DNS.py 50.2 KB
Newer Older
1
2
3
4
################################################################################
#                                                                              #
#  Copyright 2015-2019 Max Planck Institute for Dynamics and Self-Organization #
#                                                                              #
5
#  This file is part of TurTLE.                                                  #
6
#                                                                              #
7
#  TurTLE is free software: you can redistribute it and/or modify                #
8
9
10
11
#  it under the terms of the GNU General Public License as published           #
#  by the Free Software Foundation, either version 3 of the License,           #
#  or (at your option) any later version.                                      #
#                                                                              #
12
#  TurTLE is distributed in the hope that it will be useful,                     #
13
14
15
16
17
#  but WITHOUT ANY WARRANTY; without even the implied warranty of              #
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the               #
#  GNU General Public License for more details.                                #
#                                                                              #
#  You should have received a copy of the GNU General Public License           #
18
#  along with TurTLE.  If not, see <http://www.gnu.org/licenses/>                #
19
20
21
22
#                                                                              #
# Contact: Cristian.Lalescu@ds.mpg.de                                          #
#                                                                              #
################################################################################
Cristian Lalescu's avatar
Cristian Lalescu committed
23
24
25
26
27
28
29
30
31
32
33
34
35



import os
import sys
import shutil
import subprocess
import argparse
import h5py
import math
import numpy as np
import warnings

36
import TurTLE
Cristian Lalescu's avatar
Cristian Lalescu committed
37
from ._code import _code
38
from TurTLE import tools
Cristian Lalescu's avatar
Cristian Lalescu committed
39
40
41
42
43
44
45
46

class DNS(_code):
    """This class is meant to stitch together the C++ code into a final source file,
    compile it, and handle all job launching.
    """
    def __init__(
            self,
            work_dir = './',
47
48
49
50
51
52
            simname = 'test'):
        _code.__init__(
                self,
                work_dir = work_dir,
                simname = simname)
        self.generate_default_parameters()
Chichi Lalescu's avatar
Chichi Lalescu committed
53
        self.statistics = {}
54
55
56
57
        return None
    def set_precision(
            self,
            fluid_dtype):
Cristian Lalescu's avatar
Cristian Lalescu committed
58
59
60
61
62
63
64
65
66
67
        if fluid_dtype in [np.float32, np.float64]:
            self.fluid_dtype = fluid_dtype
        elif fluid_dtype in ['single', 'double']:
            if fluid_dtype == 'single':
                self.fluid_dtype = np.dtype(np.float32)
            elif fluid_dtype == 'double':
                self.fluid_dtype = np.dtype(np.float64)
        self.rtype = self.fluid_dtype
        if self.rtype == np.float32:
            self.ctype = np.dtype(np.complex64)
68
            self.C_field_dtype = 'float'
69
            self.fluid_precision = 'single'
Cristian Lalescu's avatar
Cristian Lalescu committed
70
71
        elif self.rtype == np.float64:
            self.ctype = np.dtype(np.complex128)
72
            self.C_field_dtype = 'double'
73
74
            self.fluid_precision = 'double'
        return None
75
76
    def write_src(
            self):
Cristian Lalescu's avatar
Cristian Lalescu committed
77
78
        self.version_message = (
                '/***********************************************************************\n' +
79
80
                '* this code automatically generated by TurTLE\n' +
                '* version {0}\n'.format(TurTLE.__version__) +
Cristian Lalescu's avatar
Cristian Lalescu committed
81
                '***********************************************************************/\n\n\n')
82
83
84
85
86
        self.include_list = [
                '"base.hpp"',
                '"scope_timer.hpp"',
                '"fftw_interface.hpp"',
                '"full_code/main_code.hpp"',
87
                '<cmath>',
88
89
90
91
92
93
94
95
96
                '<iostream>',
                '<hdf5.h>',
                '<string>',
                '<cstring>',
                '<fftw3-mpi.h>',
                '<omp.h>',
                '<cfenv>',
                '<cstdlib>',
                '"full_code/{0}.hpp"\n'.format(self.dns_type)]
Cristian Lalescu's avatar
Cristian Lalescu committed
97
        self.main = """
98
99
100
            int main(int argc, char *argv[])
            {{
                bool fpe = (
Cristian Lalescu's avatar
Cristian Lalescu committed
101
102
                    (getenv("TURTLE_FPE_OFF") == nullptr) ||
                    (getenv("TURTLE_FPE_OFF") != std::string("TRUE")));
103
104
105
                return main_code< {0} >(argc, argv, fpe);
            }}
            """.format(self.dns_type + '<{0}>'.format(self.C_field_dtype))
106
107
108
109
110
111
112
        self.includes = '\n'.join(
                ['#include ' + hh
                 for hh in self.include_list])
        with open(self.name + '.cpp', 'w') as outfile:
            outfile.write(self.version_message + '\n\n')
            outfile.write(self.includes + '\n\n')
            outfile.write(self.main + '\n')
113
114
115
        return None
    def generate_default_parameters(self):
        # these parameters are relevant for all DNS classes
