DNS.py 49.7 KB
Newer Older
1
2
3
4
################################################################################
#                                                                              #
#  Copyright 2015-2019 Max Planck Institute for Dynamics and Self-Organization #
#                                                                              #
5
#  This file is part of TurTLE.                                                  #
6
#                                                                              #
7
#  TurTLE is free software: you can redistribute it and/or modify                #
8
9
10
11
#  it under the terms of the GNU General Public License as published           #
#  by the Free Software Foundation, either version 3 of the License,           #
#  or (at your option) any later version.                                      #
#                                                                              #
12
#  TurTLE is distributed in the hope that it will be useful,                     #
13
14
15
16
17
#  but WITHOUT ANY WARRANTY; without even the implied warranty of              #
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the               #
#  GNU General Public License for more details.                                #
#                                                                              #
#  You should have received a copy of the GNU General Public License           #
18
#  along with TurTLE.  If not, see <http://www.gnu.org/licenses/>                #
19
20
21
22
#                                                                              #
# Contact: Cristian.Lalescu@ds.mpg.de                                          #
#                                                                              #
################################################################################
Cristian Lalescu's avatar
Cristian Lalescu committed
23
24
25
26
27
28
29
30
31
32
33
34
35



import os
import sys
import shutil
import subprocess
import argparse
import h5py
import math
import numpy as np
import warnings

36
import TurTLE
Cristian Lalescu's avatar
Cristian Lalescu committed
37
from ._code import _code
38
from TurTLE import tools
Cristian Lalescu's avatar
Cristian Lalescu committed
39
40
41
42
43
44
45
46

class DNS(_code):
    """This class is meant to stitch together the C++ code into a final source file,
    compile it, and handle all job launching.
    """
    def __init__(
            self,
            work_dir = './',
47
48
49
50
51
52
            simname = 'test'):
        _code.__init__(
                self,
                work_dir = work_dir,
                simname = simname)
        self.generate_default_parameters()
Chichi Lalescu's avatar
Chichi Lalescu committed
53
        self.statistics = {}
54
55
56
57
        return None
    def set_precision(
            self,
            fluid_dtype):
Cristian Lalescu's avatar
Cristian Lalescu committed
58
59
60
61
62
63
64
65
66
67
        if fluid_dtype in [np.float32, np.float64]:
            self.fluid_dtype = fluid_dtype
        elif fluid_dtype in ['single', 'double']:
            if fluid_dtype == 'single':
                self.fluid_dtype = np.dtype(np.float32)
            elif fluid_dtype == 'double':
                self.fluid_dtype = np.dtype(np.float64)
        self.rtype = self.fluid_dtype
        if self.rtype == np.float32:
            self.ctype = np.dtype(np.complex64)
68
            self.C_field_dtype = 'float'
69
            self.fluid_precision = 'single'
Cristian Lalescu's avatar
Cristian Lalescu committed
70
71
        elif self.rtype == np.float64:
            self.ctype = np.dtype(np.complex128)
72
            self.C_field_dtype = 'double'
73
74
            self.fluid_precision = 'double'
        return None
75
76
    def write_src(
            self):
Cristian Lalescu's avatar
Cristian Lalescu committed
77
78
        self.version_message = (
                '/***********************************************************************\n' +
79
80
                '* this code automatically generated by TurTLE\n' +
                '* version {0}\n'.format(TurTLE.__version__) +
Cristian Lalescu's avatar
Cristian Lalescu committed
81
                '***********************************************************************/\n\n\n')
82
83
84
85
86
        self.include_list = [
                '"base.hpp"',
                '"scope_timer.hpp"',
                '"fftw_interface.hpp"',
                '"full_code/main_code.hpp"',
87
                '<cmath>',
88
89
90
91
92
93
94
95
96
                '<iostream>',
                '<hdf5.h>',
                '<string>',
                '<cstring>',
                '<fftw3-mpi.h>',
                '<omp.h>',
                '<cfenv>',
                '<cstdlib>',
                '"full_code/{0}.hpp"\n'.format(self.dns_type)]
Cristian Lalescu's avatar
Cristian Lalescu committed
97
        self.main = """
98
99
100
            int main(int argc, char *argv[])
            {{
                bool fpe = (
Cristian Lalescu's avatar
Cristian Lalescu committed
101
102
                    (getenv("TURTLE_FPE_OFF") == nullptr) ||
                    (getenv("TURTLE_FPE_OFF") != std::string("TRUE")));
103
104
105
                return main_code< {0} >(argc, argv, fpe);
            }}
            """.format(self.dns_type + '<{0}>'.format(self.C_field_dtype))
106
107
108
109
110
111
112
        self.includes = '\n'.join(
                ['#include ' + hh
                 for hh in self.include_list])
        with open(self.name + '.cpp', 'w') as outfile:
            outfile.write(self.version_message + '\n\n')
            outfile.write(self.includes + '\n\n')
            outfile.write(self.main + '\n')
113
114
115
        return None
    def generate_default_parameters(self):
        # these parameters are relevant for all DNS classes
