '
                       'pcloud-type.'))
        parser.add_argument(
                '--pcloud-type',
                choices = ['random-cube',
                           'regular-cube'],
                dest = 'pcloud_type',
                default = 'random-cube')
        parser.add_argument(
               '--particle-cloud-size',
               type = float,
               dest = 'particle_cloud_size',
               default = 2*np.pi)
        return None
646
647
648
649
650
651
652
653
654
655
656
657
658
659
    def add_parser_arguments(
            self,
            parser):
        subparsers = parser.add_subparsers(
                dest = 'DNS_class',
                help = 'type of simulation to run')
        subparsers.required = True
        parser_NSVE = subparsers.add_parser(
                'NSVE',
                help = 'plain Navier-Stokes vorticity formulation')
        self.simulation_parser_arguments(parser_NSVE)
        self.job_parser_arguments(parser_NSVE)
        self.parameters_to_parser_arguments(parser_NSVE)

660
661
662
663
664
665
666
667
668
669
        parser_NSVE_no_output = subparsers.add_parser(
                'NSVE_no_output',
                help = 'plain Navier-Stokes vorticity formulation, checkpoints are NOT SAVED')
        self.simulation_parser_arguments(parser_NSVE_no_output)
        self.job_parser_arguments(parser_NSVE_no_output)
        self.parameters_to_parser_arguments(parser_NSVE_no_output)

        parser_NSVEparticles_no_output = subparsers.add_parser(
                'NSVEparticles_no_output',
                help = 'plain Navier-Stokes vorticity formulation, with basic fluid tracers, checkpoints are NOT SAVED')
670
671
672
673

        parser_NSVEp2 = subparsers.add_parser(
                'NSVEparticles',
                help = 'plain Navier-Stokes vorticity formulation, with basic fluid tracers')
674
675

        parser_NSVEp2p = subparsers.add_parser(
676
677
                'NSVEcomplex_particles',
                help = 'plain Navier-Stokes vorticity formulation, with oriented active particles')
Cristian Lalescu's avatar
Cristian Lalescu committed
678

679
680
681
682
683
        parser_NSVEp_extra = subparsers.add_parser(
                'NSVEp_extra_sampling',
                help = 'plain Navier-Stokes vorticity formulation, with basic fluid tracers, that sample velocity gradient, as well as pressure and its derivatives.')

        for parser in ['NSVEparticles_no_output', 'NSVEp2', 'NSVEp2p', 'NSVEp_extra']:
Cristian Lalescu's avatar
Cristian Lalescu committed
684
685
686
687
688
689
690
            eval('self.simulation_parser_arguments({0})'.format('parser_' + parser))
            eval('self.job_parser_arguments({0})'.format('parser_' + parser))
            eval('self.particle_parser_arguments({0})'.format('parser_' + parser))
            eval('self.parameters_to_parser_arguments({0})'.format('parser_' + parser))
            eval('self.parameters_to_parser_arguments('
                    'parser_{0},'
                    'self.NSVEp_extra_parameters)'.format(parser))
691
        return None
692
693
    def prepare_launch(
            self,
694
695
            args = [],
            extra_parameters = None):
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
        """Set up reasonable parameters.

        With the default Lundgren forcing applied in the band [2, 4],
        we can estimate the dissipation, therefore we can estimate
        :math:`k_M \\eta_K` and constrain the viscosity.

        In brief, the command line parameter :math:`k_M \\eta_K` is
        used in the following formula for :math:`\\nu` (:math:`N` is the
        number of real space grid points per coordinate):

        .. math::

            \\nu = \\left(\\frac{2 k_M \\eta_K}{N} \\right)^{4/3}

        With this choice, the average dissipation :math:`\\varepsilon`
        will be close to 0.4, and the integral scale velocity will be
        close to 0.77, yielding the approximate value for the Taylor
        microscale and corresponding Reynolds number:

        .. math::

            \\lambda \\approx 4.75\\left(\\frac{2 k_M \\eta_K}{N} \\right)^{4/6}, \\hskip .5in
            R_\\lambda \\approx 3.7 \\left(\\frac{N}{2 k_M \\eta_K} \\right)^{4/6}

