p2p_distr_mpi.hpp 43.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#ifndef P2P_DISTR_MPI_HPP
#define P2P_DISTR_MPI_HPP

#include <mpi.h>

#include <vector>
#include <memory>
#include <cassert>

#include <type_traits>
#include <omp.h>
#include <algorithm>

#include "scope_timer.hpp"
#include "particles_utils.hpp"
#include "p2p_tree.hpp"
17
#include "lock_free_bool_array.hpp"
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

template <class partsize_t, class real_number>
class p2p_distr_mpi {
protected:
    static const int MaxNbRhs = 100;

    enum MpiTag{
        TAG_NB_PARTICLES,
        TAG_POSITION_PARTICLES,
        TAG_RESULT_PARTICLES,
    };

    struct NeighborDescriptor{
        partsize_t nbParticlesToExchange;
        int destProc;
        int nbLevelsToExchange;
        bool isRecv;

        std::unique_ptr<real_number[]> toRecvAndMerge;
        std::unique_ptr<real_number[]> toCompute;
        std::unique_ptr<real_number[]> results;
    };

    enum Action{
42
        NOTHING_TODO = 512,
43
44
45
        RECV_PARTICLES,
        COMPUTE_PARTICLES,
        RELEASE_BUFFER_PARTICLES,
46
        MERGE_PARTICLES
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
    };

    MPI_Comm current_com;

    int my_rank;
    int nb_processes;
    int nb_processes_involved;

    const std::pair<int,int> current_partition_interval;
    const int current_partition_size;
    const std::array<size_t,3> field_grid_dim;

    std::unique_ptr<int[]> partition_interval_size_per_proc;
    std::unique_ptr<int[]> partition_interval_offset_per_proc;

    std::unique_ptr<partsize_t[]> current_offset_particles_for_partition;

    std::vector<std::pair<Action,int>> whatNext;
    std::vector<MPI_Request> mpiRequests;
    std::vector<NeighborDescriptor> neigDescriptors;

    std::array<real_number,3> spatial_box_width;
    std::array<real_number,3> spatial_box_offset;

71
    const real_number cutoff_radius_compute;
72
    const int nb_cells_factor;
73
74
75
    const real_number cutoff_radius;
    std::array<long int,3> nb_cell_levels;

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
    template <class DataType, int sizeElement>
    static void permute_copy(const partsize_t offsetIdx, const partsize_t nbElements,
                             const std::pair<long int,partsize_t> permutation[],
                             DataType data[], std::vector<unsigned char>* buffer){
        buffer->resize(nbElements*sizeof(DataType)*sizeElement);
        DataType* dataBuffer = reinterpret_cast<DataType*>(buffer->data());

        // Permute
        for(partsize_t idxPart = 0 ; idxPart < nbElements ; ++idxPart){
            const partsize_t srcData = permutation[idxPart].second;
            const partsize_t destData = idxPart;
            for(int idxVal = 0 ; idxVal < sizeElement ; ++idxVal){
                dataBuffer[destData*sizeElement + idxVal]
                        = data[srcData*sizeElement + idxVal];
            }
        }

        // Copy back
        for(partsize_t idxPart = 0 ; idxPart < nbElements ; ++idxPart){
            const partsize_t srcData = idxPart;
            const partsize_t destData = idxPart+offsetIdx;
            for(int idxVal = 0 ; idxVal < sizeElement ; ++idxVal){
                data[destData*sizeElement + idxVal]
                        = dataBuffer[srcData*sizeElement + idxVal];
            }
        }
    }

104
    static int foundGridFactor(const real_number in_cutoff_radius, const std::array<real_number,3>& in_spatial_box_width){
105
106
107
108
        int idx_factor = 1;
        while(in_cutoff_radius <= in_spatial_box_width[IDX_Z]/real_number(idx_factor+1)){
            idx_factor += 1;
        }
109
        return idx_factor;
110
111
    }

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
public:
    ////////////////////////////////////////////////////////////////////////////

    p2p_distr_mpi(MPI_Comm in_current_com,
                     const std::pair<int,int>& in_current_partitions,
                     const std::array<size_t,3>& in_field_grid_dim,
                     const std::array<real_number,3>& in_spatial_box_width,
                     const std::array<real_number,3>& in_spatial_box_offset,
                     const real_number in_cutoff_radius)
        : current_com(in_current_com),
            my_rank(-1), nb_processes(-1),nb_processes_involved(-1),
            current_partition_interval(in_current_partitions),
            current_partition_size(current_partition_interval.second-current_partition_interval.first),
            field_grid_dim(in_field_grid_dim),
            spatial_box_width(in_spatial_box_width), spatial_box_offset(in_spatial_box_offset),
127
            cutoff_radius_compute(in_cutoff_radius),
128
129
            nb_cells_factor(foundGridFactor(in_cutoff_radius, in_spatial_box_width)),
            cutoff_radius(in_spatial_box_width[IDX_Z]/real_number(nb_cells_factor)){
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