Chichi Lalescu's avatar
Chichi Lalescu committed
116
        self.parameters['fftw_plan_rigor'] = 'FFTW_ESTIMATE'
117
118
119
120
121
122
123
        self.parameters['dealias_type'] = int(1)
        self.parameters['dkx'] = float(1.0)
        self.parameters['dky'] = float(1.0)
        self.parameters['dkz'] = float(1.0)
        self.parameters['niter_todo'] = int(8)
        self.parameters['niter_stat'] = int(1)
        self.parameters['niter_out'] = int(8)
124
        self.parameters['checkpoints_per_file'] = int(1)
125
        self.parameters['dt'] = float(0.01)
126
        self.parameters['nu'] = float(0.1)
127
        self.parameters['fmode'] = int(1)
128
        self.parameters['famplitude'] = float(0.5)
Chichi Lalescu's avatar
Chichi Lalescu committed
129
        self.parameters['friction_coefficient'] = float(0.5)
Cristian Lalescu's avatar
Cristian Lalescu committed
130
131
        self.parameters['energy'] = float(0.5)
        self.parameters['injection_rate'] = float(0.4)
132
133
        self.parameters['fk0'] = float(2.0)
        self.parameters['fk1'] = float(4.0)
Cristian Lalescu's avatar
Cristian Lalescu committed
134
        self.parameters['forcing_type'] = 'fixed_energy_injection_rate'
135
136
137
138
        self.parameters['histogram_bins'] = int(256)
        self.parameters['max_velocity_estimate'] = float(1)
        self.parameters['max_vorticity_estimate'] = float(1)
        # parameters specific to particle version
139
140
        self.NSVEp_extra_parameters = {}
        self.NSVEp_extra_parameters['niter_part'] = int(1)
141
142
        self.NSVEp_extra_parameters['niter_part_fine_period'] = int(10)
        self.NSVEp_extra_parameters['niter_part_fine_duration'] = int(0)
143
144
145
146
        self.NSVEp_extra_parameters['nparticles'] = int(10)
        self.NSVEp_extra_parameters['tracers0_integration_steps'] = int(4)
        self.NSVEp_extra_parameters['tracers0_neighbours'] = int(1)
        self.NSVEp_extra_parameters['tracers0_smoothness'] = int(1)
147
148
149
150
151
        self.NSVEp_extra_parameters['tracers0_enable_p2p'] = int(0)
        self.NSVEp_extra_parameters['tracers0_enable_inner'] = int(0)
        self.NSVEp_extra_parameters['tracers0_enable_vorticity_omega'] = int(0)
        self.NSVEp_extra_parameters['tracers0_cutoff'] = float(1)
        self.NSVEp_extra_parameters['tracers0_inner_v0'] = float(1)
Cristian Lalescu's avatar
Cristian Lalescu committed
152
        self.NSVEp_extra_parameters['tracers0_lambda'] = float(1)
Cristian Lalescu's avatar
Cristian Lalescu committed
153
        #self.extra_parameters = {}
154
        #for key in ['NSVE', 'NSVE_no_output', 'NSVEparticles', 'NSVEparticles_no_output', 'NSVEcomplex_particles']:
Cristian Lalescu's avatar
Cristian Lalescu committed
155
        #    self.extra_parameters[key] = {}
156
        #for key in ['NSVEparticles', 'NSVEparticles_no_output', 'NSVEcomplex_particles']:
Cristian Lalescu's avatar
Cristian Lalescu committed
157
        #    self.extra_parameters[key].update(self.NSVEp_extra_parameters)
Cristian Lalescu's avatar
Cristian Lalescu committed
158
        return None
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
    def get_kspace(self):
        kspace = {}
        if self.parameters['dealias_type'] == 1:
            kMx = self.parameters['dkx']*(self.parameters['nx']//2 - 1)
            kMy = self.parameters['dky']*(self.parameters['ny']//2 - 1)
            kMz = self.parameters['dkz']*(self.parameters['nz']//2 - 1)
        else:
            kMx = self.parameters['dkx']*(self.parameters['nx']//3 - 1)
            kMy = self.parameters['dky']*(self.parameters['ny']//3 - 1)
            kMz = self.parameters['dkz']*(self.parameters['nz']//3 - 1)
        kspace['kM'] = max(kMx, kMy, kMz)
        kspace['dk'] = min(self.parameters['dkx'],
                           self.parameters['dky'],
                           self.parameters['dkz'])
        nshells = int(kspace['kM'] / kspace['dk']) + 2
        kspace['nshell'] = np.zeros(nshells, dtype = np.int64)
        kspace['kshell'] = np.zeros(nshells, dtype = np.float64)
        kspace['kx'] = np.arange( 0,
                                  self.parameters['nx']//2 + 1).astype(np.float64)*self.parameters['dkx']
        kspace['ky'] = np.arange(-self.parameters['ny']//2 + 1,
                                  self.parameters['ny']//2 + 1).astype(np.float64)*self.parameters['dky']
        kspace['ky'] = np.roll(kspace['ky'], self.parameters['ny']//2+1)
        kspace['kz'] = np.arange(-self.parameters['nz']//2 + 1,
                                  self.parameters['nz']//2 + 1).astype(np.float64)*self.parameters['dkz']
        kspace['kz'] = np.roll(kspace['kz'], self.parameters['nz']//2+1)
        return kspace
    def get_data_file_name(self):
        return os.path.join(self.work_dir, self.simname + '.h5')
    def get_data_file(self):
        return h5py.File(self.get_data_file_name(), 'r')
    def get_particle_file_name(self):
        return os.path.join(self.work_dir, self.simname + '_particles.h5')
    def get_particle_file(self):
        return h5py.File(self.get_particle_file_name(), 'r')
193
194
195
196
    def get_cache_file_name(self):
        return os.path.join(self.work_dir, self.simname + '_cache.h5')
    def get_cache_file(self):
        return h5py.File(self.get_cache_file_name(), 'r')
197
    def get_postprocess_file_name(self):
198
        return self.get_cache_file_name()
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
    def get_postprocess_file(self):
        return h5py.File(self.get_postprocess_file_name(), 'r')
    def compute_statistics(self, iter0 = 0, iter1 = None):
        """Run basic postprocessing on raw data.
        The energy spectrum :math:`E(t, k)` and the enstrophy spectrum
        :math:`\\frac{1}{2}\omega^2(t, k)` are computed from the