        """
        opt = _code.prepare_launch(self, args = args)
722
723
724
725
        self.set_precision(opt.precision)
        self.dns_type = opt.DNS_class
        self.name = self.dns_type + '-' + self.fluid_precision + '-v' + bfps.__version__
        # merge parameters if needed
726
        if self.dns_type in ['NSVEparticles', 'NSVEcomplex_particles', 'NSVEparticles_no_output', 'NSVEp_extra_sampling']:
727
728
            for k in self.NSVEp_extra_parameters.keys():
                self.parameters[k] = self.NSVEp_extra_parameters[k]
729
730
731
732
        if type(extra_parameters) != type(None):
            if self.dns_type in extra_parameters.keys():
                for k in extra_parameters[self.dns_type].keys():
                    self.parameters[k] = extra_parameters[self.dns_type][k]
733
734
735
736
        if ((self.parameters['niter_todo'] % self.parameters['niter_out']) != 0):
            self.parameters['niter_out'] = self.parameters['niter_todo']
        if len(opt.src_work_dir) == 0:
            opt.src_work_dir = os.path.realpath(opt.work_dir)
737
738
739
740
        if type(opt.dkx) == type(None):
            opt.dkx = 2. / opt.Lx
        if type(opt.dky) == type(None):
            opt.dky = 2. / opt.Ly
Cristian Lalescu's avatar
Cristian Lalescu committed
741
        if type(opt.dkz) == type(None):
742
            opt.dkz = 2. / opt.Lz
743
744
745
746
747
748
        if type(opt.nx) == type(None):
            opt.nx = opt.n
        if type(opt.ny) == type(None):
            opt.ny = opt.n
        if type(opt.nz) == type(None):
            opt.nz = opt.n
749
750
751
752
753
754
        if type(opt.fk0) == type(None):
            opt.fk0 = self.parameters['fk0']
        if type(opt.fk1) == type(None):
            opt.fk1 = self.parameters['fk1']
        if type(opt.injection_rate) == type(None):
            opt.injection_rate = self.parameters['injection_rate']
Cristian Lalescu's avatar
Cristian Lalescu committed
755
        if type(opt.dealias_type) == type(None):
756
            opt.dealias_type = self.parameters['dealias_type']
757
758
759
760
761
        if (opt.nx > opt.n or
            opt.ny > opt.n or
            opt.nz > opt.n):
            opt.n = min(opt.nx, opt.ny, opt.nz)
            print("Warning: '-n' parameter changed to minimum of nx, ny, nz. This affects the computation of nu.")
Chichi Lalescu's avatar
Chichi Lalescu committed
762
        self.parameters['dt'] = (opt.dtfactor / opt.n)
763
        self.parameters['nu'] = (opt.kMeta * 2 / opt.n)**(4./3)
Cristian Lalescu's avatar
Cristian Lalescu committed
764
765
766
767
768
        # check value of kMax
        kM = opt.n * 0.5
        if opt.dealias_type == 1:
            kM *= 0.8
        # tweak forcing/viscosity based on forcint type
Cristian Lalescu's avatar
Cristian Lalescu committed
769
        if opt.forcing_type == 'linear':
770
771
772
773
774
            # custom famplitude for 288 and 576
            if opt.n == 288:
                self.parameters['famplitude'] = 0.45
            elif opt.n == 576:
                self.parameters['famplitude'] = 0.47
Cristian Lalescu's avatar
Cristian Lalescu committed
775
        elif opt.forcing_type == 'fixed_energy_injection_rate':
776
777
            # use the fact that mean dissipation rate is equal to injection rate
            self.parameters['nu'] = (
Cristian Lalescu's avatar
Cristian Lalescu committed
778
                    opt.injection_rate *
779
                    (opt.kMeta / kM)**4)**(1./3)
780
        elif opt.forcing_type == 'fixed_energy':
Cristian Lalescu's avatar
Cristian Lalescu committed
781
782
            kf = 1. / (1./opt.fk0 +
                       1./opt.fk1)
783
784
785
786
