DNS.py 48.6 KB
Newer Older
Cristian Lalescu's avatar
Cristian Lalescu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#######################################################################
#                                                                     #
#  Copyright 2015 Max Planck Institute                                #
#                 for Dynamics and Self-Organization                  #
#                                                                     #
#  This file is part of bfps.                                         #
#                                                                     #
#  bfps is free software: you can redistribute it and/or modify       #
#  it under the terms of the GNU General Public License as published  #
#  by the Free Software Foundation, either version 3 of the License,  #
#  or (at your option) any later version.                             #
#                                                                     #
#  bfps is distributed in the hope that it will be useful,            #
#  but WITHOUT ANY WARRANTY; without even the implied warranty of     #
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the      #
#  GNU General Public License for more details.                       #
#                                                                     #
#  You should have received a copy of the GNU General Public License  #
#  along with bfps.  If not, see <http://www.gnu.org/licenses/>       #
#                                                                     #
# Contact: Cristian.Lalescu@ds.mpg.de                                 #
#                                                                     #
#######################################################################



import os
import sys
import shutil
import subprocess
import argparse
import h5py
import math
import numpy as np
import warnings

import bfps
from ._code import _code
39
from bfps import tools
Cristian Lalescu's avatar
Cristian Lalescu committed
40
41
42
43
44
45
46
47