        .. math::

            \sum_{k \\leq \\|\\mathbf{k}\\| \\leq k+dk}\\hat{u_i} \\hat{u_j}^*, \\hskip .5cm
            \sum_{k \\leq \\|\\mathbf{k}\\| \\leq k+dk}\\hat{\omega_i} \\hat{\\omega_j}^*

        tensors, and the enstrophy spectrum is also used to
        compute the dissipation :math:`\\varepsilon(t)`.
        These basic quantities are stored in a newly created HDF5 file,
214
        ``simname_cache.h5``.
215
216
217
        """
        if len(list(self.statistics.keys())) > 0:
            return None
Cristian Lalescu's avatar
Cristian Lalescu committed
218
219
220
        if not os.path.exists(self.get_data_file_name()):
            if os.path.exists(self.get_cache_file_name()):
                self.read_parameters(fname = self.get_cache_file_name())
Cristian Lalescu's avatar
Cristian Lalescu committed
221
222
223
224
225
226
227
228
                pp_file = self.get_cache_file()
                for k in ['t',
                          'energy(t)',
                          'energy(k)',
                          'enstrophy(t)',
                          'enstrophy(k)',
                          'R_ij(t)',
                          'vel_max(t)',
229
230
                          'renergy(t)',
                          'renstrophy(t)']:
Cristian Lalescu's avatar
Cristian Lalescu committed
231
232
233
234
235
236
                    if k in pp_file.keys():
                        self.statistics[k] = pp_file[k][...]
                self.statistics['kM'] = pp_file['kspace/kM'][...]
                self.statistics['dk'] = pp_file['kspace/dk'][...]
                self.statistics['kshell'] = pp_file['kspace/kshell'][...]
                self.statistics['nshell'] = pp_file['kspace/nshell'][...]
Cristian Lalescu's avatar
Cristian Lalescu committed
237
238
239
240
241
242
243
244
245
        else:
            self.read_parameters()
            with self.get_data_file() as data_file:
                if 'moments' not in data_file['statistics'].keys():
                    return None
                iter0 = min((data_file['statistics/moments/velocity'].shape[0] *
                             self.parameters['niter_stat']-1),
                            iter0)
                if type(iter1) == type(None):
246
                    iter1 = data_file['iteration'][...]
Cristian Lalescu's avatar
Cristian Lalescu committed
247
                else:
248
                    iter1 = min(data_file['iteration'][...], iter1)
Cristian Lalescu's avatar
Cristian Lalescu committed
249
250
                ii0 = iter0 // self.parameters['niter_stat']
                ii1 = iter1 // self.parameters['niter_stat']
251
252
                self.statistics['kshell'] = data_file['kspace/kshell'][...]
                self.statistics['nshell'] = data_file['kspace/nshell'][...]
Cristian Lalescu's avatar
Cristian Lalescu committed
253
254
255
                for kk in [-1, -2]:
                    if (self.statistics['kshell'][kk] == 0):
                        self.statistics['kshell'][kk] = np.nan
256
257
                self.statistics['kM'] = data_file['kspace/kM'][...]
                self.statistics['dk'] = data_file['kspace/dk'][...]
Cristian Lalescu's avatar
Cristian Lalescu committed
258
259
260
261
262
263
                computation_needed = True
                pp_file = h5py.File(self.get_postprocess_file_name(), 'a')
                if not ('parameters' in pp_file.keys()):
                    data_file.copy('parameters', pp_file)
                    data_file.copy('kspace', pp_file)
                if 'ii0' in pp_file.keys():
264
265
                    computation_needed =  not (ii0 == pp_file['ii0'][...] and
                                               ii1 == pp_file['ii1'][...])
Cristian Lalescu's avatar
Cristian Lalescu committed
266
                    if computation_needed:
267
268
269
                        for k in ['t', 'vel_max(t)',
                                  'renergy(t)',
                                  'renstrophy(t)',
Cristian Lalescu's avatar
Cristian Lalescu committed
270
271
272
273
274
275
276
277
278
                                  'energy(t)', 'enstrophy(t)',
                                  'energy(k)', 'enstrophy(k)',
                                  'energy(t, k)',
                                  'enstrophy(t, k)',
                                  'R_ij(t)',
                                  'ii0', 'ii1', 'iter0', 'iter1']:
                            if k in pp_file.keys():
                                del pp_file[k]
                if computation_needed:
Cristian Lalescu's avatar
Cristian Lalescu committed
279
                    #TODO figure out whether normalization is sane or not
Cristian Lalescu's avatar
Cristian Lalescu committed
280
281
282
283
284
285
286
                    pp_file['iter0'] = iter0
                    pp_file['iter1'] = iter1
                    pp_file['ii0'] = ii0
                    pp_file['ii1'] = ii1
                    pp_file['t'] = (self.parameters['dt']*
                                    self.parameters['niter_stat']*
                                    (np.arange(ii0, ii1+1).astype(np.float)))
Cristian Lalescu's avatar
Cristian Lalescu committed
287
288
289
                    # we have an extra division by shell_width because of the Dirac delta restricting integration to the shell
                    phi_ij = data_file['statistics/spectra/velocity_velocity'][ii0:ii1+1] / self.statistics['dk']
                    pp_file['R_ij(t)'] = np.sum(phi_ij*self.statistics['dk'], axis = 1)
Cristian Lalescu's avatar
Cristian Lalescu committed
290
291
292
293
                    energy_tk = (
                        phi_ij[:, :, 0, 0] +
                        phi_ij[:, :, 1, 1] +
                        phi_ij[:, :, 2, 2])/2
Cristian Lalescu's avatar
Cristian Lalescu committed
294
295
296
297
298
                    pp_file['energy(t)'] = np.sum(energy_tk*self.statistics['dk'], axis = 1)
                    # normalization factor is (4 pi * shell_width * kshell^2) / (nmodes in shell * dkx*dky*dkz)
                    norm_factor = (4*np.pi*self.statistics['dk']*self.statistics['kshell']**2) / (self.parameters['dkx']*self.parameters['dky']*self.parameters['dkz']*self.statistics['nshell'])
                    pp_file['energy(k)'] = np.mean(energy_tk, axis = 0)*norm_factor
                    phi_vorticity_ij = data_file['statistics/spectra/vorticity_vorticity'][ii0:ii1+1] / self.statistics['dk']
Cristian Lalescu's avatar
Cristian Lalescu committed
299
                    enstrophy_tk = (
300
301
302
                        phi_vorticity_ij[:, :, 0, 0] +
                        phi_vorticity_ij[:, :, 1, 1] +
                        phi_vorticity_ij[:, :, 2, 2])/2
Cristian Lalescu's avatar
Cristian Lalescu committed
303
304
                    pp_file['enstrophy(t)'] = np.sum(enstrophy_tk*self.statistics['dk'], axis = 1)
                    pp_file['enstrophy(k)'] = np.mean(enstrophy_tk, axis = 0)*norm_factor
Cristian Lalescu's avatar
Cristian Lalescu committed
305
306
                    pp_file['vel_max(t)'] = data_file['statistics/moments/velocity'][ii0:ii1+1, 9, 3]
                    pp_file['renergy(t)'] = data_file['statistics/moments/velocity'][ii0:ii1+1, 2, 3]/2
307
                    pp_file['renstrophy(t)'] = data_file['statistics/moments/vorticity'][ii0:ii1+1, 2, 3]/2
Cristian Lalescu's avatar
Cristian Lalescu committed
308
309
310
311
312
313
314
        for k in ['t',
                  'energy(t)',
                  'energy(k)',
                  'enstrophy(t)',
                  'enstrophy(k)',
                  'R_ij(t)',
                  'vel_max(t)',
315
316
                  'renergy(t)',
                  'renstrophy(t)']:
Cristian Lalescu's avatar
Cristian Lalescu committed
317
            if k in pp_file.keys():
318
                self.statistics[k] = pp_file[k][...]
Cristian Lalescu's avatar
Cristian Lalescu committed
319
320
321
322
        # sanity check --- Parseval theorem check
        assert(np.max(np.abs(
                self.statistics['renergy(t)'] -
                self.statistics['energy(t)']) / self.statistics['energy(t)']) < 1e-5)
323
324
325
        assert(np.max(np.abs(
                self.statistics['renstrophy(t)'] -
                self.statistics['enstrophy(t)']) / self.statistics['enstrophy(t)']) < 1e-5)
Cristian Lalescu's avatar
Cristian Lalescu committed
326
        self.compute_time_averages()
327
        return None
328
329
    def compute_Reynolds_stress_invariants(
            self):
Cristian Lalescu's avatar
Cristian Lalescu committed
330
331
332
        """
        see Choi and Lumley, JFM v436 p59 (2001)
        """
333
334
335
336
337
338
339
340
        Rij = self.statistics['R_ij(t)']
        Rij /= (2*self.statistics['energy(t)'][:, None, None])
        Rij[:, 0, 0] -= 1./3
        Rij[:, 1, 1] -= 1./3
        Rij[:, 2, 2] -= 1./3
        self.statistics['I2(t)'] = np.sqrt(np.einsum('...ij,...ij', Rij, Rij, optimize = True) / 6)
        self.statistics['I3(t)'] = np.cbrt(np.einsum('...ij,...jk,...ki', Rij, Rij, Rij, optimize = True) / 6)
        return None
341
342
343
344
    def compute_time_averages(self):
        """Compute easy stats.