        AssertMpi(MPI_Comm_rank(current_com, &my_rank));
        AssertMpi(MPI_Comm_size(current_com, &nb_processes));

        partition_interval_size_per_proc.reset(new int[nb_processes]);
        AssertMpi( MPI_Allgather( const_cast<int*>(&current_partition_size), 1, MPI_INT,
                                  partition_interval_size_per_proc.get(), 1, MPI_INT,
                                  current_com) );
        assert(partition_interval_size_per_proc[my_rank] == current_partition_size);

        partition_interval_offset_per_proc.reset(new int[nb_processes+1]);
        partition_interval_offset_per_proc[0] = 0;
        for(int idxProc = 0 ; idxProc < nb_processes ; ++idxProc){
            partition_interval_offset_per_proc[idxProc+1] = partition_interval_offset_per_proc[idxProc] + partition_interval_size_per_proc[idxProc];
        }

        current_offset_particles_for_partition.reset(new partsize_t[current_partition_size+1]);

        nb_processes_involved = nb_processes;
        while(nb_processes_involved != 0 && partition_interval_size_per_proc[nb_processes_involved-1] == 0){
            nb_processes_involved -= 1;
        }
        assert(nb_processes_involved != 0);
        for(int idx_proc_involved = 0 ; idx_proc_involved < nb_processes_involved ; ++idx_proc_involved){
            assert(partition_interval_size_per_proc[idx_proc_involved] != 0);
        }

        assert(int(field_grid_dim[IDX_Z]) == partition_interval_offset_per_proc[nb_processes_involved]);

159
160
161
        nb_cell_levels[IDX_X] = nb_cells_factor;
        nb_cell_levels[IDX_Y] = nb_cells_factor;
        nb_cell_levels[IDX_Z] = nb_cells_factor;
162
163
164
165
166
167
    }

    virtual ~p2p_distr_mpi(){}

    ////////////////////////////////////////////////////////////////////////////

168
169
170
171
172
173
174
175
    int getGridFactor() const{
        return nb_cells_factor;
    }

    real_number getGridCutoff() const{
        return cutoff_radius;
    }

176
177
178
179
180
    long int get_cell_coord_x_from_index(const long int index) const{
        return index % nb_cell_levels[IDX_X];
    }

    long int get_cell_coord_y_from_index(const long int index) const{
181
        return (index % (nb_cell_levels[IDX_X]*nb_cell_levels[IDX_Y]))
182
183
184
185
186
187
188
189
190
191
192
193
194
195
                / nb_cell_levels[IDX_X];
    }

    long int get_cell_coord_z_from_index(const long int index) const{
        return index / (nb_cell_levels[IDX_X]*nb_cell_levels[IDX_Y]);
    }

    long int first_cell_level_proc(const int dest_proc) const{
        const real_number field_section_width_z = spatial_box_width[IDX_Z]/real_number(field_grid_dim[IDX_Z]);
        return static_cast<long int>((field_section_width_z*real_number(partition_interval_offset_per_proc[dest_proc]))/cutoff_radius);
    }

    long int last_cell_level_proc(const int dest_proc) const{
        const real_number field_section_width_z = spatial_box_width[IDX_Z]/real_number(field_grid_dim[IDX_Z]);
196
        const long int limite = static_cast<long int>((field_section_width_z*real_number(partition_interval_offset_per_proc[dest_proc+1])
197
                                     - std::numeric_limits<real_number>::epsilon())/cutoff_radius);
198
199
200
201
202
        if(static_cast<real_number>(limite)*cutoff_radius
                == field_section_width_z*real_number(partition_interval_offset_per_proc[dest_proc+1])){
            return limite-1;
        }
        return limite;
203
204
    }

205
206
207
208
209
210
211
212
213
214
    real_number apply_pbc(real_number pos, IDXS_3D dim) const{
        while( pos < spatial_box_offset[dim] ){
            pos += spatial_box_width[dim];
        }
        while( spatial_box_width[dim]+spatial_box_offset[dim] <= pos){
            pos -= spatial_box_width[dim];
        }
        return pos;
    }

215
216
    std::array<long int,3> get_cell_coordinate(const real_number pos_x, const real_number pos_y,
                                               const real_number pos_z) const {
217
218
219
        const real_number diff_x = apply_pbc(pos_x,IDX_X) - spatial_box_offset[IDX_X];
        const real_number diff_y = apply_pbc(pos_y,IDX_Y) - spatial_box_offset[IDX_Y];
        const real_number diff_z = apply_pbc(pos_z,IDX_Z) - spatial_box_offset[IDX_Z];
220
221
222
223
224
225
226
227
228
229
230
231
232
233
        std::array<long int,3> coord;
        coord[IDX_X] = static_cast<long int>(diff_x/cutoff_radius);
        coord[IDX_Y] = static_cast<long int>(diff_y/cutoff_radius);
        coord[IDX_Z] = static_cast<long int>(diff_z/cutoff_radius);
        return coord;
    }

    long int get_cell_idx(const real_number pos_x, const real_number pos_y,
                          const real_number pos_z) const {
        std::array<long int,3> coord = get_cell_coordinate(pos_x, pos_y, pos_z);
        return ((coord[IDX_Z]*nb_cell_levels[IDX_Y])+coord[IDX_Y])*nb_cell_levels[IDX_X]+coord[IDX_X];
    }

    real_number compute_distance_r2(const real_number x1, const real_number y1, const real_number z1,
Berenger Bramas's avatar
Berenger Bramas committed
234
235
                                    const real_number x2, const real_number y2, const real_number z2,
                                    const real_number xshift_coef, const real_number yshift_coef, const real_number zshift_coef) const {
236
        real_number diff_x = std::abs(apply_pbc(x1,IDX_X)-apply_pbc(x2,IDX_X)+xshift_coef*spatial_box_width[IDX_X]);
Berenger Bramas's avatar
Berenger Bramas committed
237
        assert(diff_x <= 2*cutoff_radius);
238