Chichi Lalescu's avatar
Chichi Lalescu committed
116
        self.parameters['fftw_plan_rigor'] = 'FFTW_ESTIMATE'
117
118
119
120
121
122
123
        self.parameters['dealias_type'] = int(1)
        self.parameters['dkx'] = float(1.0)
        self.parameters['dky'] = float(1.0)
        self.parameters['dkz'] = float(1.0)
        self.parameters['niter_todo'] = int(8)
        self.parameters['niter_stat'] = int(1)
        self.parameters['niter_out'] = int(8)
124
        self.parameters['checkpoints_per_file'] = int(1)
125
        self.parameters['dt'] = float(0.01)
126
        self.parameters['nu'] = float(0.1)
127
        self.parameters['fmode'] = int(1)
128
        self.parameters['famplitude'] = float(0.5)
Chichi Lalescu's avatar
Chichi Lalescu committed
129
        self.parameters['friction_coefficient'] = float(0.5)
Cristian Lalescu's avatar
Cristian Lalescu committed
130
131
        self.parameters['energy'] = float(0.5)
        self.parameters['injection_rate'] = float(0.4)
132
133
        self.parameters['fk0'] = float(2.0)
        self.parameters['fk1'] = float(4.0)
Cristian Lalescu's avatar
Cristian Lalescu committed
134
        self.parameters['forcing_type'] = 'fixed_energy_injection_rate'
135
136
137
138
        self.parameters['histogram_bins'] = int(256)
        self.parameters['max_velocity_estimate'] = float(1)
        self.parameters['max_vorticity_estimate'] = float(1)
        # parameters specific to particle version
139
140
        self.NSVEp_extra_parameters = {}
        self.NSVEp_extra_parameters['niter_part'] = int(1)
141
142
        self.NSVEp_extra_parameters['niter_part_fine_period'] = int(10)
        self.NSVEp_extra_parameters['niter_part_fine_duration'] = int(0)
143
144
145
146
        self.NSVEp_extra_parameters['nparticles'] = int(10)
        self.NSVEp_extra_parameters['tracers0_integration_steps'] = int(4)
        self.NSVEp_extra_parameters['tracers0_neighbours'] = int(1)
        self.NSVEp_extra_parameters['tracers0_smoothness'] = int(1)
147
148
149
150
151
        self.NSVEp_extra_parameters['tracers0_enable_p2p'] = int(0)
        self.NSVEp_extra_parameters['tracers0_enable_inner'] = int(0)
        self.NSVEp_extra_parameters['tracers0_enable_vorticity_omega'] = int(0)
        self.NSVEp_extra_parameters['tracers0_cutoff'] = float(1)
        self.NSVEp_extra_parameters['tracers0_inner_v0'] = float(1)
Cristian Lalescu's avatar
Cristian Lalescu committed
152
        self.NSVEp_extra_parameters['tracers0_lambda'] = float(1)
Cristian Lalescu's avatar
Cristian Lalescu committed
153
        #self.extra_parameters = {}
154
        #for key in ['NSVE', 'NSVE_no_output', 'NSVEparticles', 'NSVEparticles_no_output', 'NSVEcomplex_particles']:
Cristian Lalescu's avatar
Cristian Lalescu committed
155
        #    self.extra_parameters[key] = {}
156
        #for key in ['NSVEparticles', 'NSVEparticles_no_output', 'NSVEcomplex_particles']:
Cristian Lalescu's avatar
Cristian Lalescu committed
157
        #    self.extra_parameters[key].update(self.NSVEp_extra_parameters)
Cristian Lalescu's avatar
Cristian Lalescu committed
158
        return None
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
    def get_kspace(self):
        kspace = {}
        if self.parameters['dealias_type'] == 1:
            kMx = self.parameters['dkx']*(self.parameters['nx']//2 - 1)
            kMy = self.parameters['dky']*(self.parameters['ny']//2 - 1)
            kMz = self.parameters['dkz']*(self.parameters['nz']//2 - 1)
        else:
            kMx = self.parameters['dkx']*(self.parameters['nx']//3 - 1)
            kMy = self.parameters['dky']*(self.parameters['ny']//3 - 1)
            kMz = self.parameters['dkz']*(self.parameters['nz']//3 - 1)
        kspace['kM'] = max(kMx, kMy, kMz)
        kspace['dk'] = min(self.parameters['dkx'],
                           self.parameters['dky'],
                           self.parameters['dkz'])
        nshells = int(kspace['kM'] / kspace['dk']) + 2
        kspace['nshell'] = np.zeros(nshells, dtype = np.int64)
        kspace['kshell'] = np.zeros(nshells, dtype = np.float64)
        kspace['kx'] = np.arange( 0,
                                  self.parameters['nx']//2 + 1).astype(np.float64)*self.parameters['dkx']
        kspace['ky'] = np.arange(-self.parameters['ny']//2 + 1,
                                  self.parameters['ny']//2 + 1).astype(np.float64)*self.parameters['dky']
        kspace['ky'] = np.roll(kspace['ky'], self.parameters['ny']//2+1)
        kspace['kz'] = np.arange(-self.parameters['nz']//2 + 1,
                                  self.parameters['nz']//2 + 1).astype(np.float64)*self.parameters['dkz']
        kspace['kz'] = np.roll(kspace['kz'], self.parameters['nz']//2+1)
        return kspace
    def get_data_file_name(self):
        return os.path.join(self.work_dir, self.simname + '.h5')
    def get_data_file(self):
        return h5py.File(self.get_data_file_name(), 'r')
    def get_particle_file_name(self):
        return os.path.join(self.work_dir, self.simname + '_particles.h5')
    def get_particle_file(self):
        return h5py.File(self.get_particle_file_name(), 'r')
193
194
195
196
    def get_cache_file_name(self):
        return os.path.join(self.work_dir, self.simname + '_cache.h5')
    def get_cache_file(self):
        return h5py.File(self.get_cache_file_name(), 'r')
197
    def get_postprocess_file_name(self):
198
        return self.get_cache_file_name()
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
    def get_postprocess_file(self):
        return h5py.File(self.get_postprocess_file_name(), 'r')
    def compute_statistics(self, iter0 = 0, iter1 = None):
        """Run basic postprocessing on raw data.
        The energy spectrum :math:`E(t, k)` and the enstrophy spectrum
        :math:`\\frac{1}{2}\omega^2(t, k)` are computed from the