        Further computation of statistics based on the contents of
345
        ``simname_cache.h5``.
346
347
348
349
350
351
        Standard quantities are as follows
        (consistent with [Ishihara]_):

        .. math::

            U_{\\textrm{int}}(t) = \\sqrt{\\frac{2E(t)}{3}}, \\hskip .5cm
352
353
354
            L_{\\textrm{int}} = \\frac{\pi}{2U_{int}^2} \\int \\frac{dk}{k} E(k), \\hskip .5cm
            T_{\\textrm{int}} =
            \\frac{L_{\\textrm{int}}}{U_{\\textrm{int}}}
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373

            \\eta_K = \\left(\\frac{\\nu^3}{\\varepsilon}\\right)^{1/4}, \\hskip .5cm
            \\tau_K = \\left(\\frac{\\nu}{\\varepsilon}\\right)^{1/2}, \\hskip .5cm
            \\lambda = \\sqrt{\\frac{15 \\nu U_{\\textrm{int}}^2}{\\varepsilon}}

            Re = \\frac{U_{\\textrm{int}} L_{\\textrm{int}}}{\\nu}, \\hskip
            .5cm
            R_{\\lambda} = \\frac{U_{\\textrm{int}} \\lambda}{\\nu}

        .. [Ishihara] T. Ishihara et al,
                      *Small-scale statistics in high-resolution direct numerical
                      simulation of turbulence: Reynolds number dependence of
                      one-point velocity gradient statistics*.
                      J. Fluid Mech.,
                      **592**, 335-366, 2007
        """
        self.statistics['Uint(t)'] = np.sqrt(2*self.statistics['energy(t)'] / 3)
        for key in ['energy',
                    'enstrophy',
374
375
                    'mean_trS2',
                    'Uint']:
376
377
            if key + '(t)' in self.statistics.keys():
                self.statistics[key] = np.average(self.statistics[key + '(t)'], axis = 0)
378
        self.statistics['vel_max'] = np.max(self.statistics['vel_max(t)'])
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
        for suffix in ['', '(t)']:
            self.statistics['diss'    + suffix] = (self.parameters['nu'] *
                                                   self.statistics['enstrophy' + suffix]*2)
            self.statistics['etaK'    + suffix] = (self.parameters['nu']**3 /
                                                   self.statistics['diss' + suffix])**.25
            self.statistics['tauK'    + suffix] =  (self.parameters['nu'] /
                                                    self.statistics['diss' + suffix])**.5
            self.statistics['lambda' + suffix] = (15 * self.parameters['nu'] *
                                                  self.statistics['Uint' + suffix]**2 /
                                                  self.statistics['diss' + suffix])**.5
            self.statistics['Rlambda' + suffix] = (self.statistics['Uint' + suffix] *
                                                   self.statistics['lambda' + suffix] /
                                                   self.parameters['nu'])
            self.statistics['kMeta' + suffix] = (self.statistics['kM'] *
                                                 self.statistics['etaK' + suffix])
            if self.parameters['dealias_type'] == 1:
                self.statistics['kMeta' + suffix] *= 0.8
Cristian Lalescu's avatar
Cristian Lalescu committed
396
        self.statistics['Lint'] = ((np.pi /
397
                                    (2*self.statistics['Uint']**2)) *
398
399
                                   np.sum(self.statistics['energy(k)'][1:-2] /
                                          self.statistics['kshell'][1:-2]))
400
401
402
        self.statistics['Re'] = (self.statistics['Uint'] *
                                 self.statistics['Lint'] /
                                 self.parameters['nu'])
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
        self.statistics['Tint'] = self.statistics['Lint'] / self.statistics['Uint']
        self.statistics['Taylor_microscale'] = self.statistics['lambda']
        return None
    def set_plt_style(
            self,
            style = {'dashes' : (None, None)}):
        self.style.update(style)
        return None
    def convert_complex_from_binary(
            self,
            field_name = 'vorticity',
            iteration = 0,
            file_name = None):
        """read the Fourier representation of a vector field.