class DNS(_code):
    """This class is meant to stitch together the C++ code into a final source file,
    compile it, and handle all job launching.
    """
    def __init__(
            self,
            work_dir = './',
48
49
50
51
52
53
54
55
56
57
58
59
            simname = 'test'):
        _code.__init__(
                self,
                work_dir = work_dir,
                simname = simname)
        self.host_info = {'type'        : 'cluster',
                          'environment' : None,
                          'deltanprocs' : 1,
                          'queue'       : '',
                          'mail_address': '',
                          'mail_events' : None}
        self.generate_default_parameters()
Chichi Lalescu's avatar
Chichi Lalescu committed
60
        self.statistics = {}
61
62
63
64
        return None
    def set_precision(
            self,
            fluid_dtype):
Cristian Lalescu's avatar
Cristian Lalescu committed
65
66
67
68
69
70
71
72
73
74
        if fluid_dtype in [np.float32, np.float64]:
            self.fluid_dtype = fluid_dtype
        elif fluid_dtype in ['single', 'double']:
            if fluid_dtype == 'single':
                self.fluid_dtype = np.dtype(np.float32)
            elif fluid_dtype == 'double':
                self.fluid_dtype = np.dtype(np.float64)
        self.rtype = self.fluid_dtype
        if self.rtype == np.float32:
            self.ctype = np.dtype(np.complex64)
75
            self.C_field_dtype = 'float'
76
            self.fluid_precision = 'single'
Cristian Lalescu's avatar
Cristian Lalescu committed
77
78
        elif self.rtype == np.float64:
            self.ctype = np.dtype(np.complex128)
79
            self.C_field_dtype = 'double'
80
81
            self.fluid_precision = 'double'
        return None
82
83
    def write_src(
            self):
Cristian Lalescu's avatar
Cristian Lalescu committed
84
85
86
87
88
        self.version_message = (
                '/***********************************************************************\n' +
                '* this code automatically generated by bfps\n' +
                '* version {0}\n'.format(bfps.__version__) +
                '***********************************************************************/\n\n\n')
89
90
91
92
93
        self.include_list = [
                '"base.hpp"',
                '"scope_timer.hpp"',
                '"fftw_interface.hpp"',
                '"full_code/main_code.hpp"',
94
                '<cmath>',
95
96
97
98
99
100
101
102
103
                '<iostream>',
                '<hdf5.h>',
                '<string>',
                '<cstring>',
                '<fftw3-mpi.h>',
                '<omp.h>',
                '<cfenv>',
                '<cstdlib>',
                '"full_code/{0}.hpp"\n'.format(self.dns_type)]
Cristian Lalescu's avatar
Cristian Lalescu committed
104
        self.main = """
105
106
107
108
109
110
111
112
            int main(int argc, char *argv[])
            {{
                bool fpe = (
                    (getenv("BFPS_FPE_OFF") == nullptr) ||
                    (getenv("BFPS_FPE_OFF") != std::string("TRUE")));
                return main_code< {0} >(argc, argv, fpe);
            }}
            """.format(self.dns_type + '<{0}>'.format(self.C_field_dtype))
113
114
115
116
117
118
        self.includes = '\n'.join(
                ['#include ' + hh
                 for hh in self.include_list])
        with open(self.name + '.cpp', 'w') as outfile:
            outfile.write(self.version_message + '\n\n')
            outfile.write(self.includes + '\n\n')
119
120
121
122
123
124
125
            outfile.write(
                    self.cread_pars(
                       template_class = '{0}<rnumber>::'.format(self.dns_type),
                        template_prefix = 'template <typename rnumber> ',
                        simname_variable = 'this->simname.c_str()',
                        prepend_this = True) +
                    '\n\n')
126
127
128
129
130
            for rnumber in ['float', 'double']:
                outfile.write(self.cread_pars(
                    template_class = '{0}<{1}>::'.format(self.dns_type, rnumber),
                    template_prefix = 'template '.format(rnumber),
                    just_declaration = True) + '\n\n')
131
            if self.dns_type in ['NSVEparticles', 'NSVE_no_output', 'NSVEparticles_no_output', 'NSVEcomplex_particles']:
132
133
134
                outfile.write('template <typename rnumber> int NSVE<rnumber>::read_parameters(){return EXIT_SUCCESS;}\n')
                outfile.write('template int NSVE<float>::read_parameters();\n')
                outfile.write('template int NSVE<double>::read_parameters();\n\n')
135
136
137
138
            if self.dns_type in ['NSVEparticles_no_output']:
                outfile.write('template <typename rnumber> int NSVEparticles<rnumber>::read_parameters(){return EXIT_SUCCESS;}\n')
                outfile.write('template int NSVEparticles<float>::read_parameters();\n')
                outfile.write('template int NSVEparticles<double>::read_parameters();\n\n')
139
            outfile.write(self.main + '\n')
140
141
142