239
        real_number diff_y = std::abs(apply_pbc(y1,IDX_X)-apply_pbc(y2,IDX_X)+yshift_coef*spatial_box_width[IDX_Y]);
Berenger Bramas's avatar
Berenger Bramas committed
240
        assert(diff_y <= 2*cutoff_radius);
241

242
        real_number diff_z = std::abs(apply_pbc(z1,IDX_X)-apply_pbc(z2,IDX_X)+zshift_coef*spatial_box_width[IDX_Z]);
Berenger Bramas's avatar
Berenger Bramas committed
243
        assert(diff_z <= 2*cutoff_radius);
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
244
245
246

        return (diff_x*diff_x) + (diff_y*diff_y) + (diff_z*diff_z);
    }
247

248
    template <class computer_class, int size_particle_positions, int size_particle_rhs>
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
    void compute_distr(computer_class& in_computer,
                       const partsize_t current_my_nb_particles_per_partition[],
                       real_number particles_positions[],
                       real_number particles_current_rhs[],
                       partsize_t inout_index_particles[]){
        TIMEZONE("compute_distr");

        // Some processes might not be involved
        if(nb_processes_involved <= my_rank){
            return;
        }

        const long int my_top_z_cell_level = last_cell_level_proc(my_rank);
        const long int my_down_z_cell_level = first_cell_level_proc(my_rank);
        const long int my_nb_cell_levels = 1+my_top_z_cell_level-my_down_z_cell_level;

        current_offset_particles_for_partition[0] = 0;
        partsize_t myTotalNbParticles = 0;
        for(int idxPartition = 0 ; idxPartition < current_partition_size ; ++idxPartition){
            myTotalNbParticles += current_my_nb_particles_per_partition[idxPartition];
            current_offset_particles_for_partition[idxPartition+1] = current_offset_particles_for_partition[idxPartition] + current_my_nb_particles_per_partition[idxPartition];
        }

        // Compute box idx for each particle
        std::unique_ptr<long int[]> particles_coord(new long int[current_offset_particles_for_partition[current_partition_size]]);

        {
            for(int idxPartition = 0 ; idxPartition < current_partition_size ; ++idxPartition){
                #pragma omp parallel for schedule(static)
                for(partsize_t idxPart = current_offset_particles_for_partition[idxPartition] ; idxPart < current_offset_particles_for_partition[idxPartition+1] ; ++idxPart ){
                    particles_coord[idxPart] = get_cell_idx(particles_positions[(idxPart)*size_particle_positions + IDX_X],
                                                                              particles_positions[(idxPart)*size_particle_positions + IDX_Y],
                                                                              particles_positions[(idxPart)*size_particle_positions + IDX_Z]);
                    assert(my_down_z_cell_level <= get_cell_coord_z_from_index(particles_coord[idxPart]));
                    assert(get_cell_coord_z_from_index(particles_coord[idxPart]) <= my_top_z_cell_level);
                }
            }

287
            std::vector<std::pair<long int,partsize_t>> part_to_sort;
288
289
290
291
292
293
294

            // Sort each partition in cells
            for(int idxPartition = 0 ; idxPartition < current_partition_size ; ++idxPartition){
                part_to_sort.clear();

                for(partsize_t idxPart = current_offset_particles_for_partition[idxPartition] ; idxPart < current_offset_particles_for_partition[idxPartition+1] ; ++idxPart ){
                    part_to_sort.emplace_back();
295
296
                    part_to_sort.back().first = particles_coord[idxPart];
                    part_to_sort.back().second = idxPart;
297
298
                }

299
                assert(partsize_t(part_to_sort.size()) == (current_my_nb_particles_per_partition[idxPartition]));
300
301

                std::sort(part_to_sort.begin(), part_to_sort.end(),
302
303
304
                          [](const std::pair<long int,partsize_t>& p1,
                             const std::pair<long int,partsize_t>& p2){
                    return p1.first < p2.first;
305
                });
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320

                // Permute array using buffer
                std::vector<unsigned char> buffer;
                permute_copy<real_number, size_particle_positions>(current_offset_particles_for_partition[idxPartition],
                                                                   current_my_nb_particles_per_partition[idxPartition],
                                                                   part_to_sort.data(), particles_positions, &buffer);
                permute_copy<real_number, size_particle_rhs>(current_offset_particles_for_partition[idxPartition],
                                                             current_my_nb_particles_per_partition[idxPartition],
                                                             part_to_sort.data(), particles_current_rhs, &buffer);
                permute_copy<partsize_t, 1>(current_offset_particles_for_partition[idxPartition],
                                            current_my_nb_particles_per_partition[idxPartition],
                                            part_to_sort.data(), inout_index_particles, &buffer);
                permute_copy<long int, 1>(current_offset_particles_for_partition[idxPartition],
                                            current_my_nb_particles_per_partition[idxPartition],
                                            part_to_sort.data(), particles_coord.get(), &buffer);
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
            }
        }