        Read the binary file containing iteration ``iteration`` of the
        field ``field_name``, and write it in a ``.h5`` file.
        """
        data = np.memmap(
                os.path.join(self.work_dir,
                             self.simname + '_{0}_i{1:0>5x}'.format('c' + field_name, iteration)),
                dtype = self.ctype,
                mode = 'r',
                shape = (self.parameters['ny'],
                         self.parameters['nz'],
                         self.parameters['nx']//2+1,
                         3))
        if type(file_name) == type(None):
            file_name = self.simname + '_{0}_i{1:0>5x}.h5'.format('c' + field_name, iteration)
            file_name = os.path.join(self.work_dir, file_name)
        f = h5py.File(file_name, 'a')
        f[field_name + '/complex/{0}'.format(iteration)] = data
        f.close()
        return None
    def write_par(
            self,
Cristian Lalescu's avatar
Cristian Lalescu committed
439
            iter0 = 0):
440
441
442
        assert (self.parameters['niter_todo'] % self.parameters['niter_stat'] == 0)
        assert (self.parameters['niter_todo'] % self.parameters['niter_out']  == 0)
        assert (self.parameters['niter_out']  % self.parameters['niter_stat'] == 0)
443
        if self.dns_type in ['NSVEparticles_no_output', 'NSVEcomplex_particles', 'NSVEparticles', 'static_field']:
444
445
            assert (self.parameters['niter_todo'] % self.parameters['niter_part'] == 0)
            assert (self.parameters['niter_out']  % self.parameters['niter_part'] == 0)
446
447
        _code.write_par(self, iter0 = iter0)
        with h5py.File(self.get_data_file_name(), 'r+') as ofile:
448
            ofile['code_info/exec_name'] = self.name
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
            kspace = self.get_kspace()
            for k in kspace.keys():
                ofile['kspace/' + k] = kspace[k]
            nshells = kspace['nshell'].shape[0]
            kspace = self.get_kspace()
            nshells = kspace['nshell'].shape[0]
            vec_stat_datasets = ['velocity', 'vorticity']
            scal_stat_datasets = []
            for k in vec_stat_datasets:
                time_chunk = 2**20//(8*3*3*nshells)
                time_chunk = max(time_chunk, 1)
                ofile.create_dataset('statistics/spectra/' + k + '_' + k,
                                     (1, nshells, 3, 3),
                                     chunks = (time_chunk, nshells, 3, 3),
                                     maxshape = (None, nshells, 3, 3),
                                     dtype = np.float64)
                time_chunk = 2**20//(8*4*10)
                time_chunk = max(time_chunk, 1)
                a = ofile.create_dataset('statistics/moments/' + k,
                                     (1, 10, 4),
                                     chunks = (time_chunk, 10, 4),
                                     maxshape = (None, 10, 4),
                                     dtype = np.float64)
                time_chunk = 2**20//(8*4*self.parameters['histogram_bins'])
                time_chunk = max(time_chunk, 1)
                ofile.create_dataset('statistics/histograms/' + k,
                                     (1,
                                      self.parameters['histogram_bins'],
                                      4),
                                     chunks = (time_chunk,
                                               self.parameters['histogram_bins'],
                                               4),
                                     maxshape = (None,
                                                 self.parameters['histogram_bins'],
                                                 4),
                                     dtype = np.int64)
            ofile['checkpoint'] = int(0)
Cristian Lalescu's avatar
Cristian Lalescu committed
486
        if (self.dns_type in ['NSVE', 'NSVE_no_output']):
487
488
            return None
        return None
489
    def job_parser_arguments(
490
491
            self,
            parser):
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
        parser.add_argument(
                '--ncpu',
                type = int,
                dest = 'ncpu',
                default = -1)
        parser.add_argument(
                '--np', '--nprocesses',
                metavar = 'NPROCESSES',
                help = 'number of mpi processes to use',
                type = int,
                dest = 'nb_processes',
                default = 4)
        parser.add_argument(
                '--ntpp', '--nthreads-per-process',
                type = int,
                dest = 'nb_threads_per_process',
                metavar = 'NTHREADS_PER_PROCESS',
                help = 'number of threads to use per MPI process',
                default = 1)
511
512
513
514
        parser.add_argument(
                '--no-debug',
                action = 'store_true',
                dest = 'no_debug')
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
        parser.add_argument(
                '--no-submit',
                action = 'store_true',
                dest = 'no_submit')
        parser.add_argument(
                '--environment',
                type = str,
                dest = 'environment',
                default = None)
        parser.add_argument(
                '--minutes',
                type = int,
                dest = 'minutes',
                default = 5,
                help = 'If environment supports it, this is the requested wall-clock-limit.')
        parser.add_argument(
               '--njobs',
               type = int, dest = 'njobs',
               default = 1)
        return None
    def simulation_parser_arguments(
            self,
            parser):
        parser.add_argument(
                '--simname',
                type = str, dest = 'simname',
                default = 'test')
        parser.add_argument(
543
               '-n', '--grid-size',
544
545
546
547
548
               type = int,
               dest = 'n',
               default = 32,
               metavar = 'N',
               help = 'code is run by default in a grid of NxNxN')
549
550
551
552
553
554
555
556
        for coord in ['x', 'y', 'z']:
            parser.add_argument(
                   '--L{0}'.format(coord), '--box-length-{0}'.format(coord),
                   type = float,
                   dest = 'L{0}'.format(coord),
                   default = 2.0,
                   metavar = 'length{0}'.format(coord),
                   help = 'length of the box in the {0} direction will be `length{0} x pi`'.format(coord))
557
558
559
560
561
562
563
564
565
        parser.add_argument(
                '--wd',
                type = str, dest = 'work_dir',
                default = './')
        parser.add_argument(
                '--precision',
                choices = ['single', 'double'],
                type = str,
                default = 'single')
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
        parser.add_argument(
                '--src-wd',
                type = str,
                dest = 'src_work_dir',
                default = '')
        parser.add_argument(
                '--src-simname',
                type = str,
                dest = 'src_simname',
                default = '')
        parser.add_argument(
                '--src-iteration',
                type = int,
                dest = 'src_iteration',
                default = 0)
        parser.add_argument(
               '--kMeta',
               type = float,
               dest = 'kMeta',
               default = 2.0)
        parser.add_argument(
               '--dtfactor',
               type = float,
               dest = 'dtfactor',
               default = 0.5,
               help = 'dt is computed as DTFACTOR / N')
592
593
594
595
        return None
    def particle_parser_arguments(
            self,
            parser):
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
        parser.add_argument(
               '--particle-rand-seed',
               type = int,
               dest = 'particle_rand_seed',
               default = None)
        parser.add_argument(
               '--pclouds',
               type = int,
               dest = 'pclouds',
               default = 1,
               help = ('number of particle clouds. Particle "clouds" '
                       'consist of particles distributed according to '
                       'pcloud-type.'))
        parser.add_argument(
                '--pcloud-type',
                choices = ['random-cube',
                           'regular-cube'],
                dest = 'pcloud_type',
                default = 'random-cube')
        parser.add_argument(
               '--particle-cloud-size',
               type = float,
               dest = 'particle_cloud_size',
               default = 2*np.pi)
        return None
621
622
623
624
625
626
627
628
629
630
631
632
633
634
    def add_parser_arguments(
            self,
            parser):
        subparsers = parser.add_subparsers(
                dest = 'DNS_class',
                help = 'type of simulation to run')
        subparsers.required = True
        parser_NSVE = subparsers.add_parser(
                'NSVE',
                help = 'plain Navier-Stokes vorticity formulation')
        self.simulation_parser_arguments(parser_NSVE)
        self.job_parser_arguments(parser_NSVE)
        self.parameters_to_parser_arguments(parser_NSVE)

635
636
637
638
639
640
641
642
643
644
        parser_NSVE_no_output = subparsers.add_parser(
                'NSVE_no_output',
                help = 'plain Navier-Stokes vorticity formulation, checkpoints are NOT SAVED')
        self.simulation_parser_arguments(parser_NSVE_no_output)
        self.job_parser_arguments(parser_NSVE_no_output)
        self.parameters_to_parser_arguments(parser_NSVE_no_output)

        parser_NSVEparticles_no_output = subparsers.add_parser(
                'NSVEparticles_no_output',
                help = 'plain Navier-Stokes vorticity formulation, with basic fluid tracers, checkpoints are NOT SAVED')
645

646
647
648
649
        parser_static_field = subparsers.add_parser(
                'static_field',
                help = 'static field with basic fluid tracers')

650
651
652
        parser_NSVEp2 = subparsers.add_parser(
                'NSVEparticles',
                help = 'plain Navier-Stokes vorticity formulation, with basic fluid tracers')
653
654

        parser_NSVEp2p = subparsers.add_parser(
655
656
                'NSVEcomplex_particles',
                help = 'plain Navier-Stokes vorticity formulation, with oriented active particles')
Cristian Lalescu's avatar
Cristian Lalescu committed
657

658
659
660
661
        parser_NSVEp_extra = subparsers.add_parser(
                'NSVEp_extra_sampling',
                help = 'plain Navier-Stokes vorticity formulation, with basic fluid tracers, that sample velocity gradient, as well as pressure and its derivatives.')