        return None
    def generate_default_parameters(self):
        # these parameters are relevant for all DNS classes
143
144
145
146
147
148
149
        self.parameters['dealias_type'] = int(1)
        self.parameters['dkx'] = float(1.0)
        self.parameters['dky'] = float(1.0)
        self.parameters['dkz'] = float(1.0)
        self.parameters['niter_todo'] = int(8)
        self.parameters['niter_stat'] = int(1)
        self.parameters['niter_out'] = int(8)
150
        self.parameters['checkpoints_per_file'] = int(1)
151
        self.parameters['dt'] = float(0.01)
152
        self.parameters['nu'] = float(0.1)
153
        self.parameters['fmode'] = int(1)
154
        self.parameters['famplitude'] = float(0.5)
Chichi Lalescu's avatar
Chichi Lalescu committed
155
        self.parameters['friction_coefficient'] = float(0.5)
Cristian Lalescu's avatar
Cristian Lalescu committed
156
157
        self.parameters['energy'] = float(0.5)
        self.parameters['injection_rate'] = float(0.4)
158
159
        self.parameters['fk0'] = float(2.0)
        self.parameters['fk1'] = float(4.0)
Cristian Lalescu's avatar
Cristian Lalescu committed
160
        self.parameters['forcing_type'] = 'fixed_energy_injection_rate'
161
162
163
164
        self.parameters['histogram_bins'] = int(256)
        self.parameters['max_velocity_estimate'] = float(1)
        self.parameters['max_vorticity_estimate'] = float(1)
        # parameters specific to particle version
165
166
167
168
169
170
        self.NSVEp_extra_parameters = {}
        self.NSVEp_extra_parameters['niter_part'] = int(1)
        self.NSVEp_extra_parameters['nparticles'] = int(10)
        self.NSVEp_extra_parameters['tracers0_integration_steps'] = int(4)
        self.NSVEp_extra_parameters['tracers0_neighbours'] = int(1)
        self.NSVEp_extra_parameters['tracers0_smoothness'] = int(1)
Cristian Lalescu's avatar
Cristian Lalescu committed
171
        #self.extra_parameters = {}
172
        #for key in ['NSVE', 'NSVE_no_output', 'NSVEparticles', 'NSVEparticles_no_output', 'NSVEcomplex_particles']:
Cristian Lalescu's avatar
Cristian Lalescu committed
173
        #    self.extra_parameters[key] = {}
174
        #for key in ['NSVEparticles', 'NSVEparticles_no_output', 'NSVEcomplex_particles']:
Cristian Lalescu's avatar
Cristian Lalescu committed
175
        #    self.extra_parameters[key].update(self.NSVEp_extra_parameters)
Cristian Lalescu's avatar
Cristian Lalescu committed
176
        return None
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
    def get_kspace(self):
        kspace = {}
        if self.parameters['dealias_type'] == 1:
            kMx = self.parameters['dkx']*(self.parameters['nx']//2 - 1)
            kMy = self.parameters['dky']*(self.parameters['ny']//2 - 1)
            kMz = self.parameters['dkz']*(self.parameters['nz']//2 - 1)
        else:
            kMx = self.parameters['dkx']*(self.parameters['nx']//3 - 1)
            kMy = self.parameters['dky']*(self.parameters['ny']//3 - 1)
            kMz = self.parameters['dkz']*(self.parameters['nz']//3 - 1)
        kspace['kM'] = max(kMx, kMy, kMz)
        kspace['dk'] = min(self.parameters['dkx'],
                           self.parameters['dky'],
                           self.parameters['dkz'])
        nshells = int(kspace['kM'] / kspace['dk']) + 2
        kspace['nshell'] = np.zeros(nshells, dtype = np.int64)
        kspace['kshell'] = np.zeros(nshells, dtype = np.float64)
        kspace['kx'] = np.arange( 0,
                                  self.parameters['nx']//2 + 1).astype(np.float64)*self.parameters['dkx']
        kspace['ky'] = np.arange(-self.parameters['ny']//2 + 1,
                                  self.parameters['ny']//2 + 1).astype(np.float64)*self.parameters['dky']
        kspace['ky'] = np.roll(kspace['ky'], self.parameters['ny']//2+1)
        kspace['kz'] = np.arange(-self.parameters['nz']//2 + 1,
                                  self.parameters['nz']//2 + 1).astype(np.float64)*self.parameters['dkz']
        kspace['kz'] = np.roll(kspace['kz'], self.parameters['nz']//2+1)
        return kspace
    def get_data_file_name(self):
        return os.path.join(self.work_dir, self.simname + '.h5')
    def get_data_file(self):
        return h5py.File(self.get_data_file_name(), 'r')
    def get_particle_file_name(self):
        return os.path.join(self.work_dir, self.simname + '_particles.h5')
    def get_particle_file(self):
        return h5py.File(self.get_particle_file_name(), 'r')
211
212
213
214
    def get_cache_file_name(self):
        return os.path.join(self.work_dir, self.simname + '_cache.h5')
    def get_cache_file(self):
        return h5py.File(self.get_cache_file_name(), 'r')
215
    def get_postprocess_file_name(self):
216
        return self.get_cache_file_name()
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
    def get_postprocess_file(self):
        return h5py.File(self.get_postprocess_file_name(), 'r')
    def compute_statistics(self, iter0 = 0, iter1 = None):
        """Run basic postprocessing on raw data.
        The energy spectrum :math:`E(t, k)` and the enstrophy spectrum
        :math:`\\frac{1}{2}\omega^2(t, k)` are computed from the