        // Build the tree
        p2p_tree<std::vector<std::pair<partsize_t,partsize_t>>> my_tree(nb_cell_levels);

        for(int idxPartition = 0 ; idxPartition < current_partition_size ; ++idxPartition){
            long int current_cell_idx = -1;
            partsize_t current_nb_particles_in_cell = 0;
            partsize_t current_cell_offset = 0;

            for(partsize_t idx_part = current_offset_particles_for_partition[idxPartition] ;
                            idx_part != current_offset_particles_for_partition[idxPartition+1]; ++idx_part){
                if(particles_coord[idx_part] != current_cell_idx){
                    if(current_nb_particles_in_cell){
                        my_tree.getCell(current_cell_idx).emplace_back(current_cell_offset,current_nb_particles_in_cell);
                    }
                    current_cell_idx = particles_coord[idx_part];
                    current_nb_particles_in_cell = 1;
                    current_cell_offset = idx_part;
341
342
343
                }
                else{
                    current_nb_particles_in_cell += 1;
344
345
346
347
348
349
350
351
352
                }
            }
            if(current_nb_particles_in_cell){
                my_tree.getCell(current_cell_idx).emplace_back(current_cell_offset,current_nb_particles_in_cell);

            }
        }

        // Offset per cell layers
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
353
        long int previous_index = 0;
354
355
356
357
        std::unique_ptr<partsize_t[]> particles_offset_layers(new partsize_t[my_nb_cell_levels+1]());
        for(int idxPartition = 0 ; idxPartition < current_partition_size ; ++idxPartition){
            for(partsize_t idx_part = current_offset_particles_for_partition[idxPartition] ;
                            idx_part != current_offset_particles_for_partition[idxPartition+1]; ++idx_part){
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
358
359
360
361
362
363
                const long int part_box_z_index = get_cell_coord_z_from_index(particles_coord[idx_part]);
                assert(my_down_z_cell_level <= part_box_z_index);
                assert(part_box_z_index <= my_top_z_cell_level);
                particles_offset_layers[part_box_z_index+1-my_down_z_cell_level] += 1;
                assert(previous_index <= part_box_z_index);
                previous_index = part_box_z_index;
364
365
            }
        }
366
        for(long int idx_layer = 0 ; idx_layer < my_nb_cell_levels ; ++idx_layer){
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
            particles_offset_layers[idx_layer+1] += particles_offset_layers[idx_layer];
        }

        // Reset vectors
        assert(whatNext.size() == 0);
        assert(mpiRequests.size() == 0);
        neigDescriptors.clear();

        // Find process with at least one neighbor
        {
            int dest_proc = (my_rank+1)%nb_processes_involved;
            while(dest_proc != my_rank
                  && (my_top_z_cell_level == first_cell_level_proc(dest_proc)
                      || (my_top_z_cell_level+1)%nb_cell_levels[IDX_Z] == first_cell_level_proc(dest_proc))){
                // Find if we have to send 1 or 2 cell levels
                int nb_levels_to_send = 1;
                if(my_nb_cell_levels > 1 // I have more than one level
                        && (my_top_z_cell_level-1+2)%nb_cell_levels[IDX_Z] <= last_cell_level_proc(dest_proc)){
                    nb_levels_to_send += 1;
                }

                NeighborDescriptor descriptor;
                descriptor.destProc = dest_proc;
                descriptor.nbLevelsToExchange = nb_levels_to_send;
                descriptor.nbParticlesToExchange = particles_offset_layers[my_nb_cell_levels] - particles_offset_layers[my_nb_cell_levels-nb_levels_to_send];
                descriptor.isRecv = false;

                neigDescriptors.emplace_back(std::move(descriptor));

                dest_proc = (dest_proc+1)%nb_processes_involved;
            }

            int src_proc = (my_rank-1+nb_processes_involved)%nb_processes_involved;
            while(src_proc != my_rank
                  && (last_cell_level_proc(src_proc) == my_down_z_cell_level
                      || (last_cell_level_proc(src_proc)+1)%nb_cell_levels[IDX_Z] == my_down_z_cell_level)){
                // Find if we have to send 1 or 2 cell levels
                int nb_levels_to_recv = 1;
                if(my_nb_cell_levels > 1 // I have more than one level
                        && first_cell_level_proc(src_proc) <= (my_down_z_cell_level-1+2)%nb_cell_levels[IDX_Z]){
                    nb_levels_to_recv += 1;
                }

                NeighborDescriptor descriptor;
                descriptor.destProc = src_proc;
                descriptor.nbLevelsToExchange = nb_levels_to_recv;
                descriptor.nbParticlesToExchange = -1;
                descriptor.isRecv = true;

                neigDescriptors.emplace_back(std::move(descriptor));

                src_proc = (src_proc-1+nb_processes_involved)%nb_processes_involved;
            }
        }