662
        for parser in ['NSVEparticles_no_output', 'NSVEp2', 'NSVEp2p', 'NSVEp_extra', 'static_field']:
Cristian Lalescu's avatar
Cristian Lalescu committed
663
664
665
666
667
668
669
            eval('self.simulation_parser_arguments({0})'.format('parser_' + parser))
            eval('self.job_parser_arguments({0})'.format('parser_' + parser))
            eval('self.particle_parser_arguments({0})'.format('parser_' + parser))
            eval('self.parameters_to_parser_arguments({0})'.format('parser_' + parser))
            eval('self.parameters_to_parser_arguments('
                    'parser_{0},'
                    'self.NSVEp_extra_parameters)'.format(parser))
670
        return None
671
672
    def prepare_launch(
            self,
673
674
            args = [],
            extra_parameters = None):
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
        """Set up reasonable parameters.

        With the default Lundgren forcing applied in the band [2, 4],
        we can estimate the dissipation, therefore we can estimate
        :math:`k_M \\eta_K` and constrain the viscosity.

        In brief, the command line parameter :math:`k_M \\eta_K` is
        used in the following formula for :math:`\\nu` (:math:`N` is the
        number of real space grid points per coordinate):

        .. math::

            \\nu = \\left(\\frac{2 k_M \\eta_K}{N} \\right)^{4/3}

        With this choice, the average dissipation :math:`\\varepsilon`
        will be close to 0.4, and the integral scale velocity will be
        close to 0.77, yielding the approximate value for the Taylor
        microscale and corresponding Reynolds number:

        .. math::

            \\lambda \\approx 4.75\\left(\\frac{2 k_M \\eta_K}{N} \\right)^{4/6}, \\hskip .5in
            R_\\lambda \\approx 3.7 \\left(\\frac{N}{2 k_M \\eta_K} \\right)^{4/6}