        .. math::

            \sum_{k \\leq \\|\\mathbf{k}\\| \\leq k+dk}\\hat{u_i} \\hat{u_j}^*, \\hskip .5cm
            \sum_{k \\leq \\|\\mathbf{k}\\| \\leq k+dk}\\hat{\omega_i} \\hat{\\omega_j}^*

        tensors, and the enstrophy spectrum is also used to
        compute the dissipation :math:`\\varepsilon(t)`.
        These basic quantities are stored in a newly created HDF5 file,
232
        ``simname_cache.h5``.
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
        """
        if len(list(self.statistics.keys())) > 0:
            return None
        self.read_parameters()
        with self.get_data_file() as data_file:
            if 'moments' not in data_file['statistics'].keys():
                return None
            iter0 = min((data_file['statistics/moments/velocity'].shape[0] *
                         self.parameters['niter_stat']-1),
                        iter0)
            if type(iter1) == type(None):
                iter1 = data_file['iteration'].value
            else:
                iter1 = min(data_file['iteration'].value, iter1)
            ii0 = iter0 // self.parameters['niter_stat']
            ii1 = iter1 // self.parameters['niter_stat']
            self.statistics['kshell'] = data_file['kspace/kshell'].value
Chichi Lalescu's avatar
Chichi Lalescu committed
250
251
252
            for kk in [-1, -2]:
                if (self.statistics['kshell'][kk] == 0):
                    self.statistics['kshell'][kk] = np.nan
253
254
255
256
257
258
259
260
            self.statistics['kM'] = data_file['kspace/kM'].value
            self.statistics['dk'] = data_file['kspace/dk'].value
            computation_needed = True
            pp_file = h5py.File(self.get_postprocess_file_name(), 'a')
            if 'ii0' in pp_file.keys():
                computation_needed =  not (ii0 == pp_file['ii0'].value and
                                           ii1 == pp_file['ii1'].value)
                if computation_needed:
261
262
263
264
265
266
267
268
269
                    for k in ['t', 'vel_max(t)', 'renergy(t)',
                              'energy(t)', 'enstrophy(t)',
                              'energy(k)', 'enstrophy(k)',
                              'energy(t, k)',
                              'enstrophy(t, k)',
                              'R_ij(t)',
                              'ii0', 'ii1', 'iter0', 'iter1']:
                        if k in pp_file.keys():
                            del pp_file[k]
270
271
272
273
274
275
276
277
            if computation_needed:
                pp_file['iter0'] = iter0
                pp_file['iter1'] = iter1
                pp_file['ii0'] = ii0
                pp_file['ii1'] = ii1
                pp_file['t'] = (self.parameters['dt']*
                                self.parameters['niter_stat']*
                                (np.arange(ii0, ii1+1).astype(np.float)))
278
279
280
281
282
283
284
285
286
287
288
289
290
                phi_ij = data_file['statistics/spectra/velocity_velocity'][ii0:ii1+1]
                discrete_Fourier_prefactor = 1. / (self.parameters['dkx']*
                                                   self.parameters['dky']*
                                                   self.parameters['dkz'])
                pp_file['R_ij(t)'] = self.statistics['dk']*np.sum(phi_ij, axis = 1)*discrete_Fourier_prefactor
                energy_tk = discrete_Fourier_prefactor*(
                    phi_ij[:, :, 0, 0] +
                    phi_ij[:, :, 1, 1] +
                    phi_ij[:, :, 2, 2])/2
                pp_file['energy(t)'] = (self.statistics['dk'] *
                                        np.sum(energy_tk, axis = 1))
                pp_file['energy(k)'] = np.mean(energy_tk, axis = 0)
                enstrophy_tk = discrete_Fourier_prefactor*(
291
292
293
                    data_file['statistics/spectra/vorticity_vorticity'][ii0:ii1+1, :, 0, 0] +
                    data_file['statistics/spectra/vorticity_vorticity'][ii0:ii1+1, :, 1, 1] +
                    data_file['statistics/spectra/vorticity_vorticity'][ii0:ii1+1, :, 2, 2])/2
294
295
296
297
                pp_file['enstrophy(t)'] = (self.statistics['dk'] *
                                           np.sum(enstrophy_tk, axis = 1))
                pp_file['enstrophy(k)'] = np.mean(enstrophy_tk, axis = 0)
                pp_file['vel_max(t)'] = data_file['statistics/moments/velocity'][ii0:ii1+1, 9, 3]
298
299
                pp_file['renergy(t)'] = data_file['statistics/moments/velocity'][ii0:ii1+1, 2, 3]/2
            for k in ['t',
300
301
302
303
304
                      'energy(t)',
                      'energy(k)',
                      'enstrophy(t)',
                      'enstrophy(k)',
                      'R_ij(t)',
305
306
307
308
309
310
                      'vel_max(t)',
                      'renergy(t)']:
                if k in pp_file.keys():
                    self.statistics[k] = pp_file[k].value
            self.compute_time_averages()
        return None
311
312
313
314
315
316
317
318
319
320
    def compute_Reynolds_stress_invariants(
            self):
        Rij = self.statistics['R_ij(t)']
        Rij /= (2*self.statistics['energy(t)'][:, None, None])
        Rij[:, 0, 0] -= 1./3
        Rij[:, 1, 1] -= 1./3
        Rij[:, 2, 2] -= 1./3
        self.statistics['I2(t)'] = np.sqrt(np.einsum('...ij,...ij', Rij, Rij, optimize = True) / 6)
        self.statistics['I3(t)'] = np.cbrt(np.einsum('...ij,...jk,...ki', Rij, Rij, Rij, optimize = True) / 6)
        return None
321
322
323
324
    def compute_time_averages(self):
        """Compute easy stats.