        .. math::

            \sum_{k \\leq \\|\\mathbf{k}\\| \\leq k+dk}\\hat{u_i} \\hat{u_j}^*, \\hskip .5cm
            \sum_{k \\leq \\|\\mathbf{k}\\| \\leq k+dk}\\hat{\omega_i} \\hat{\\omega_j}^*

        tensors, and the enstrophy spectrum is also used to
        compute the dissipation :math:`\\varepsilon(t)`.
        These basic quantities are stored in a newly created HDF5 file,
214
        ``simname_cache.h5``.
215
216
217
        """
        if len(list(self.statistics.keys())) > 0:
            return None
Cristian Lalescu's avatar
Cristian Lalescu committed
218
219
220
        if not os.path.exists(self.get_data_file_name()):
            if os.path.exists(self.get_cache_file_name()):
                self.read_parameters(fname = self.get_cache_file_name())
Cristian Lalescu's avatar
Cristian Lalescu committed
221
222
223
224
225
226
227
228
                pp_file = self.get_cache_file()
                for k in ['t',
                          'energy(t)',
                          'energy(k)',
                          'enstrophy(t)',
                          'enstrophy(k)',
                          'R_ij(t)',
                          'vel_max(t)',
229
230
                          'renergy(t)',
                          'renstrophy(t)']:
Cristian Lalescu's avatar
Cristian Lalescu committed
231
232
233
234
235
236
                    if k in pp_file.keys():
                        self.statistics[k] = pp_file[k][...]
                self.statistics['kM'] = pp_file['kspace/kM'][...]
                self.statistics['dk'] = pp_file['kspace/dk'][...]
                self.statistics['kshell'] = pp_file['kspace/kshell'][...]
                self.statistics['nshell'] = pp_file['kspace/nshell'][...]
Cristian Lalescu's avatar
Cristian Lalescu committed
237
238
239
240
241
242
243
244
245
        else:
            self.read_parameters()
            with self.get_data_file() as data_file:
                if 'moments' not in data_file['statistics'].keys():
                    return None
                iter0 = min((data_file['statistics/moments/velocity'].shape[0] *
                             self.parameters['niter_stat']-1),
                            iter0)
                if type(iter1) == type(None):
246
                    iter1 = data_file['iteration'][...]
Cristian Lalescu's avatar
Cristian Lalescu committed
247
                else:
248
                    iter1 = min(data_file['iteration'][...], iter1)
Cristian Lalescu's avatar
Cristian Lalescu committed
249
250
                ii0 = iter0 // self.parameters['niter_stat']
                ii1 = iter1 // self.parameters['niter_stat']
251
252
                self.statistics['kshell'] = data_file['kspace/kshell'][...]
                self.statistics['nshell'] = data_file['kspace/nshell'][...]
Cristian Lalescu's avatar
Cristian Lalescu committed
253
254
255
                for kk in [-1, -2]:
                    if (self.statistics['kshell'][kk] == 0):
                        self.statistics['kshell'][kk] = np.nan
256
257
                self.statistics['kM'] = data_file['kspace/kM'][...]
                self.statistics['dk'] = data_file['kspace/dk'][...]
Cristian Lalescu's avatar
Cristian Lalescu committed
258
259
260
261
262
263
                computation_needed = True
                pp_file = h5py.File(self.get_postprocess_file_name(), 'a')
                if not ('parameters' in pp_file.keys()):
                    data_file.copy('parameters', pp_file)
                    data_file.copy('kspace', pp_file)
                if 'ii0' in pp_file.keys():
264
265
                    computation_needed =  not (ii0 == pp_file['ii0'][...] and
                                               ii1 == pp_file['ii1'][...])
Cristian Lalescu's avatar
Cristian Lalescu committed
266
                    if computation_needed:
267
268
269
                        for k in ['t', 'vel_max(t)',
                                  'renergy(t)',
                                  'renstrophy(t)',
Cristian Lalescu's avatar
Cristian Lalescu committed
270
271
272
273
274
275
276
277
278
                                  'energy(t)', 'enstrophy(t)',
                                  'energy(k)', 'enstrophy(k)',
                                  'energy(t, k)',
                                  'enstrophy(t, k)',
                                  'R_ij(t)',
                                  'ii0', 'ii1', 'iter0', 'iter1']:
                            if k in pp_file.keys():
                                del pp_file[k]
                if computation_needed:
Cristian Lalescu's avatar
Cristian Lalescu committed
279
                    #TODO figure out whether normalization is sane or not
Cristian Lalescu's avatar
Cristian Lalescu committed
280
281
282
283
284
285
286
                    pp_file['iter0'] = iter0
                    pp_file['iter1'] = iter1
                    pp_file['ii0'] = ii0
                    pp_file['ii1'] = ii1
                    pp_file['t'] = (self.parameters['dt']*
                                    self.parameters['niter_stat']*
                                    (np.arange(ii0, ii1+1).astype(np.float)))
Cristian Lalescu's avatar
Cristian Lalescu committed
287
288
289
                    # we have an extra division by shell_width because of the Dirac delta restricting integration to the shell
                    phi_ij = data_file['statistics/spectra/velocity_velocity'][ii0:ii1+1] / self.statistics['dk']
                    pp_file['R_ij(t)'] = np.sum(phi_ij*self.statistics['dk'], axis = 1)
Cristian Lalescu's avatar
Cristian Lalescu committed
290
291
292
293
                    energy_tk = (
                        phi_ij[:, :, 0, 0] +
                        phi_ij[:, :, 1, 1] +
                        phi_ij[:, :, 2, 2])/2
Cristian Lalescu's avatar
Cristian Lalescu committed
294
295
296
297
298
                    pp_file['energy(t)'] = np.sum(energy_tk*self.statistics['dk'], axis = 1)
                    # normalization factor is (4 pi * shell_width * kshell^2) / (nmodes in shell * dkx*dky*dkz)
                    norm_factor = (4*np.pi*self.statistics['dk']*self.statistics['kshell']**2) / (self.parameters['dkx']*self.parameters['dky']*self.parameters['dkz']*self.statistics['nshell'])
                    pp_file['energy(k)'] = np.mean(energy_tk, axis = 0)*norm_factor
                    phi_vorticity_ij = data_file['statistics/spectra/vorticity_vorticity'][ii0:ii1+1] / self.statistics['dk']
Cristian Lalescu's avatar
Cristian Lalescu committed
299
                    enstrophy_tk = (
300
301
302
                        phi_vorticity_ij[:, :, 0, 0] +
                        phi_vorticity_ij[:, :, 1, 1] +
                        phi_vorticity_ij[:, :, 2, 2])/2
Cristian Lalescu's avatar
Cristian Lalescu committed
303
304
                    pp_file['enstrophy(t)'] = np.sum(enstrophy_tk*self.statistics['dk'], axis = 1)
                    pp_file['enstrophy(k)'] = np.mean(enstrophy_tk, axis = 0)*norm_factor
Cristian Lalescu's avatar
Cristian Lalescu committed
305
306
                    pp_file['vel_max(t)'] = data_file['statistics/moments/velocity'][ii0:ii1+1, 9, 3]
                    pp_file['renergy(t)'] = data_file['statistics/moments/velocity'][ii0:ii1+1, 2, 3]/2
307
                    pp_file['renstrophy(t)'] = data_file['statistics/moments/vorticity'][ii0:ii1+1, 2, 3]/2
Cristian Lalescu's avatar
Cristian Lalescu committed
308
309
310
311
312
313
314
        for k in ['t',
                  'energy(t)',
                  'energy(k)',
                  'enstrophy(t)',
                  'enstrophy(k)',
                  'R_ij(t)',
                  'vel_max(t)',
315
316
                  'renergy(t)',
                  'renstrophy(t)']:
Cristian Lalescu's avatar
Cristian Lalescu committed
317
            if k in pp_file.keys():
318
                self.statistics[k] = pp_file[k][...]
Cristian Lalescu's avatar
Cristian Lalescu committed
319
320
321
322
        # sanity check --- Parseval theorem check
        assert(np.max(np.abs(
                self.statistics['renergy(t)'] -
                self.statistics['energy(t)']) / self.statistics['energy(t)']) < 1e-5)
323
324
325
        assert(np.max(np.abs(
                self.statistics['renstrophy(t)'] -
                self.statistics['enstrophy(t)']) / self.statistics['enstrophy(t)']) < 1e-5)
Cristian Lalescu's avatar
Cristian Lalescu committed
326
        self.compute_time_averages()
327
        return None
328
329
    def compute_Reynolds_stress_invariants(
            self):
Cristian Lalescu's avatar
Cristian Lalescu committed
330
331
332
        """
        see Choi and Lumley, JFM v436 p59 (2001)
        """
333
334
335
336
337
338
339
340
        Rij = self.statistics['R_ij(t)']
        Rij /= (2*self.statistics['energy(t)'][:, None, None])
        Rij[:, 0, 0] -= 1./3
        Rij[:, 1, 1] -= 1./3
        Rij[:, 2, 2] -= 1./3
        self.statistics['I2(t)'] = np.sqrt(np.einsum('...ij,...ij', Rij, Rij, optimize = True) / 6)
        self.statistics['I3(t)'] = np.cbrt(np.einsum('...ij,...jk,...ki', Rij, Rij, Rij, optimize = True) / 6)
        return None
341
342
343
344
    def compute_time_averages(self):
        """Compute easy stats.