        //////////////////////////////////////////////////////////////////////
        /// Exchange the number of particles in each partition
        /// Could involve only here but I do not think it will be a problem
        //////////////////////////////////////////////////////////////////////

        assert(whatNext.size() == 0);
        assert(mpiRequests.size() == 0);
429
430
431
432
#ifndef NDEBUG // Just for assertion
        std::vector<int> willsend(nb_processes_involved, 0);
        std::vector<int> willrecv(nb_processes_involved, 0);
#endif
433
434
435
436
437
438
439
440
441
442
443

        for(int idxDescr = 0 ; idxDescr < int(neigDescriptors.size()) ; ++idxDescr){
            NeighborDescriptor& descriptor = neigDescriptors[idxDescr];

            if(descriptor.isRecv == false){
                whatNext.emplace_back(std::pair<Action,int>{NOTHING_TODO, -1});
                mpiRequests.emplace_back();
                AssertMpi(MPI_Isend(const_cast<partsize_t*>(&descriptor.nbParticlesToExchange),
                                    1, particles_utils::GetMpiType(partsize_t()),
                                    descriptor.destProc, TAG_NB_PARTICLES,
                                    current_com, &mpiRequests.back()));
444
445
446
#ifndef NDEBUG // Just for assertion
                willsend[descriptor.destProc] += 1;
#endif
447
448
449
450
                if(descriptor.nbParticlesToExchange){
                    whatNext.emplace_back(std::pair<Action,int>{NOTHING_TODO, -1});
                    mpiRequests.emplace_back();
                    assert(descriptor.nbParticlesToExchange*size_particle_positions < std::numeric_limits<int>::max());
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
451
                    AssertMpi(MPI_Isend(const_cast<real_number*>(&particles_positions[particles_offset_layers[my_nb_cell_levels-descriptor.nbLevelsToExchange]*size_particle_positions]),
452
453
454
455
456
457
                              int(descriptor.nbParticlesToExchange*size_particle_positions), particles_utils::GetMpiType(real_number()),
                              descriptor.destProc, TAG_POSITION_PARTICLES,
                              current_com, &mpiRequests.back()));

                    assert(descriptor.toRecvAndMerge == nullptr);
                    descriptor.toRecvAndMerge.reset(new real_number[descriptor.nbParticlesToExchange*size_particle_rhs]);
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
458
                    whatNext.emplace_back(std::pair<Action,int>{MERGE_PARTICLES, idxDescr});
459
460
461
462
463
464
465
466
                    mpiRequests.emplace_back();
                    assert(descriptor.nbParticlesToExchange*size_particle_rhs < std::numeric_limits<int>::max());
                    AssertMpi(MPI_Irecv(descriptor.toRecvAndMerge.get(), int(descriptor.nbParticlesToExchange*size_particle_rhs),
                                        particles_utils::GetMpiType(real_number()), descriptor.destProc, TAG_RESULT_PARTICLES,
                                        current_com, &mpiRequests.back()));
                }
            }
            else{
467
468
469
#ifndef NDEBUG // Just for assertion
                willrecv[descriptor.destProc] += 1;
#endif
470
471
472
473
474
475
476
477
                whatNext.emplace_back(std::pair<Action,int>{RECV_PARTICLES, idxDescr});
                mpiRequests.emplace_back();
                AssertMpi(MPI_Irecv(&descriptor.nbParticlesToExchange,
                      1, particles_utils::GetMpiType(partsize_t()), descriptor.destProc, TAG_NB_PARTICLES,
                      current_com, &mpiRequests.back()));
            }
        }

478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
#ifndef NDEBUG // Just for assertion
        {
            if(myrank == 0){
                std::vector<int> willsendall(nb_processes_involved*nb_processes_involved, 0);// TODO debug
                std::vector<int> willrecvall(nb_processes_involved*nb_processes_involved, 0);// TODO debug

                MPI_Gather(willrecv.data(), nb_processes_involved, MPI_INT, willrecvall.data(),
                            nb_processes_involved, MPI_INT, 0, MPI_COMM_WORLD);
                MPI_Gather(willsend.data(), nb_processes_involved, MPI_INT, willsendall.data(),
                            nb_processes_involved, MPI_INT, 0, MPI_COMM_WORLD);

                for(int idxproc = 0 ; idxproc < nb_processes_involved ; ++idxproc){
                    for(int idxtest = 0 ; idxtest < nb_processes_involved ; ++idxtest){
                        assert(willsendall[idxproc*nb_processes_involved + idxtest]
                                == willrecvall[idxtest*nb_processes_involved + idxproc]);
                    }
                }
            }
            else{
                MPI_Gather(willrecv.data(), nb_processes_involved, MPI_INT, nullptr,
                            0, MPI_INT, 0, MPI_COMM_WORLD);
                MPI_Gather(willsend.data(), nb_processes_involved, MPI_INT, nullptr,
                            0, MPI_INT, 0, MPI_COMM_WORLD);
            }
        }
#endif

505
506
        lock_free_bool_array cells_locker(512);