        Further computation of statistics based on the contents of
325
        ``simname_cache.h5``.
326
327
328
329
330
331
        Standard quantities are as follows
        (consistent with [Ishihara]_):

        .. math::

            U_{\\textrm{int}}(t) = \\sqrt{\\frac{2E(t)}{3}}, \\hskip .5cm
332
333
334
            L_{\\textrm{int}} = \\frac{\pi}{2U_{int}^2} \\int \\frac{dk}{k} E(k), \\hskip .5cm
            T_{\\textrm{int}} =
            \\frac{L_{\\textrm{int}}}{U_{\\textrm{int}}}
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353

            \\eta_K = \\left(\\frac{\\nu^3}{\\varepsilon}\\right)^{1/4}, \\hskip .5cm
            \\tau_K = \\left(\\frac{\\nu}{\\varepsilon}\\right)^{1/2}, \\hskip .5cm
            \\lambda = \\sqrt{\\frac{15 \\nu U_{\\textrm{int}}^2}{\\varepsilon}}

            Re = \\frac{U_{\\textrm{int}} L_{\\textrm{int}}}{\\nu}, \\hskip
            .5cm
            R_{\\lambda} = \\frac{U_{\\textrm{int}} \\lambda}{\\nu}

        .. [Ishihara] T. Ishihara et al,
                      *Small-scale statistics in high-resolution direct numerical
                      simulation of turbulence: Reynolds number dependence of
                      one-point velocity gradient statistics*.
                      J. Fluid Mech.,
                      **592**, 335-366, 2007
        """
        self.statistics['Uint(t)'] = np.sqrt(2*self.statistics['energy(t)'] / 3)
        for key in ['energy',
                    'enstrophy',
354
355
                    'mean_trS2',
                    'Uint']:
356
357
            if key + '(t)' in self.statistics.keys():
                self.statistics[key] = np.average(self.statistics[key + '(t)'], axis = 0)
358
        self.statistics['vel_max'] = np.max(self.statistics['vel_max(t)'])
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
        for suffix in ['', '(t)']:
            self.statistics['diss'    + suffix] = (self.parameters['nu'] *
                                                   self.statistics['enstrophy' + suffix]*2)
            self.statistics['etaK'    + suffix] = (self.parameters['nu']**3 /
                                                   self.statistics['diss' + suffix])**.25
            self.statistics['tauK'    + suffix] =  (self.parameters['nu'] /
                                                    self.statistics['diss' + suffix])**.5
            self.statistics['lambda' + suffix] = (15 * self.parameters['nu'] *
                                                  self.statistics['Uint' + suffix]**2 /
                                                  self.statistics['diss' + suffix])**.5
            self.statistics['Rlambda' + suffix] = (self.statistics['Uint' + suffix] *
                                                   self.statistics['lambda' + suffix] /
                                                   self.parameters['nu'])
            self.statistics['kMeta' + suffix] = (self.statistics['kM'] *
                                                 self.statistics['etaK' + suffix])
            if self.parameters['dealias_type'] == 1:
                self.statistics['kMeta' + suffix] *= 0.8
376
377
378
379
380
381
382
        self.statistics['Lint'] = ((self.statistics['dk']*np.pi /
                                    (2*self.statistics['Uint']**2)) *
                                   np.nansum(self.statistics['energy(k)'] /
                                                self.statistics['kshell']))
        self.statistics['Re'] = (self.statistics['Uint'] *
                                 self.statistics['Lint'] /
                                 self.parameters['nu'])
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
        self.statistics['Tint'] = self.statistics['Lint'] / self.statistics['Uint']
        self.statistics['Taylor_microscale'] = self.statistics['lambda']
        return None
    def set_plt_style(
            self,
            style = {'dashes' : (None, None)}):
        self.style.update(style)
        return None
    def convert_complex_from_binary(
            self,
            field_name = 'vorticity',
            iteration = 0,
            file_name = None):
        """read the Fourier representation of a vector field.