            self.parameters['nu'] = (
                    (opt.kMeta / kM)**(4./3) *
                    (np.pi / kf)**(1./3) *
                    (2*self.parameters['energy'] / 3)**0.5)
787
788
789
790
        if type(opt.checkpoints_per_file) == type(None):
            # hardcoded FFTW complex representation size
            field_size = 3*(opt.nx+2)*opt.ny*opt.nz*self.fluid_dtype.itemsize
            checkpoint_size = field_size
791
            if self.dns_type in ['NSVEparticles', 'NSVEcomplex_particles', 'NSVEparticles_no_output', 'NSVEp_extra_sampling']:
792
793
794
                rhs_size = self.parameters['tracers0_integration_steps']
                if type(opt.tracers0_integration_steps) != type(None):
                    rhs_size = opt.tracers0_integration_steps
795
796
797
798
                nparticles = opt.nparticles
                if type(nparticles) == type(None):
                    nparticles = self.NSVEp_extra_parameters['nparticles']
                particle_size = (1+rhs_size)*3*nparticles*8
799
800
801
                checkpoint_size += particle_size
            if checkpoint_size < 1e9:
                opt.checkpoints_per_file = int(1e9 / checkpoint_size)
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
        self.pars_from_namespace(opt)
        return opt
    def launch(
            self,
            args = [],
            **kwargs):
        opt = self.prepare_launch(args = args)
        self.launch_jobs(opt = opt, **kwargs)
        return None
    def get_checkpoint_0_fname(self):
        return os.path.join(
                    self.work_dir,
                    self.simname + '_checkpoint_0.h5')
    def generate_tracer_state(
            self,
            rseed = None,
818
819
820
821
            species = 0):
        with h5py.File(self.get_checkpoint_0_fname(), 'a') as data_file:
            dset = data_file[
                'tracers{0}/state/0'.format(species)]
822
823
            if not type(rseed) == type(None):
                np.random.seed(rseed)
824
825
826
            nn = self.parameters['nparticles']
            cc = int(0)
            batch_size = int(1e6)
827
828
829
830
831
832
            def get_random_phases(npoints):
                return np.random.random(
                            (npoints, 3))*2*np.pi
            def get_random_versors(npoints):
                bla = np.random.normal(
                        size = (npoints, 3))
833
                bla  /= np.sum(bla**2, axis = 1)[:, None]**.5
834
                return bla
835
836
            while nn > 0:
                if nn > batch_size:
837
838
839
                    dset[cc*batch_size:(cc+1)*batch_size, :3] = get_random_phases(batch_size)
                    if dset.shape[1] == 6:
                        dset[cc*batch_size:(cc+1)*batch_size, 3:] = get_random_versors(batch_size)
840
841
                    nn -= batch_size
                else:
842
843
844
                    dset[cc*batch_size:cc*batch_size+nn, :3] = get_random_phases(nn)
                    if dset.shape[1] == 6:
                        dset[cc*batch_size:cc*batch_size+nn, 3:] = get_random_versors(nn)
845
846
847
                    nn = 0
                cc += 1
        return None
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
    def generate_vector_field(
            self,
            rseed = 7547,
            spectra_slope = 1.,
            amplitude = 1.,
            iteration = 0,
            field_name = 'vorticity',
            write_to_file = False,
            # to switch to constant field, use generate_data_3D_uniform
            # for scalar_generator
            scalar_generator = tools.generate_data_3D):
        """generate vector field.