        Further computation of statistics based on the contents of
345
        ``simname_cache.h5``.
346
347
348
349
350
351
        Standard quantities are as follows
        (consistent with [Ishihara]_):

        .. math::

            U_{\\textrm{int}}(t) = \\sqrt{\\frac{2E(t)}{3}}, \\hskip .5cm
352
353
354
            L_{\\textrm{int}} = \\frac{\pi}{2U_{int}^2} \\int \\frac{dk}{k} E(k), \\hskip .5cm
            T_{\\textrm{int}} =
            \\frac{L_{\\textrm{int}}}{U_{\\textrm{int}}}
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373

            \\eta_K = \\left(\\frac{\\nu^3}{\\varepsilon}\\right)^{1/4}, \\hskip .5cm
            \\tau_K = \\left(\\frac{\\nu}{\\varepsilon}\\right)^{1/2}, \\hskip .5cm
            \\lambda = \\sqrt{\\frac{15 \\nu U_{\\textrm{int}}^2}{\\varepsilon}}

            Re = \\frac{U_{\\textrm{int}} L_{\\textrm{int}}}{\\nu}, \\hskip
            .5cm
            R_{\\lambda} = \\frac{U_{\\textrm{int}} \\lambda}{\\nu}

        .. [Ishihara] T. Ishihara et al,
                      *Small-scale statistics in high-resolution direct numerical
                      simulation of turbulence: Reynolds number dependence of
                      one-point velocity gradient statistics*.
                      J. Fluid Mech.,
                      **592**, 335-366, 2007
        """
        self.statistics['Uint(t)'] = np.sqrt(2*self.statistics['energy(t)'] / 3)
        for key in ['energy',
                    'enstrophy',
374
375
                    'mean_trS2',
                    'Uint']:
376
377
            if key + '(t)' in self.statistics.keys():
                self.statistics[key] = np.average(self.statistics[key + '(t)'], axis = 0)
378
        self.statistics['vel_max'] = np.max(self.statistics['vel_max(t)'])
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
        for suffix in ['', '(t)']:
            self.statistics['diss'    + suffix] = (self.parameters['nu'] *
                                                   self.statistics['enstrophy' + suffix]*2)
            self.statistics['etaK'    + suffix] = (self.parameters['nu']**3 /
                                                   self.statistics['diss' + suffix])**.25
            self.statistics['tauK'    + suffix] =  (self.parameters['nu'] /
                                                    self.statistics['diss' + suffix])**.5
            self.statistics['lambda' + suffix] = (15 * self.parameters['nu'] *
                                                  self.statistics['Uint' + suffix]**2 /
                                                  self.statistics['diss' + suffix])**.5
            self.statistics['Rlambda' + suffix] = (self.statistics['Uint' + suffix] *
                                                   self.statistics['lambda' + suffix] /
                                                   self.parameters['nu'])
            self.statistics['kMeta' + suffix] = (self.statistics['kM'] *
                                                 self.statistics['etaK' + suffix])
            if self.parameters['dealias_type'] == 1:
                self.statistics['kMeta' + suffix] *= 0.8
Cristian Lalescu's avatar
Cristian Lalescu committed
396
        self.statistics['Lint'] = ((np.pi /
397
                                    (2*self.statistics['Uint']**2)) *
398
399
                                   np.sum(self.statistics['energy(k)'][1:-2] /
                                          self.statistics['kshell'][1:-2]))
400
401
402
        self.statistics['Re'] = (self.statistics['Uint'] *
                                 self.statistics['Lint'] /
                                 self.parameters['nu'])
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
        self.statistics['Tint'] = self.statistics['Lint'] / self.statistics['Uint']
        self.statistics['Taylor_microscale'] = self.statistics['lambda']
        return None
    def set_plt_style(
            self,
            style = {'dashes' : (None, None)}):
        self.style.update(style)
        return None
    def convert_complex_from_binary(
            self,
            field_name = 'vorticity',
            iteration = 0,
            file_name = None):
        """read the Fourier representation of a vector field.