        """
        opt = _code.prepare_launch(self, args = args)
701
702
        self.set_precision(opt.precision)
        self.dns_type = opt.DNS_class
703
        self.name = self.dns_type + '-' + self.fluid_precision + '-v' + TurTLE.__version__
704
        # merge parameters if needed
705
        if self.dns_type in ['NSVEparticles', 'NSVEcomplex_particles', 'NSVEparticles_no_output', 'NSVEp_extra_sampling', 'static_field']:
706
707
            for k in self.NSVEp_extra_parameters.keys():
                self.parameters[k] = self.NSVEp_extra_parameters[k]
708
709
710
711
        if type(extra_parameters) != type(None):
            if self.dns_type in extra_parameters.keys():
                for k in extra_parameters[self.dns_type].keys():
                    self.parameters[k] = extra_parameters[self.dns_type][k]
712
713
714
715
        if ((self.parameters['niter_todo'] % self.parameters['niter_out']) != 0):
            self.parameters['niter_out'] = self.parameters['niter_todo']
        if len(opt.src_work_dir) == 0:
            opt.src_work_dir = os.path.realpath(opt.work_dir)
716
717
718
719
        if type(opt.dkx) == type(None):
            opt.dkx = 2. / opt.Lx
        if type(opt.dky) == type(None):
            opt.dky = 2. / opt.Ly
Cristian Lalescu's avatar
Cristian Lalescu committed
720
        if type(opt.dkz) == type(None):
721
            opt.dkz = 2. / opt.Lz
722
723
724
725
726
727
        if type(opt.nx) == type(None):
            opt.nx = opt.n
        if type(opt.ny) == type(None):
            opt.ny = opt.n
        if type(opt.nz) == type(None):
            opt.nz = opt.n
728
729
730
731
732
733
        if type(opt.fk0) == type(None):
            opt.fk0 = self.parameters['fk0']
        if type(opt.fk1) == type(None):
            opt.fk1 = self.parameters['fk1']
        if type(opt.injection_rate) == type(None):
            opt.injection_rate = self.parameters['injection_rate']
Cristian Lalescu's avatar
Cristian Lalescu committed
734
        if type(opt.dealias_type) == type(None):
735
            opt.dealias_type = self.parameters['dealias_type']
736
737
738
739
740
        if (opt.nx > opt.n or
            opt.ny > opt.n or
            opt.nz > opt.n):
            opt.n = min(opt.nx, opt.ny, opt.nz)
            print("Warning: '-n' parameter changed to minimum of nx, ny, nz. This affects the computation of nu.")
Chichi Lalescu's avatar
Chichi Lalescu committed
741
        self.parameters['dt'] = (opt.dtfactor / opt.n)
742
        self.parameters['nu'] = (opt.kMeta * 2 / opt.n)**(4./3)
Cristian Lalescu's avatar
Cristian Lalescu committed
743
744
745
746
747
        # check value of kMax
        kM = opt.n * 0.5
        if opt.dealias_type == 1:
            kM *= 0.8
        # tweak forcing/viscosity based on forcint type
Cristian Lalescu's avatar
Cristian Lalescu committed
748
        if opt.forcing_type == 'linear':
749
750
751
752
753
            # custom famplitude for 288 and 576
            if opt.n == 288:
                self.parameters['famplitude'] = 0.45
            elif opt.n == 576:
                self.parameters['famplitude'] = 0.47
Cristian Lalescu's avatar
Cristian Lalescu committed
754
        elif opt.forcing_type == 'fixed_energy_injection_rate':
755
756
            # use the fact that mean dissipation rate is equal to injection rate
            self.parameters['nu'] = (
Cristian Lalescu's avatar
Cristian Lalescu committed
757
                    opt.injection_rate *
758
                    (opt.kMeta / kM)**4)**(1./3)
759
        elif opt.forcing_type == 'fixed_energy':
Cristian Lalescu's avatar
Cristian Lalescu committed
760
761
            kf = 1. / (1./opt.fk0 +
                       1./opt.fk1)
762
763
764
765
            self.parameters['nu'] = (
                    (opt.kMeta / kM)**(4./3) *
                    (np.pi / kf)**(1./3) *
                    (2*self.parameters['energy'] / 3)**0.5)
766
767
768
769
        if type(opt.checkpoints_per_file) == type(None):
            # hardcoded FFTW complex representation size
            field_size = 3*(opt.nx+2)*opt.ny*opt.nz*self.fluid_dtype.itemsize
            checkpoint_size = field_size
770
            if self.dns_type in ['static_field', 'NSVEparticles', 'NSVEcomplex_particles', 'NSVEparticles_no_output', 'NSVEp_extra_sampling']:
771
772
773
                rhs_size = self.parameters['tracers0_integration_steps']
                if type(opt.tracers0_integration_steps) != type(None):
                    rhs_size = opt.tracers0_integration_steps
774
775
776
777
                nparticles = opt.nparticles
                if type(nparticles) == type(None):
                    nparticles = self.NSVEp_extra_parameters['nparticles']
                particle_size = (1+rhs_size)*3*nparticles*8
778
779
780
                checkpoint_size += particle_size
            if checkpoint_size < 1e9:
                opt.checkpoints_per_file = int(1e9 / checkpoint_size)
781
782
783
784
785
786
787
788
789
790
791
792
793
        self.pars_from_namespace(opt)
        return opt
    def launch(
            self,
            args = [],
            **kwargs):
        opt = self.prepare_launch(args = args)
        self.launch_jobs(opt = opt, **kwargs)
        return None
    def get_checkpoint_0_fname(self):
        return os.path.join(
                    self.work_dir,
                    self.simname + '_checkpoint_0.h5')
794
    def get_checkpoint_fname(self, iteration = 0):
795
        checkpoint = (iteration // self.parameters['niter_out']) // self.parameters['checkpoints_per_file']
796
797
798
        return os.path.join(
                    self.work_dir,
                    self.simname + '_checkpoint_{0}.h5'.format(checkpoint))
799
800
801
    def generate_tracer_state(
            self,
            rseed = None,
802
803
804
            species = 0,
            integration_steps = None,
            ncomponents = 3):
805
        try:
806
807
808
809
810
            if type(integration_steps) == type(None):
                integration_steps = self.NSVEp_extra_parameters['tracers0_integration_steps']
            if 'tracers{0}_integration_steps'.format(species) in self.parameters.keys():
                integration_steps = self.parameters['tracers{0}_integration_steps'.format(species)]
            if self.dns_type == 'NSVEcomplex_particles' and species == 0:
811
812
813
                ncomponents = 6
            with h5py.File(self.get_checkpoint_0_fname(), 'a') as data_file:
                nn = self.parameters['nparticles']
814
815
816
817
                if not 'tracers{0}'.format(species) in data_file.keys():
                    data_file.create_group('tracers{0}'.format(species))
                    data_file.create_group('tracers{0}/rhs'.format(species))
                    data_file.create_group('tracers{0}/state'.format(species))
818
819
                data_file['tracers{0}/rhs'.format(species)].create_dataset(
                        '0',
820
                        shape = (integration_steps, nn, ncomponents,),
821
                        dtype = np.float)
822
                dset = data_file['tracers{0}/state'.format(species)].create_dataset(
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
                        '0',
                        shape = (nn, ncomponents,),
                        dtype = np.float)
                if not type(rseed) == type(None):
                    np.random.seed(rseed)
                cc = int(0)
                batch_size = int(1e6)
                def get_random_phases(npoints):
                    return np.random.random(
                                (npoints, 3))*2*np.pi
                def get_random_versors(npoints):
                    bla = np.random.normal(
                            size = (npoints, 3))
                    bla  /= np.sum(bla**2, axis = 1)[:, None]**.5
                    return bla
                while nn > 0:
                    if nn > batch_size:
                        dset[cc*batch_size:(cc+1)*batch_size, :3] = get_random_phases(batch_size)
                        if dset.shape[1] == 6:
                            dset[cc*batch_size:(cc+1)*batch_size, 3:] = get_random_versors(batch_size)
                        nn -= batch_size
                    else:
                        dset[cc*batch_size:cc*batch_size+nn, :3] = get_random_phases(nn)
                        if dset.shape[1] == 6:
                            dset[cc*batch_size:cc*batch_size+nn, 3:] = get_random_versors(nn)
                        nn = 0
                    cc += 1
        except Exception as e:
            print(e)
852
        return None
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
    def generate_vector_field(
            self,
            rseed = 7547,
            spectra_slope = 1.,
            amplitude = 1.,
            iteration = 0,
            field_name = 'vorticity',
            write_to_file = False,
            # to switch to constant field, use generate_data_3D_uniform
            # for scalar_generator
            scalar_generator = tools.generate_data_3D):
        """generate vector field.

        The generated field is not divergence free, but it has the proper
        shape.

        :param rseed: seed for random number generator
        :param spectra_slope: spectrum of field will look like k^(-p)
        :param amplitude: all amplitudes are multiplied with this value
        :param iteration: the field is written at this iteration
        :param field_name: the name of the field being generated
        :param write_to_file: should we write the field to file?
        :param scalar_generator: which function to use for generating the
            individual components.
877
878
            Possible values: TurTLE.tools.generate_data_3D,
            TurTLE.tools.generate_data_3D_uniform
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
        :type rseed: int
        :type spectra_slope: float
        :type amplitude: float
        :type iteration: int
        :type field_name: str
        :type write_to_file: bool
        :type scalar_generator: function