507
508
509
510
511
512
        TIMEZONE_OMP_INIT_PREPARALLEL(omp_get_max_threads())
        #pragma omp parallel default(shared)
        {
            #pragma omp master
            {
                while(mpiRequests.size()){
Berenger Bramas's avatar
Berenger Bramas committed
513
                    TIMEZONE("wait-loop");
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
                    assert(mpiRequests.size() == whatNext.size());

                    int idxDone = int(mpiRequests.size());
                    {
                        TIMEZONE("wait");
                        AssertMpi(MPI_Waitany(int(mpiRequests.size()), mpiRequests.data(), &idxDone, MPI_STATUSES_IGNORE));
                    }
                    const std::pair<Action, int> releasedAction = whatNext[idxDone];
                    std::swap(mpiRequests[idxDone], mpiRequests[mpiRequests.size()-1]);
                    std::swap(whatNext[idxDone], whatNext[mpiRequests.size()-1]);
                    mpiRequests.pop_back();
                    whatNext.pop_back();

                    //////////////////////////////////////////////////////////////////////
                    /// Data to exchange particles
                    //////////////////////////////////////////////////////////////////////
                    if(releasedAction.first == RECV_PARTICLES){
Berenger Bramas's avatar
Berenger Bramas committed
531
                        TIMEZONE("post-recv-particles");
532
                        NeighborDescriptor& descriptor = neigDescriptors[releasedAction.second];
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
533
                        assert(descriptor.isRecv);
534
535
536
537
538
539
540
                        const int destProc = descriptor.destProc;
                        const partsize_t NbParticlesToReceive = descriptor.nbParticlesToExchange;
                        assert(NbParticlesToReceive != -1);
                        assert(descriptor.toCompute == nullptr);

                        if(NbParticlesToReceive){
                            descriptor.toCompute.reset(new real_number[NbParticlesToReceive*size_particle_positions]);
541
                            whatNext.emplace_back(std::pair<Action,int>{COMPUTE_PARTICLES, releasedAction.second});
542
543
544
545
546
547
548
549
550
551
552
553
                            mpiRequests.emplace_back();
                            assert(NbParticlesToReceive*size_particle_positions < std::numeric_limits<int>::max());
                            AssertMpi(MPI_Irecv(descriptor.toCompute.get(), int(NbParticlesToReceive*size_particle_positions),
                                                particles_utils::GetMpiType(real_number()), destProc, TAG_POSITION_PARTICLES,
                                                current_com, &mpiRequests.back()));
                        }
                    }

                    //////////////////////////////////////////////////////////////////////
                    /// Computation
                    //////////////////////////////////////////////////////////////////////
                    if(releasedAction.first == COMPUTE_PARTICLES){
Berenger Bramas's avatar
Berenger Bramas committed
554
                        TIMEZONE("compute-particles");
555
                        NeighborDescriptor& descriptor = neigDescriptors[releasedAction.second];
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
556
                        assert(descriptor.isRecv);
557
558
559
560
                        const partsize_t NbParticlesToReceive = descriptor.nbParticlesToExchange;

                        assert(descriptor.toCompute != nullptr);
                        descriptor.results.reset(new real_number[NbParticlesToReceive*size_particle_rhs]);
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
561
                        in_computer.template init_result_array<size_particle_rhs>(descriptor.results.get(), NbParticlesToReceive);
562
563
564
565
566
567
568

                        // Compute
                        partsize_t idxPart = 0;
                        while(idxPart != NbParticlesToReceive){
                            const long int current_cell_idx = get_cell_idx(descriptor.toCompute[idxPart*size_particle_positions + IDX_X],
                                                                           descriptor.toCompute[idxPart*size_particle_positions + IDX_Y],
                                                                           descriptor.toCompute[idxPart*size_particle_positions + IDX_Z]);
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
569
                            partsize_t nb_parts_in_cell = 1;
570
571
572
573
574
575
576
                            while(idxPart+nb_parts_in_cell != NbParticlesToReceive
                                  && current_cell_idx == get_cell_idx(descriptor.toCompute[(idxPart+nb_parts_in_cell)*size_particle_positions + IDX_X],
                                                                     descriptor.toCompute[(idxPart+nb_parts_in_cell)*size_particle_positions + IDX_Y],
                                                                     descriptor.toCompute[(idxPart+nb_parts_in_cell)*size_particle_positions + IDX_Z])){
                                nb_parts_in_cell += 1;
                            }

577
578
579
580
581
582
                            #pragma omp task default(shared) firstprivate(idxPart, nb_parts_in_cell, current_cell_idx)
                            {
                                const std::vector<std::pair<partsize_t,partsize_t>>* neighbors[27];
                                long int neighbors_indexes[27];
                                std::array<real_number,3> shift[27];
                                const int nbNeighbors = my_tree.getNeighbors(current_cell_idx, neighbors, neighbors_indexes, shift, true);
583

584
                                // with other interval
585
                                for(int idx_neighbor = 0 ; idx_neighbor < nbNeighbors ; ++idx_neighbor){
586
587
588
589
590
591
592
593
594
595
596
597
598
                                    cells_locker.lock(neighbors_indexes[idx_neighbor]);