        Read the binary file containing iteration ``iteration`` of the
        field ``field_name``, and write it in a ``.h5`` file.
        """
        data = np.memmap(
                os.path.join(self.work_dir,
                             self.simname + '_{0}_i{1:0>5x}'.format('c' + field_name, iteration)),
                dtype = self.ctype,
                mode = 'r',
                shape = (self.parameters['ny'],
                         self.parameters['nz'],
                         self.parameters['nx']//2+1,
                         3))
        if type(file_name) == type(None):
            file_name = self.simname + '_{0}_i{1:0>5x}.h5'.format('c' + field_name, iteration)
            file_name = os.path.join(self.work_dir, file_name)
        f = h5py.File(file_name, 'a')
        f[field_name + '/complex/{0}'.format(iteration)] = data
        f.close()
        return None
    def write_par(
            self,
Cristian Lalescu's avatar
Cristian Lalescu committed
439
            iter0 = 0):
440
441
442
        assert (self.parameters['niter_todo'] % self.parameters['niter_stat'] == 0)
        assert (self.parameters['niter_todo'] % self.parameters['niter_out']  == 0)
        assert (self.parameters['niter_out']  % self.parameters['niter_stat'] == 0)
443
        if self.dns_type in ['NSVEparticles_no_output', 'NSVEcomplex_particles', 'NSVEparticles', 'static_field', 'static_field_with_ghost_collisions']:
444
445
            assert (self.parameters['niter_todo'] % self.parameters['niter_part'] == 0)
            assert (self.parameters['niter_out']  % self.parameters['niter_part'] == 0)
446
447
        _code.write_par(self, iter0 = iter0)
        with h5py.File(self.get_data_file_name(), 'r+') as ofile:
448
            ofile['code_info/exec_name'] = self.name
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
            kspace = self.get_kspace()
            for k in kspace.keys():
                ofile['kspace/' + k] = kspace[k]
            nshells = kspace['nshell'].shape[0]
            kspace = self.get_kspace()
            nshells = kspace['nshell'].shape[0]
            vec_stat_datasets = ['velocity', 'vorticity']
            scal_stat_datasets = []
            for k in vec_stat_datasets:
                time_chunk = 2**20//(8*3*3*nshells)
                time_chunk = max(time_chunk, 1)
                ofile.create_dataset('statistics/spectra/' + k + '_' + k,
                                     (1, nshells, 3, 3),
                                     chunks = (time_chunk, nshells, 3, 3),
                                     maxshape = (None, nshells, 3, 3),
                                     dtype = np.float64)
                time_chunk = 2**20//(8*4*10)
                time_chunk = max(time_chunk, 1)
                a = ofile.create_dataset('statistics/moments/' + k,
                                     (1, 10, 4),
                                     chunks = (time_chunk, 10, 4),
                                     maxshape = (None, 10, 4),
                                     dtype = np.float64)
                time_chunk = 2**20//(8*4*self.parameters['histogram_bins'])
                time_chunk = max(time_chunk, 1)
                ofile.create_dataset('statistics/histograms/' + k,
                                     (1,
                                      self.parameters['histogram_bins'],
                                      4),
                                     chunks = (time_chunk,
                                               self.parameters['histogram_bins'],
                                               4),
                                     maxshape = (None,
                                                 self.parameters['histogram_bins'],
                                                 4),
                                     dtype = np.int64)
            ofile['checkpoint'] = int(0)
486
487
            if self.dns_type in ['static_field_with_ghost_collisions']:
                ofile.create_group('statistics/collisions')
Cristian Lalescu's avatar
Cristian Lalescu committed
488
        if (self.dns_type in ['NSVE', 'NSVE_no_output']):
489
490
            return None
        return None
491
    def job_parser_arguments(
492
493
            self,
            parser):
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
        parser.add_argument(
                '--ncpu',
                type = int,
                dest = 'ncpu',
                default = -1)
        parser.add_argument(
                '--np', '--nprocesses',
                metavar = 'NPROCESSES',
                help = 'number of mpi processes to use',
                type = int,
                dest = 'nb_processes',
                default = 4)
        parser.add_argument(
                '--ntpp', '--nthreads-per-process',
                type = int,
                dest = 'nb_threads_per_process',
                metavar = 'NTHREADS_PER_PROCESS',
                help = 'number of threads to use per MPI process',
                default = 1)
513
514
515
516
        parser.add_argument(
                '--no-debug',
                action = 'store_true',
                dest = 'no_debug')
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
        parser.add_argument(
                '--no-submit',
                action = 'store_true',
                dest = 'no_submit')
        parser.add_argument(
                '--environment',
                type = str,
                dest = 'environment',
                default = None)
        parser.add_argument(
                '--minutes',
                type = int,
                dest = 'minutes',
                default = 5,
                help = 'If environment supports it, this is the requested wall-clock-limit.')
        parser.add_argument(
               '--njobs',
               type = int, dest = 'njobs',
               default = 1)
        return None
    def simulation_parser_arguments(
            self,
            parser):
        parser.add_argument(
                '--simname',
                type = str, dest = 'simname',
                default = 'test')
        parser.add_argument(
545
               '-n', '--grid-size',
546
547
548
549
550
               type = int,
               dest = 'n',
               default = 32,
               metavar = 'N',
               help = 'code is run by default in a grid of NxNxN')
551
552
553
554
555
556
557
558
        for coord in ['x', 'y', 'z']:
            parser.add_argument(
                   '--L{0}'.format(coord), '--box-length-{0}'.format(coord),
                   type = float,
                   dest = 'L{0}'.format(coord),
                   default = 2.0,
                   metavar = 'length{0}'.format(coord),
                   help = 'length of the box in the {0} direction will be `length{0} x pi`'.format(coord))
559
560
561
562
563
564
565
566
567
        parser.add_argument(
                '--wd',
                type = str, dest = 'work_dir',
                default = './')
        parser.add_argument(
                '--precision',
                choices = ['single', 'double'],
                type = str,
                default = 'single')
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
        parser.add_argument(
                '--src-wd',
                type = str,
                dest = 'src_work_dir',
                default = '')
        parser.add_argument(
                '--src-simname',
                type = str,
                dest = 'src_simname',
                default = '')
        parser.add_argument(
                '--src-iteration',
                type = int,
                dest = 'src_iteration',
                default = 0)
        parser.add_argument(
               '--kMeta',
               type = float,
               dest = 'kMeta',
               default = 2.0)
        parser.add_argument(
               '--dtfactor',
               type = float,
               dest = 'dtfactor',
               default = 0.5,
               help = 'dt is computed as DTFACTOR / N')
594
595
596
597
        return None
    def particle_parser_arguments(
            self,
            parser):
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
        parser.add_argument(
               '--particle-rand-seed',
               type = int,
               dest = 'particle_rand_seed',
               default = None)
        parser.add_argument(
               '--pclouds',
               type = int,
               dest = 'pclouds',
               default = 1,
               help = ('number of particle clouds. Particle "clouds" '
                       'consist of particles distributed according to '
                       'pcloud-type.'))
        parser.add_argument(
                '--pcloud-type',
                choices = ['random-cube',
                           'regular-cube'],
                dest = 'pcloud_type',
                default = 'random-cube')
        parser.add_argument(
               '--particle-cloud-size',
               type = float,
               dest = 'particle_cloud_size',
               default = 2*np.pi)
        return None
623
624
625
626
627
628
629
630
631
632
633
634
635
636
    def add_parser_arguments(
            self,
            parser):
        subparsers = parser.add_subparsers(
                dest = 'DNS_class',
                help = 'type of simulation to run')
        subparsers.required = True
        parser_NSVE = subparsers.add_parser(
                'NSVE',
                help = 'plain Navier-Stokes vorticity formulation')
        self.simulation_parser_arguments(parser_NSVE)
        self.job_parser_arguments(parser_NSVE)
        self.parameters_to_parser_arguments(parser_NSVE)

637
638
639
640
641
642
643
644
645
646
        parser_NSVE_no_output = subparsers.add_parser(
                'NSVE_no_output',
                help = 'plain Navier-Stokes vorticity formulation, checkpoints are NOT SAVED')
        self.simulation_parser_arguments(parser_NSVE_no_output)
        self.job_parser_arguments(parser_NSVE_no_output)
        self.parameters_to_parser_arguments(parser_NSVE_no_output)

        parser_NSVEparticles_no_output = subparsers.add_parser(
                'NSVEparticles_no_output',
                help = 'plain Navier-Stokes vorticity formulation, with basic fluid tracers, checkpoints are NOT SAVED')
647

648
649
650
651
        parser_static_field = subparsers.add_parser(
                'static_field',
                help = 'static field with basic fluid tracers')

652
653
654
655
        parser_static_field_with_ghost_collisions = subparsers.add_parser(
                'static_field_with_ghost_collisions',
                help = 'static field with basic fluid tracers and ghost collisions')

656
657
658
        parser_NSVEp2 = subparsers.add_parser(
                'NSVEparticles',
                help = 'plain Navier-Stokes vorticity formulation, with basic fluid tracers')
659
660

        parser_NSVEp2p = subparsers.add_parser(
661
662
                'NSVEcomplex_particles',
                help = 'plain Navier-Stokes vorticity formulation, with oriented active particles')
Cristian Lalescu's avatar
Cristian Lalescu committed
663

664
665
666
667
        parser_NSVEp_extra = subparsers.add_parser(
                'NSVEp_extra_sampling',
                help = 'plain Navier-Stokes vorticity formulation, with basic fluid tracers, that sample velocity gradient, as well as pressure and its derivatives.')