        The generated field is not divergence free, but it has the proper
        shape.

        :param rseed: seed for random number generator
        :param spectra_slope: spectrum of field will look like k^(-p)
        :param amplitude: all amplitudes are multiplied with this value
        :param iteration: the field is written at this iteration
        :param field_name: the name of the field being generated
        :param write_to_file: should we write the field to file?
        :param scalar_generator: which function to use for generating the
            individual components.
            Possible values: bfps.tools.generate_data_3D,
            bfps.tools.generate_data_3D_uniform
        :type rseed: int
        :type spectra_slope: float
        :type amplitude: float
        :type iteration: int
        :type field_name: str
        :type write_to_file: bool
        :type scalar_generator: function

        :returns: ``Kdata``, a complex valued 4D ``numpy.array`` that uses the
            transposed FFTW layout.
            Kdata[ky, kz, kx, i] is the amplitude of mode (kx, ky, kz) for
            the i-th component of the field.
            (i.e. x is the fastest index and z the slowest index in the
            real-space representation).
        """
        np.random.seed(rseed)
        Kdata00 = scalar_generator(
891
892
893
                self.parameters['nz'],
                self.parameters['ny'],
                self.parameters['nx'],
894
895
896
                p = spectra_slope,
                amplitude = amplitude).astype(self.ctype)
        Kdata01 = scalar_generator(
897
898
899
                self.parameters['nz'],
                self.parameters['ny'],
                self.parameters['nx'],
900
901
902
                p = spectra_slope,
                amplitude = amplitude).astype(self.ctype)
        Kdata02 = scalar_generator(
903
904
905
                self.parameters['nz'],
                self.parameters['ny'],
                self.parameters['nx'],
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
                p = spectra_slope,
                amplitude = amplitude).astype(self.ctype)
        Kdata0 = np.zeros(
                Kdata00.shape + (3,),
                Kdata00.dtype)
        Kdata0[..., 0] = Kdata00
        Kdata0[..., 1] = Kdata01
        Kdata0[..., 2] = Kdata02
        Kdata1 = tools.padd_with_zeros(
                Kdata0,
                self.parameters['nz'],
                self.parameters['ny'],
                self.parameters['nx'])
        if write_to_file:
            Kdata1.tofile(
                    os.path.join(self.work_dir,
                                 self.simname + "_c{0}_i{1:0>5x}".format(field_name, iteration)))
        return Kdata1
924
925
926
927
928
929
930
931
932
933
934
    def copy_complex_field(
            self,
            src_file_name,
            src_dset_name,
            dst_file,
            dst_dset_name,
            make_link = True):
        # I define a min_shape thingie, but for now I only trust this method for
        # the case of increasing/decreasing by the same factor in all directions.
        # in principle we could write something more generic, but i'm not sure
        # how complicated that would be
935
936
        dst_shape = (self.parameters['ny'],
                     self.parameters['nz'],
937
938
939
940
                     (self.parameters['nx']+2) // 2,
                     3)
        src_file = h5py.File(src_file_name, 'r')
        if (src_file[src_dset_name].shape == dst_shape):
941
942
943
            dst_file[dst_dset_name] = h5py.ExternalLink(
                    src_file_name,
                    src_dset_name)
944
945
946
947
948
        else:
            min_shape = (min(dst_shape[0], src_file[src_dset_name].shape[0]),
                         min(dst_shape[1], src_file[src_dset_name].shape[1]),
                         min(dst_shape[2], src_file[src_dset_name].shape[2]),
                         3)
949
            src_shape = src_file[src_dset_name].shape
950
951
952
            dst_file.create_dataset(
                    dst_dset_name,
                    shape = dst_shape,
953
954
                    dtype = np.dtype(self.ctype),
                    fillvalue = complex(0))
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
            for kz in range(min_shape[0]//2):
                dst_file[dst_dset_name][kz,:min_shape[1]//2, :min_shape[2]] = \
                        src_file[src_dset_name][kz, :min_shape[1]//2, :min_shape[2]]
                dst_file[dst_dset_name][kz,
                                        dst_shape[1] - min_shape[1]//2+1:,
                                        :min_shape[2]] = \
                        src_file[src_dset_name][kz,
                                                src_shape[1] - min_shape[1]//2+1,
                                                :min_shape[2]]
                if kz > 0:
                    dst_file[dst_dset_name][-kz,:min_shape[1]//2, :min_shape[2]] = \
                            src_file[src_dset_name][-kz, :min_shape[1]//2, :min_shape[2]]
                    dst_file[dst_dset_name][-kz,
                                            dst_shape[1] - min_shape[1]//2+1:,
                                            :min_shape[2]] = \
                            src_file[src_dset_name][-kz,
                                                    src_shape[1] - min_shape[1]//2+1,
                                                    :min_shape[2]]