                                    for(size_t idx_2 = 0 ; idx_2 < (*neighbors[idx_neighbor]).size() ; ++idx_2){
                                        for(partsize_t idx_p1 = 0 ; idx_p1 < nb_parts_in_cell ; ++idx_p1){
                                            for(partsize_t idx_p2 = 0 ; idx_p2 < (*neighbors[idx_neighbor])[idx_2].second ; ++idx_p2){
                                                const real_number dist_r2 = compute_distance_r2(descriptor.toCompute[(idxPart+idx_p1)*size_particle_positions + IDX_X],
                                                                                                descriptor.toCompute[(idxPart+idx_p1)*size_particle_positions + IDX_Y],
                                                                                                descriptor.toCompute[(idxPart+idx_p1)*size_particle_positions + IDX_Z],
                                                                                                particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions + IDX_X],
                                                                                                particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions + IDX_Y],
                                                                                                particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions + IDX_Z],
                                                                                                shift[idx_neighbor][IDX_X], shift[idx_neighbor][IDX_Y], shift[idx_neighbor][IDX_Z]);
                                                if(dist_r2 < cutoff_radius_compute*cutoff_radius_compute){
599
                                                    in_computer.template compute_interaction<size_particle_positions, size_particle_rhs>(
600
601
602
603
                                                                        &descriptor.toCompute[(idxPart+idx_p1)*size_particle_positions],
                                                                        &descriptor.results[(idxPart+idx_p1)*size_particle_rhs],
                                                                        &particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions],
                                                                        &particles_current_rhs[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_rhs],
604
                                                                        dist_r2, cutoff_radius_compute, shift[idx_neighbor][IDX_X], shift[idx_neighbor][IDX_Y], shift[idx_neighbor][IDX_Z]);
605
                                                }
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
606
                                            }
607
608
                                        }
                                    }
609
610

                                    cells_locker.unlock(neighbors_indexes[idx_neighbor]);
611
612
613
614
615
616
                                }
                            }

                            idxPart += nb_parts_in_cell;
                        }

617
618
                        #pragma omp taskwait

619
620
621
622
623
624
625
626
                        // Send back
                        const int destProc = descriptor.destProc;
                        whatNext.emplace_back(std::pair<Action,int>{RELEASE_BUFFER_PARTICLES, releasedAction.second});
                        mpiRequests.emplace_back();
                        assert(NbParticlesToReceive*size_particle_rhs < std::numeric_limits<int>::max());
                        AssertMpi(MPI_Isend(descriptor.results.get(), int(NbParticlesToReceive*size_particle_rhs),
                                            particles_utils::GetMpiType(real_number()), destProc, TAG_RESULT_PARTICLES,
                                            current_com, &mpiRequests.back()));
627
                        descriptor.toCompute.release();
628
629
                    }
                    //////////////////////////////////////////////////////////////////////
630
                    /// Release memory that was sent back
631
                    //////////////////////////////////////////////////////////////////////
632
633
                    if(releasedAction.first == RELEASE_BUFFER_PARTICLES){
                        NeighborDescriptor& descriptor = neigDescriptors[releasedAction.second];
634
                        assert(descriptor.results != nullptr);
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
635
                        assert(descriptor.isRecv);
636
                        descriptor.results.release();
637
638
639
640
                    }
                    //////////////////////////////////////////////////////////////////////
                    /// Merge
                    //////////////////////////////////////////////////////////////////////
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
641
                    if(releasedAction.first == MERGE_PARTICLES){
Berenger Bramas's avatar
Berenger Bramas committed
642
                        TIMEZONE("merge");
643
                        NeighborDescriptor& descriptor = neigDescriptors[releasedAction.second];
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
644
                        assert(descriptor.isRecv == false);
645
                        assert(descriptor.toRecvAndMerge != nullptr);
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
646
647
                        in_computer.template reduce_particles_rhs<size_particle_rhs>(&particles_current_rhs[particles_offset_layers[my_nb_cell_levels-descriptor.nbLevelsToExchange]*size_particle_rhs],
                                descriptor.toRecvAndMerge.get(), descriptor.nbParticlesToExchange);
648
649
650
651
652
653
654
655
656
657
658
                        descriptor.toRecvAndMerge.release();
                    }
                }
            }
        }

        assert(whatNext.size() == 0);
        assert(mpiRequests.size() == 0);

        // Compute self data
        for(const auto& iter_cell : my_tree){
Berenger Bramas's avatar
Berenger Bramas committed
659
            TIMEZONE("proceed-leaf");
660
661
            const long int currenct_cell_idx = iter_cell.first;
            const std::vector<std::pair<partsize_t,partsize_t>>* intervals_ptr = &iter_cell.second;
662

663
664
665
#pragma omp task default(shared) firstprivate(currenct_cell_idx, intervals_ptr)
            {
                const std::vector<std::pair<partsize_t,partsize_t>>& intervals = (*intervals_ptr);
666