        Read the binary file containing iteration ``iteration`` of the
        field ``field_name``, and write it in a ``.h5`` file.
        """
        data = np.memmap(
                os.path.join(self.work_dir,
                             self.simname + '_{0}_i{1:0>5x}'.format('c' + field_name, iteration)),
                dtype = self.ctype,
                mode = 'r',
                shape = (self.parameters['ny'],
                         self.parameters['nz'],
                         self.parameters['nx']//2+1,
                         3))
        if type(file_name) == type(None):
            file_name = self.simname + '_{0}_i{1:0>5x}.h5'.format('c' + field_name, iteration)
            file_name = os.path.join(self.work_dir, file_name)
        f = h5py.File(file_name, 'a')
        f[field_name + '/complex/{0}'.format(iteration)] = data
        f.close()
        return None
    def write_par(
            self,
            iter0 = 0,
420
421
            particle_ic = None,
            particles_off = False):
422
423
424
        assert (self.parameters['niter_todo'] % self.parameters['niter_stat'] == 0)
        assert (self.parameters['niter_todo'] % self.parameters['niter_out']  == 0)
        assert (self.parameters['niter_out']  % self.parameters['niter_stat'] == 0)
425
        if self.dns_type in ['NSVEparticles_no_output', 'NSVEcomplex_particles', 'NSVEparticles']:
426
427
            assert (self.parameters['niter_todo'] % self.parameters['niter_part'] == 0)
            assert (self.parameters['niter_out']  % self.parameters['niter_part'] == 0)
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
        _code.write_par(self, iter0 = iter0)
        with h5py.File(self.get_data_file_name(), 'r+') as ofile:
            ofile['bfps_info/exec_name'] = self.name
            kspace = self.get_kspace()
            for k in kspace.keys():
                ofile['kspace/' + k] = kspace[k]
            nshells = kspace['nshell'].shape[0]
            kspace = self.get_kspace()
            nshells = kspace['nshell'].shape[0]
            vec_stat_datasets = ['velocity', 'vorticity']
            scal_stat_datasets = []
            for k in vec_stat_datasets:
                time_chunk = 2**20//(8*3*3*nshells)
                time_chunk = max(time_chunk, 1)
                ofile.create_dataset('statistics/spectra/' + k + '_' + k,
                                     (1, nshells, 3, 3),
                                     chunks = (time_chunk, nshells, 3, 3),
                                     maxshape = (None, nshells, 3, 3),
                                     dtype = np.float64)
                time_chunk = 2**20//(8*4*10)
                time_chunk = max(time_chunk, 1)
                a = ofile.create_dataset('statistics/moments/' + k,
                                     (1, 10, 4),
                                     chunks = (time_chunk, 10, 4),
                                     maxshape = (None, 10, 4),
                                     dtype = np.float64)
                time_chunk = 2**20//(8*4*self.parameters['histogram_bins'])
                time_chunk = max(time_chunk, 1)
                ofile.create_dataset('statistics/histograms/' + k,
                                     (1,
                                      self.parameters['histogram_bins'],
                                      4),
                                     chunks = (time_chunk,
                                               self.parameters['histogram_bins'],
                                               4),
                                     maxshape = (None,
                                                 self.parameters['histogram_bins'],
                                                 4),
                                     dtype = np.int64)
            ofile['checkpoint'] = int(0)
468
        if (self.dns_type in ['NSVE', 'NSVE_no_output']) or particles_off:
469
470
471
472
473
474
475
476
477
478
479
            return None