973
        return None
974
975
976
977
978
979
980
981
982
    def generate_particle_data(
            self,
            opt = None):
        if self.parameters['nparticles'] > 0:
            self.generate_tracer_state(
                    species = 0,
                    rseed = opt.particle_rand_seed)
            if not os.path.exists(self.get_particle_file_name()):
                with h5py.File(self.get_particle_file_name(), 'w') as particle_file:
Cristian Lalescu's avatar
Cristian Lalescu committed
983
                    particle_file.create_group('tracers0/position')
984
985
                    particle_file.create_group('tracers0/velocity')
                    particle_file.create_group('tracers0/acceleration')
986
                    if self.dns_type in ['NSVEcomplex_particles']:
987
                        particle_file.create_group('tracers0/orientation')
988
                        particle_file.create_group('tracers0/velocity_gradient')
989
990
991
992
993
                    if self.dns_type in ['NSVEp_extra_sampling']:
                        particle_file.create_group('tracers0/velocity_gradient')
                        particle_file.create_group('tracers0/pressure')
                        particle_file.create_group('tracers0/pressure_gradient')
                        particle_file.create_group('tracers0/pressure_Hessian')
994
        return None
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
    def launch_jobs(
            self,
            opt = None,
            particle_initial_condition = None):
        if not os.path.exists(os.path.join(self.work_dir, self.simname + '.h5')):
            # take care of fields' initial condition
            if not os.path.exists(self.get_checkpoint_0_fname()):
                f = h5py.File(self.get_checkpoint_0_fname(), 'w')
                if len(opt.src_simname) > 0:
                    source_cp = 0
                    src_file = 'not_a_file'
                    while True:
                        src_file = os.path.join(
                            os.path.realpath(opt.src_work_dir),
                            opt.src_simname + '_checkpoint_{0}.h5'.format(source_cp))
                        f0 = h5py.File(src_file, 'r')
                        if '{0}'.format(opt.src_iteration) in f0['vorticity/complex'].keys():
                            f0.close()
                            break
                        source_cp += 1
1015
                    self.copy_complex_field(
1016
                            src_file,
1017
1018
1019
                            'vorticity/complex/{0}'.format(opt.src_iteration),
                            f,
                            'vorticity/complex/{0}'.format(0))
1020
1021
1022
1023
1024
1025
1026
                else:
                    data = self.generate_vector_field(
                           write_to_file = False,
                           spectra_slope = 2.0,
                           amplitude = 0.05)
                    f['vorticity/complex/{0}'.format(0)] = data
                f.close()
1027
            ## take care of particles' initial condition
1028
            #if self.dns_type in ['NSVEparticles', 'NSVEparticles_no_output']:
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
            #    if opt.pclouds > 1:
            #        np.random.seed(opt.particle_rand_seed)
            #        if opt.pcloud_type == 'random-cube':
            #            particle_initial_condition = (
            #                np.random.random((opt.pclouds, 1, 3))*2*np.pi +
            #                np.random.random((1, self.parameters['nparticles'], 3))*opt.particle_cloud_size)
            #        elif opt.pcloud_type == 'regular-cube':
            #            onedarray = np.linspace(
            #                    -opt.particle_cloud_size/2,
            #                    opt.particle_cloud_size/2,
            #                    self.parameters['nparticles'])
            #            particle_initial_condition = np.zeros(
            #                    (opt.pclouds,
            #                     self.parameters['nparticles'],
            #                     self.parameters['nparticles'],
            #                     self.parameters['nparticles'], 3),
            #                    dtype = np.float64)
            #            particle_initial_condition[:] = \
            #                np.random.random((opt.pclouds, 1, 1, 1, 3))*2*np.pi
            #            particle_initial_condition[..., 0] += onedarray[None, None, None, :]
            #            particle_initial_condition[..., 1] += onedarray[None, None, :, None]
            #            particle_initial_condition[..., 2] += onedarray[None, :, None, None]
1051
            self.write_par(
1052
                    particle_ic = None)
1053
            if self.dns_type in ['NSVEparticles', 'NSVEcomplex_particles', 'NSVEparticles_no_output', 'NSVEp_extra_sampling']:
1054
                self.generate_particle_data(opt = opt)
1055
1056
1057
1058
1059
1060
        self.run(
                nb_processes = opt.nb_processes,
                nb_threads_per_process = opt.nb_threads_per_process,
                njobs = opt.njobs,
                hours = opt.minutes // 60,
                minutes = opt.minutes % 60,
1061
1062
                no_submit = opt.no_submit,
                no_debug = opt.no_debug)
1063
        return None
Cristian Lalescu's avatar
Cristian Lalescu committed
1064