        :returns: ``Kdata``, a complex valued 4D ``numpy.array`` that uses the
            transposed FFTW layout.
            Kdata[ky, kz, kx, i] is the amplitude of mode (kx, ky, kz) for
            the i-th component of the field.
            (i.e. x is the fastest index and z the slowest index in the
            real-space representation).
        """
        np.random.seed(rseed)
        Kdata00 = scalar_generator(
896
897
898
                self.parameters['nz'],
                self.parameters['ny'],
                self.parameters['nx'],
899
900
901
                p = spectra_slope,
                amplitude = amplitude).astype(self.ctype)
        Kdata01 = scalar_generator(
902
903
904
                self.parameters['nz'],
                self.parameters['ny'],
                self.parameters['nx'],
905
906
907
                p = spectra_slope,
                amplitude = amplitude).astype(self.ctype)
        Kdata02 = scalar_generator(
908
909
910
                self.parameters['nz'],
                self.parameters['ny'],
                self.parameters['nx'],
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
                p = spectra_slope,
                amplitude = amplitude).astype(self.ctype)
        Kdata0 = np.zeros(
                Kdata00.shape + (3,),
                Kdata00.dtype)
        Kdata0[..., 0] = Kdata00
        Kdata0[..., 1] = Kdata01
        Kdata0[..., 2] = Kdata02
        Kdata1 = tools.padd_with_zeros(
                Kdata0,
                self.parameters['nz'],
                self.parameters['ny'],
                self.parameters['nx'])
        if write_to_file:
            Kdata1.tofile(
                    os.path.join(self.work_dir,
                                 self.simname + "_c{0}_i{1:0>5x}".format(field_name, iteration)))
        return Kdata1
929
930
931
932
933
934
935
936
937
938
939
    def copy_complex_field(
            self,
            src_file_name,
            src_dset_name,
            dst_file,
            dst_dset_name,
            make_link = True):
        # I define a min_shape thingie, but for now I only trust this method for
        # the case of increasing/decreasing by the same factor in all directions.
        # in principle we could write something more generic, but i'm not sure
        # how complicated that would be
940
941
        dst_shape = (self.parameters['ny'],
                     self.parameters['nz'],
942
943
944
945
                     (self.parameters['nx']+2) // 2,
                     3)
        src_file = h5py.File(src_file_name, 'r')
        if (src_file[src_dset_name].shape == dst_shape):
946
947
948
            dst_file[dst_dset_name] = h5py.ExternalLink(
                    src_file_name,
                    src_dset_name)
949
950
951
952
953
        else:
            min_shape = (min(dst_shape[0], src_file[src_dset_name].shape[0]),
                         min(dst_shape[1], src_file[src_dset_name].shape[1]),
                         min(dst_shape[2], src_file[src_dset_name].shape[2]),
                         3)
954
            src_shape = src_file[src_dset_name].shape
955
956
957
            dst_file.create_dataset(
                    dst_dset_name,
                    shape = dst_shape,
958
959
                    dtype = np.dtype(self.ctype),
                    fillvalue = complex(0))
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
            for kz in range(min_shape[0]//2):
                dst_file[dst_dset_name][kz,:min_shape[1]//2, :min_shape[2]] = \
                        src_file[src_dset_name][kz, :min_shape[1]//2, :min_shape[2]]
                dst_file[dst_dset_name][kz,
                                        dst_shape[1] - min_shape[1]//2+1:,
                                        :min_shape[2]] = \
                        src_file[src_dset_name][kz,
                                                src_shape[1] - min_shape[1]//2+1,
                                                :min_shape[2]]
                if kz > 0:
                    dst_file[dst_dset_name][-kz,:min_shape[1]//2, :min_shape[2]] = \
                            src_file[src_dset_name][-kz, :min_shape[1]//2, :min_shape[2]]
                    dst_file[dst_dset_name][-kz,
                                            dst_shape[1] - min_shape[1]//2+1:,
                                            :min_shape[2]] = \
                            src_file[src_dset_name][-kz,
                                                    src_shape[1] - min_shape[1]//2+1,
                                                    :min_shape[2]]
978
        return None
979
980
981
982
983
984
985
986
987
    def generate_particle_data(
            self,
            opt = None):
        if self.parameters['nparticles'] > 0:
            self.generate_tracer_state(
                    species = 0,
                    rseed = opt.particle_rand_seed)
            if not os.path.exists(self.get_particle_file_name()):
                with h5py.File(self.get_particle_file_name(), 'w') as particle_file:
Cristian Lalescu's avatar
Cristian Lalescu committed
988
                    particle_file.create_group('tracers0/position')
989
990
                    particle_file.create_group('tracers0/velocity')
                    particle_file.create_group('tracers0/acceleration')
991
                    if self.dns_type in ['NSVEcomplex_particles']:
992
                        particle_file.create_group('tracers0/orientation')
993
                        particle_file.create_group('tracers0/velocity_gradient')
994
995
996
997
998
                    if self.dns_type in ['NSVEp_extra_sampling']:
                        particle_file.create_group('tracers0/velocity_gradient')
                        particle_file.create_group('tracers0/pressure')
                        particle_file.create_group('tracers0/pressure_gradient')
                        particle_file.create_group('tracers0/pressure_Hessian')
999
        return None
Cristian Lalescu's avatar
Cristian Lalescu committed
1000
    def generate_initial_condition(
1001
            self,
Cristian Lalescu's avatar
Cristian Lalescu committed
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
            opt = None):
        # take care of fields' initial condition
        # first, check if initial field exists
        need_field = False
        if not os.path.exists(self.get_checkpoint_0_fname()):
            need_field = True
        else:
            f = h5py.File(self.get_checkpoint_0_fname(), 'r')
            try:
                dset = f['vorticity/complex/0']
                need_field = (dset.shape == (self.parameters['ny'],
                                             self.parameters['nz'],
                                             self.parameters['nx']//2+1,
                                             3))
            except:
1017
                need_field = True
Cristian Lalescu's avatar
Cristian Lalescu committed
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
            f.close()
        if need_field:
            f = h5py.File(self.get_checkpoint_0_fname(), 'a')
            if len(opt.src_simname) > 0:
                source_cp = 0
                src_file = 'not_a_file'
                while True:
                    src_file = os.path.join(
                        os.path.realpath(opt.src_work_dir),
                        opt.src_simname + '_checkpoint_{0}.h5'.format(source_cp))
                    f0 = h5py.File(src_file, 'r')
                    if '{0}'.format(opt.src_iteration) in f0['vorticity/complex'].keys():
                        f0.close()
                        break
                    source_cp += 1
                self.copy_complex_field(
                        src_file,
                        'vorticity/complex/{0}'.format(opt.src_iteration),
                        f,
                        'vorticity/complex/{0}'.format(0))
1038
            else:
Cristian Lalescu's avatar
Cristian Lalescu committed
1039
1040
1041
1042
1043
1044
1045
                data = self.generate_vector_field(
                       write_to_file = False,
                       spectra_slope = 2.0,
                       amplitude = 0.05)
                f['vorticity/complex/{0}'.format(0)] = data
            f.close()
        # now take care of particles' initial condition
1046
        if self.dns_type in ['static_field', 'NSVEparticles', 'NSVEcomplex_particles', 'NSVEparticles_no_output', 'NSVEp_extra_sampling']:
Cristian Lalescu's avatar
Cristian Lalescu committed
1047
1048
1049
1050
1051
1052
            self.generate_particle_data(opt = opt)
        return None
    def launch_jobs(
            self,
            opt = None):
        if not os.path.exists(self.get_data_file_name()):
1053
            self.generate_initial_condition(opt = opt)
Cristian Lalescu's avatar
Cristian Lalescu committed
1054
            self.write_par()
1055
1056
1057
1058
1059
1060
        self.run(
                nb_processes = opt.nb_processes,
                nb_threads_per_process = opt.nb_threads_per_process,
                njobs = opt.njobs,
                hours = opt.minutes // 60,
                minutes = opt.minutes % 60,
1061
1062
                no_submit = opt.no_submit,
                no_debug = opt.no_debug)
1063
        return None
Cristian Lalescu's avatar
Cristian Lalescu committed
1064