668
        for parser in ['NSVEparticles_no_output', 'NSVEp2', 'NSVEp2p', 'NSVEp_extra', 'static_field', 'static_field_with_ghost_collisions']:
Cristian Lalescu's avatar
Cristian Lalescu committed
669
670
671
672
673
674
675
            eval('self.simulation_parser_arguments({0})'.format('parser_' + parser))
            eval('self.job_parser_arguments({0})'.format('parser_' + parser))
            eval('self.particle_parser_arguments({0})'.format('parser_' + parser))
            eval('self.parameters_to_parser_arguments({0})'.format('parser_' + parser))
            eval('self.parameters_to_parser_arguments('
                    'parser_{0},'
                    'self.NSVEp_extra_parameters)'.format(parser))
676
        return None
677
678
    def prepare_launch(
            self,
679
680
            args = [],
            extra_parameters = None):
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
        """Set up reasonable parameters.

        With the default Lundgren forcing applied in the band [2, 4],
        we can estimate the dissipation, therefore we can estimate
        :math:`k_M \\eta_K` and constrain the viscosity.

        In brief, the command line parameter :math:`k_M \\eta_K` is
        used in the following formula for :math:`\\nu` (:math:`N` is the
        number of real space grid points per coordinate):

        .. math::

            \\nu = \\left(\\frac{2 k_M \\eta_K}{N} \\right)^{4/3}

        With this choice, the average dissipation :math:`\\varepsilon`
        will be close to 0.4, and the integral scale velocity will be
        close to 0.77, yielding the approximate value for the Taylor
        microscale and corresponding Reynolds number:

        .. math::

            \\lambda \\approx 4.75\\left(\\frac{2 k_M \\eta_K}{N} \\right)^{4/6}, \\hskip .5in
            R_\\lambda \\approx 3.7 \\left(\\frac{N}{2 k_M \\eta_K} \\right)^{4/6}