667
                cells_locker.lock(currenct_cell_idx);
668

669
670
                for(size_t idx_1 = 0 ; idx_1 < intervals.size() ; ++idx_1){
                    // self interval
671
                    for(partsize_t idx_p1 = 0 ; idx_p1 < intervals[idx_1].second ; ++idx_p1){
672
                        for(partsize_t idx_p2 = idx_p1+1 ; idx_p2 < intervals[idx_1].second ; ++idx_p2){
673
674
675
                            const real_number dist_r2 = compute_distance_r2(particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_X],
                                                                            particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_Y],
                                                                            particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_Z],
676
677
678
                                                                            particles_positions[(intervals[idx_1].first+idx_p2)*size_particle_positions + IDX_X],
                                                                            particles_positions[(intervals[idx_1].first+idx_p2)*size_particle_positions + IDX_Y],
                                                                            particles_positions[(intervals[idx_1].first+idx_p2)*size_particle_positions + IDX_Z],
Berenger Bramas's avatar
Berenger Bramas committed
679
                                                                            0, 0, 0);
680
                            if(dist_r2 < cutoff_radius_compute*cutoff_radius_compute){
681
                                in_computer.template compute_interaction<size_particle_positions,size_particle_rhs>(
682
683
                                                    &particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions],
                                                    &particles_current_rhs[(intervals[idx_1].first+idx_p1)*size_particle_rhs],
684
685
                                                    &particles_positions[(intervals[idx_1].first+idx_p2)*size_particle_positions],
                                                    &particles_current_rhs[(intervals[idx_1].first+idx_p2)*size_particle_rhs],
686
                                                    dist_r2, cutoff_radius_compute, 0, 0, 0);
687
                            }
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
                        }
                    }

                    // with other interval
                    for(size_t idx_2 = idx_1+1 ; idx_2 < intervals.size() ; ++idx_2){
                        for(partsize_t idx_p1 = 0 ; idx_p1 < intervals[idx_1].second ; ++idx_p1){
                            for(partsize_t idx_p2 = 0 ; idx_p2 < intervals[idx_2].second ; ++idx_p2){
                                const real_number dist_r2 = compute_distance_r2(particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_X],
                                                                                particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_Y],
                                                                                particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_Z],
                                                                                particles_positions[(intervals[idx_2].first+idx_p2)*size_particle_positions + IDX_X],
                                                                                particles_positions[(intervals[idx_2].first+idx_p2)*size_particle_positions + IDX_Y],
                                                                                particles_positions[(intervals[idx_2].first+idx_p2)*size_particle_positions + IDX_Z],
                                                                                0, 0, 0);
                                if(dist_r2 < cutoff_radius_compute*cutoff_radius_compute){
703
                                    in_computer.template compute_interaction<size_particle_positions,size_particle_rhs>(
704
705
706
707
                                                        &particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions],
                                                        &particles_current_rhs[(intervals[idx_1].first+idx_p1)*size_particle_rhs],
                                                        &particles_positions[(intervals[idx_2].first+idx_p2)*size_particle_positions],
                                                        &particles_current_rhs[(intervals[idx_2].first+idx_p2)*size_particle_rhs],
708
                                                        dist_r2, cutoff_radius_compute, 0, 0, 0);
709
710
                                }
                            }
711
712
713
714
                        }
                    }
                }

715
716
717
718
719
720
721
                const std::vector<std::pair<partsize_t,partsize_t>>* neighbors[27];
                long int neighbors_indexes[27];
                std::array<real_number,3> shift[27];
                const int nbNeighbors = my_tree.getNeighbors(currenct_cell_idx, neighbors, neighbors_indexes, shift, false);

                for(size_t idx_1 = 0 ; idx_1 < intervals.size() ; ++idx_1){
                    // with other interval
722
                    for(int idx_neighbor = 0 ; idx_neighbor < nbNeighbors ; ++idx_neighbor){
723
724
725
726
727
728
729
730
731
732
733
734
735
736
                        if(currenct_cell_idx < neighbors_indexes[idx_neighbor]){
                            cells_locker.lock(neighbors_indexes[idx_neighbor]);

                            for(size_t idx_2 = 0 ; idx_2 < (*neighbors[idx_neighbor]).size() ; ++idx_2){
                                for(partsize_t idx_p1 = 0 ; idx_p1 < intervals[idx_1].second ; ++idx_p1){
                                    for(partsize_t idx_p2 = 0 ; idx_p2 < (*neighbors[idx_neighbor])[idx_2].second ; ++idx_p2){
                                        const real_number dist_r2 = compute_distance_r2(particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_X],
                                                                                        particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_Y],
                                                                                        particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDX_Z],
                                                                                        particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions + IDX_X],
                                                                                        particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions + IDX_Y],
                                                                                        particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions + IDX_Z],
                                                                                        shift[idx_neighbor][IDX_X], shift[idx_neighbor][IDX_Y], shift[idx_neighbor][IDX_Z]);
                                        if(dist_r2 < cutoff_radius_compute*cutoff_radius_compute){
737
                                            in_computer.template compute_interaction<size_particle_positions,size_particle_rhs>(
738
739
740
741
                                                                &particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions],
                                                                &particles_current_rhs[(intervals[idx_1].first+idx_p1)*size_particle_rhs],
                                                                &particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions],
                                                                &particles_current_rhs[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_rhs],
742
                                                                dist_r2, cutoff_radius_compute, shift[idx_neighbor][IDX_X], shift[idx_neighbor][IDX_Y], shift[idx_neighbor][IDX_Z]);
743
                                        }
744
                                    }
745
746
                                }
                            }
747
                            cells_locker.unlock(neighbors_indexes[idx_neighbor]);
748
749
750
                        }
                    }
                }
751
752

                cells_locker.unlock(currenct_cell_idx);
753
754
755
756
757
758
            }
        }
    }
};

#endif