        """
        opt = _code.prepare_launch(self, args = args)
707
708
        self.set_precision(opt.precision)
        self.dns_type = opt.DNS_class
709
        self.name = self.dns_type + '-' + self.fluid_precision + '-v' + TurTLE.__version__
710
        # merge parameters if needed
711
        if self.dns_type in ['NSVEparticles', 'NSVEcomplex_particles', 'NSVEparticles_no_output', 'NSVEp_extra_sampling', 'static_field', 'static_field_with_ghost_collisions']:
712
713
            for k in self.NSVEp_extra_parameters.keys():
                self.parameters[k] = self.NSVEp_extra_parameters[k]
714
715
716
717
        if type(extra_parameters) != type(None):
            if self.dns_type in extra_parameters.keys():
                for k in extra_parameters[self.dns_type].keys():
                    self.parameters[k] = extra_parameters[self.dns_type][k]
718
719
720
721
        if ((self.parameters['niter_todo'] % self.parameters['niter_out']) != 0):
            self.parameters['niter_out'] = self.parameters['niter_todo']
        if len(opt.src_work_dir) == 0:
            opt.src_work_dir = os.path.realpath(opt.work_dir)
722
723
724
725
        if type(opt.dkx) == type(None):
            opt.dkx = 2. / opt.Lx
        if type(opt.dky) == type(None):
            opt.dky = 2. / opt.Ly
Cristian Lalescu's avatar
Cristian Lalescu committed
726
        if type(opt.dkz) == type(None):
727
            opt.dkz = 2. / opt.Lz
728
729
730
731
732
733
        if type(opt.nx) == type(None):
            opt.nx = opt.n
        if type(opt.ny) == type(None):
            opt.ny = opt.n
        if type(opt.nz) == type(None):
            opt.nz = opt.n
734
735
736
737
738
739
        if type(opt.fk0) == type(None):
            opt.fk0 = self.parameters['fk0']
        if type(opt.fk1) == type(None):
            opt.fk1 = self.parameters['fk1']
        if type(opt.injection_rate) == type(None):
            opt.injection_rate = self.parameters['injection_rate']
Cristian Lalescu's avatar
Cristian Lalescu committed
740
        if type(opt.dealias_type) == type(None):
741
            opt.dealias_type = self.parameters['dealias_type']
742
743
744
745
746
        if (opt.nx > opt.n or
            opt.ny > opt.n or
            opt.nz > opt.n):
            opt.n = min(opt.nx, opt.ny, opt.nz)
            print("Warning: '-n' parameter changed to minimum of nx, ny, nz. This affects the computation of nu.")
Chichi Lalescu's avatar
Chichi Lalescu committed
747
        self.parameters['dt'] = (opt.dtfactor / opt.n)
748
        self.parameters['nu'] = (opt.kMeta * 2 / opt.n)**(4./3)
Cristian Lalescu's avatar
Cristian Lalescu committed
749
750
751
752
753
        # check value of kMax
        kM = opt.n * 0.5
        if opt.dealias_type == 1:
            kM *= 0.8
        # tweak forcing/viscosity based on forcint type
Cristian Lalescu's avatar
Cristian Lalescu committed
754
        if opt.forcing_type == 'linear':
755
756
757
758
759
            # custom famplitude for 288 and 576
            if opt.n == 288:
                self.parameters['famplitude'] = 0.45
            elif opt.n == 576:
                self.parameters['famplitude'] = 0.47
Cristian Lalescu's avatar
Cristian Lalescu committed
760
        elif opt.forcing_type == 'fixed_energy_injection_rate':
761
762
            # use the fact that mean dissipation rate is equal to injection rate
            self.parameters['nu'] = (
Cristian Lalescu's avatar
Cristian Lalescu committed
763
                    opt.injection_rate *
764
                    (opt.kMeta / kM)**4)**(1./3)
765
        elif opt.forcing_type == 'fixed_energy':
Cristian Lalescu's avatar
Cristian Lalescu committed
766
767
            kf = 1. / (1./opt.fk0 +
                       1./opt.fk1)
768
769
770
771
            self.parameters['nu'] = (
                    (opt.kMeta / kM)**(4./3) *
                    (np.pi / kf)**(1./3) *
                    (2*self.parameters['energy'] / 3)**0.5)
772
773
774
775
        if type(opt.checkpoints_per_file) == type(None):
            # hardcoded FFTW complex representation size
            field_size = 3*(opt.nx+2)*opt.ny*opt.nz*self.fluid_dtype.itemsize
            checkpoint_size = field_size
776
            if self.dns_type in ['static_field', 'NSVEparticles', 'NSVEcomplex_particles', 'NSVEparticles_no_output', 'NSVEp_extra_sampling', 'static_field_with_ghost_collisions']:
777
778
779
                rhs_size = self.parameters['tracers0_integration_steps']
                if type(opt.tracers0_integration_steps) != type(None):
                    rhs_size = opt.tracers0_integration_steps
780
781
782
783
                nparticles = opt.nparticles
                if type(nparticles) == type(None):
                    nparticles = self.NSVEp_extra_parameters['nparticles']
                particle_size = (1+rhs_size)*3*nparticles*8
784
785
786
                checkpoint_size += particle_size
            if checkpoint_size < 1e9:
                opt.checkpoints_per_file = int(1e9 / checkpoint_size)
787
788
789
790
791
792
793
794
795
796
797
798
799
        self.pars_from_namespace(opt)
        return opt
    def launch(
            self,
            args = [],
            **kwargs):
        opt = self.prepare_launch(args = args)
        self.launch_jobs(opt = opt, **kwargs)
        return None
    def get_checkpoint_0_fname(self):
        return os.path.join(
                    self.work_dir,
                    self.simname + '_checkpoint_0.h5')
800
    def get_checkpoint_fname(self, iteration = 0):
801
        checkpoint = (iteration // self.parameters['niter_out']) // self.parameters['checkpoints_per_file']
802
803
804
        return os.path.join(
                    self.work_dir,
                    self.simname + '_checkpoint_{0}.h5'.format(checkpoint))
805
806
807
    def generate_tracer_state(
            self,
            rseed = None,
808
809
810
            species = 0,
            integration_steps = None,
            ncomponents = 3):
811
        try:
812
813
814
815
816
            if type(integration_steps) == type(None):
                integration_steps = self.NSVEp_extra_parameters['tracers0_integration_steps']
            if 'tracers{0}_integration_steps'.format(species) in self.parameters.keys():
                integration_steps = self.parameters['tracers{0}_integration_steps'.format(species)]
            if self.dns_type == 'NSVEcomplex_particles' and species == 0:
817
818
819
                ncomponents = 6
            with h5py.File(self.get_checkpoint_0_fname(), 'a') as data_file:
                nn = self.parameters['nparticles']
820
821
822
823
                if not 'tracers{0}'.format(species) in data_file.keys():
                    data_file.create_group('tracers{0}'.format(species))
                    data_file.create_group('tracers{0}/rhs'.format(species))
                    data_file.create_group('tracers{0}/state'.format(species))
824
825
                data_file['tracers{0}/rhs'.format(species)].create_dataset(
                        '0',
826
                        shape = (integration_steps, nn, ncomponents,),
827
                        dtype = np.float)
828
                dset = data_file['tracers{0}/state'.format(species)].create_dataset(
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
                        '0',
                        shape = (nn, ncomponents,),
                        dtype = np.float)
                if not type(rseed) == type(None):
                    np.random.seed(rseed)
                cc = int(0)
                batch_size = int(1e6)
                def get_random_phases(npoints):
                    return np.random.random(
                                (npoints, 3))*2*np.pi
                def get_random_versors(npoints):
                    bla = np.random.normal(
                            size = (npoints, 3))
                    bla  /= np.sum(bla**2, axis = 1)[:, None]**.5
                    return bla
                while nn > 0:
                    if nn > batch_size:
                        dset[cc*batch_size:(cc+1)*batch_size, :3] = get_random_phases(batch_size)
                        if dset.shape[1] == 6:
                            dset[cc*batch_size:(cc+1)*batch_size, 3:] = get_random_versors(batch_size)
                        nn -= batch_size
                    else:
                        dset[cc*batch_size:cc*batch_size+nn, :3] = get_random_phases(nn)
                        if dset.shape[1] == 6:
                            dset[cc*batch_size:cc*batch_size+nn, 3:] = get_random_versors(nn)
                        nn = 0
                    cc += 1
        except Exception as e:
            print(e)
858
        return None
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
    def generate_vector_field(
            self,
            rseed = 7547,
            spectra_slope = 1.,
            amplitude = 1.,
            iteration = 0,
            field_name = 'vorticity',
            write_to_file = False,
            # to switch to constant field, use generate_data_3D_uniform
            # for scalar_generator
            scalar_generator = tools.generate_data_3D):
        """generate vector field.

        The generated field is not divergence free, but it has the proper
        shape.

        :param rseed: seed for random number generator
        :param spectra_slope: spectrum of field will look like k^(-p)
        :param amplitude: all amplitudes are multiplied with this value
        :param iteration: the field is written at this iteration
        :param field_name: the name of the field being generated
        :param write_to_file: should we write the field to file?
        :param scalar_generator: which function to use for generating the
            individual components.
883
884
            Possible values: TurTLE.tools.generate_data_3D,
            TurTLE.tools.generate_data_3D_uniform
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
        :type rseed: int
        :type spectra_slope: float
        :type amplitude: float
        :type iteration: int
        :type field_name: str
        :type write_to_file: bool
        :type scalar_generator: function

        :returns: ``Kdata``, a complex valued 4D ``numpy.array`` that uses the
            transposed FFTW layout.
            Kdata[ky, kz, kx, i] is the amplitude of mode (kx, ky, kz) for
            the i-th component of the field.
            (i.e. x is the fastest index and z the slowest index in the
            real-space representation).
        """
        np.random.seed(rseed)
        Kdata00 = scalar_generator(
902
903
904
                self.parameters['nz'],
                self.parameters['ny'],
                self.parameters['nx'],
905
906
907
                p = spectra_slope,
                amplitude = amplitude).astype(self.ctype)
        Kdata01 = scalar_generator(
908
909
910
                self.parameters['nz'],
                self.parameters['ny'],
                self.parameters['nx'],
911
912
913
                p = spectra_slope,
                amplitude = amplitude).astype(self.ctype)
        Kdata02 = scalar_generator(
914
915
916
                self.parameters['nz'],
                self.parameters['ny'],
                self.parameters['nx'],
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
                p = spectra_slope,
                amplitude = amplitude).astype(self.ctype)
        Kdata0 = np.zeros(
                Kdata00.shape + (3,),
                Kdata00.dtype)
        Kdata0[..., 0] = Kdata00
        Kdata0[..., 1] = Kdata01
        Kdata0[..., 2] = Kdata02
        Kdata1 = tools.padd_with_zeros(
                Kdata0,
                self.parameters['nz'],
                self.parameters['ny'],
                self.parameters['nx'])
        if write_to_file:
            Kdata1.tofile(
                    os.path.join(self.work_dir,
                                 self.simname + "_c{0}_i{1:0>5x}".format(field_name, iteration)))
        return Kdata1
935
936
937
938
939
940
941
942
943
944
945
    def copy_complex_field(
            self,
            src_file_name,
            src_dset_name,
            dst_file,
            dst_dset_name,
            make_link = True):
        # I define a min_shape thingie, but for now I only trust this method for
        # the case of increasing/decreasing by the same factor in all directions.
        # in principle we could write something more generic, but i'm not sure
        # how complicated that would be
946
947
        dst_shape = (self.parameters['ny'],
                     self.parameters['nz'],
948
949
950
951
                     (self.parameters['nx']+2) // 2,
                     3)
        src_file = h5py.File(src_file_name, 'r')
        if (src_file[src_dset_name].shape == dst_shape):
952
953
954
            dst_file[dst_dset_name] = h5py.ExternalLink(
                    src_file_name,
                    src_dset_name)
955
956
957
958
959
        else:
            min_shape = (min(dst_shape[0], src_file[src_dset_name].shape[0]),
                         min(dst_shape[1], src_file[src_dset_name].shape[1]),
                         min(dst_shape[2], src_file[src_dset_name].shape[2]),
                         3)
960
            src_shape = src_file[src_dset_name].shape
961
962
963
            dst_file.create_dataset(
                    dst_dset_name,
                    shape = dst_shape,
964
965
                    dtype = np.dtype(self.ctype),
                    fillvalue = complex(0))
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
            for kz in range(min_shape[0]//2):
                dst_file[dst_dset_name][kz,:min_shape[1]//2, :min_shape[2]] = \
                        src_file[src_dset_name][kz, :min_shape[1]//2, :min_shape[2]]
                dst_file[dst_dset_name][kz,
                                        dst_shape[1] - min_shape[1]//2+1:,
                                        :min_shape[2]] = \
                        src_file[src_dset_name][kz,
                                                src_shape[1] - min_shape[1]//2+1,
                                                :min_shape[2]]
                if kz > 0:
                    dst_file[dst_dset_name][-kz,:min_shape[1]//2, :min_shape[2]] = \
                            src_file[src_dset_name][-kz, :min_shape[1]//2, :min_shape[2]]
                    dst_file[dst_dset_name][-kz,
                                            dst_shape[1] - min_shape[1]//2+1:,
                                            :min_shape[2]] = \
                            src_file[src_dset_name][-kz,
                                                    src_shape[1] - min_shape[1]//2+1,
                                                    :min_shape[2]]
984
        return None
985
986
987
988
989
990
991
992
993
    def generate_particle_data(
            self,
            opt = None):
        if self.parameters['nparticles'] > 0:
            self.generate_tracer_state(
                    species = 0,
                    rseed = opt.particle_rand_seed)
            if not os.path.exists(self.get_particle_file_name()):
                with h5py.File(self.get_particle_file_name(), 'w') as particle_file:
Cristian Lalescu's avatar
Cristian Lalescu committed
994
                    particle_file.create_group('tracers0/position')
995
996
                    particle_file.create_group('tracers0/velocity')
                    particle_file.create_group('tracers0/acceleration')
997
                    if self.dns_type in ['NSVEcomplex_particles']:
998
                        particle_file.create_group('tracers0/orientation')
999
                        particle_file.create_group('tracers0/velocity_gradient')
1000
1001
1002
1003
1004
                    if self.dns_type in ['NSVEp_extra_sampling']:
                        particle_file.create_group('tracers0/velocity_gradient')
                        particle_file.create_group('tracers0/pressure')
                        particle_file.create_group('tracers0/pressure_gradient')
                        particle_file.create_group('tracers0/pressure_Hessian')
1005
        return None
Cristian Lalescu's avatar
Cristian Lalescu committed
1006
    def generate_initial_condition(
1007
            self,
Cristian Lalescu's avatar
Cristian Lalescu committed
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
            opt = None):
        # take care of fields' initial condition
        # first, check if initial field exists
        need_field = False
        if not os.path.exists(self.get_checkpoint_0_fname()):
            need_field = True
        else:
            f = h5py.File(self.get_checkpoint_0_fname(), 'r')
            try:
                dset = f['vorticity/complex/0']
                need_field = (dset.shape == (self.parameters['ny'],
                                             self.parameters['nz'],
                                             self.parameters['nx']//2+1,
                                             3))
            except:
1023
                need_field = True
Cristian Lalescu's avatar
Cristian Lalescu committed
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
            f.close()
        if need_field:
            f = h5py.File(self.get_checkpoint_0_fname(), 'a')
            if len(opt.src_simname) > 0:
                source_cp = 0
                src_file = 'not_a_file'
                while True:
                    src_file = os.path.join(
                        os.path.realpath(opt.src_work_dir),
                        opt.src_simname + '_checkpoint_{0}.h5'.format(source_cp))
                    f0 = h5py.File(src_file, 'r')
                    if '{0}'.format(opt.src_iteration) in f0['vorticity/complex'].keys():
                        f0.close()
                        break
                    source_cp += 1
                self.copy_complex_field(
                        src_file,
                        'vorticity/complex/{0}'.format(opt.src_iteration),
                        f,
                        'vorticity/complex/{0}'.format(0))
1044
            else:
Cristian Lalescu's avatar
Cristian Lalescu committed
1045
1046
1047
1048
1049
1050
1051
                data = self.generate_vector_field(
                       write_to_file = False,
                       spectra_slope = 2.0,
                       amplitude = 0.05)
                f['vorticity/complex/{0}'.format(0)] = data
            f.close()
        # now take care of particles' initial condition
1052
        if self.dns_type in ['static_field', 'NSVEparticles', 'NSVEcomplex_particles', 'NSVEparticles_no_output', 'NSVEp_extra_sampling', 'static_field_with_ghost_collisions']:
Cristian Lalescu's avatar
Cristian Lalescu committed
1053
1054
1055
1056
1057
1058
            self.generate_particle_data(opt = opt)
        return None
    def launch_jobs(
            self,
            opt = None):
        if not os.path.exists(self.get_data_file_name()):
1059
            self.generate_initial_condition(opt = opt)
Cristian Lalescu's avatar
Cristian Lalescu committed
1060
            self.write_par()
1061
1062
1063
1064
1065
1066
        self.run(
                nb_processes = opt.nb_processes,
                nb_threads_per_process = opt.nb_threads_per_process,
                njobs = opt.njobs,
                hours = opt.minutes // 60,
                minutes = opt.minutes % 60,
1067
1068
                no_submit = opt.no_submit,
                no_debug = opt.no_debug)
1069
        return None
Cristian Lalescu's avatar
Cristian Lalescu committed
1070