        if type(particle_ic) == type(None):
            pbase_shape = (self.parameters['nparticles'],)
            number_of_particles = self.parameters['nparticles']
        else:
            pbase_shape = particle_ic.shape[:-1]
            assert(particle_ic.shape[-1] == 3)
            number_of_particles = 1
            for val in pbase_shape[1:]:
                number_of_particles *= val
480
        ncomponents = 3
481
        if self.dns_type in ['NSVEcomplex_particles']:
482
            ncomponents = 6
483
484
485
486
487
488
489
490
491
492
        with h5py.File(self.get_checkpoint_0_fname(), 'a') as ofile:
            s = 0
            ofile.create_group('tracers{0}'.format(s))
            ofile.create_group('tracers{0}/rhs'.format(s))
            ofile.create_group('tracers{0}/state'.format(s))
            ofile['tracers{0}/rhs'.format(s)].create_dataset(
                    '0',
                    shape = (
                        (self.parameters['tracers{0}_integration_steps'.format(s)],) +
                        pbase_shape +
493
                        (ncomponents,)),
494
495
496
497
498
                    dtype = np.float)
            ofile['tracers{0}/state'.format(s)].create_dataset(
                    '0',
                    shape = (
                        pbase_shape +
499
                        (ncomponents,)),
500
501
                    dtype = np.float)
        return None
502
    def job_parser_arguments(
503
504
            self,
            parser):
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
        parser.add_argument(
                '--ncpu',
                type = int,
                dest = 'ncpu',
                default = -1)
        parser.add_argument(
                '--np', '--nprocesses',
                metavar = 'NPROCESSES',
                help = 'number of mpi processes to use',
                type = int,
                dest = 'nb_processes',
                default = 4)
        parser.add_argument(
                '--ntpp', '--nthreads-per-process',
                type = int,
                dest = 'nb_threads_per_process',
                metavar = 'NTHREADS_PER_PROCESS',
                help = 'number of threads to use per MPI process',
                default = 1)
        parser.add_argument(
                '--no-submit',
                action = 'store_true',
                dest = 'no_submit')
        parser.add_argument(
                '--environment',
                type = str,
                dest = 'environment',
                default = None)
        parser.add_argument(
                '--minutes',
                type = int,
                dest = 'minutes',
                default = 5,
                help = 'If environment supports it, this is the requested wall-clock-limit.')
        parser.add_argument(
               '--njobs',
               type = int, dest = 'njobs',
               default = 1)
        return None
    def simulation_parser_arguments(
            self,
            parser):
        parser.add_argument(
                '--simname',
                type = str, dest = 'simname',
                default = 'test')
        parser.add_argument(
552
               '-n', '--grid-size',
553
554
555
556
557
               type = int,
               dest = 'n',
               default = 32,
               metavar = 'N',
               help = 'code is run by default in a grid of NxNxN')
558
559
560
561
562
563
564
565
        for coord in ['x', 'y', 'z']:
            parser.add_argument(
                   '--L{0}'.format(coord), '--box-length-{0}'.format(coord),
                   type = float,
                   dest = 'L{0}'.format(coord),
                   default = 2.0,
                   metavar = 'length{0}'.format(coord),
                   help = 'length of the box in the {0} direction will be `length{0} x pi`'.format(coord))
566
567
568
569
570
571
572
573
574
        parser.add_argument(
                '--wd',
                type = str, dest = 'work_dir',
                default = './')
        parser.add_argument(
                '--precision',
                choices = ['single', 'double'],
                type = str,
                default = 'single')
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
        parser.add_argument(
                '--src-wd',
                type = str,
                dest = 'src_work_dir',
                default = '')
        parser.add_argument(
                '--src-simname',
                type = str,
                dest = 'src_simname',
                default = '')
        parser.add_argument(
                '--src-iteration',
                type = int,
                dest = 'src_iteration',
                default = 0)
        parser.add_argument(
               '--kMeta',
               type = float,
               dest = 'kMeta',
               default = 2.0)
        parser.add_argument(
               '--dtfactor',
               type = float,
               dest = 'dtfactor',
               default = 0.5,
               help = 'dt is computed as DTFACTOR / N')
601
602
603
604
        return None
    def particle_parser_arguments(
            self,
            parser):
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
        parser.add_argument(
               '--particle-rand-seed',
               type = int,
               dest = 'particle_rand_seed',
               default = None)
        parser.add_argument(
               '--pclouds',
               type = int,
               dest = 'pclouds',
               default = 1,
               help = ('number of particle clouds. Particle "clouds" '
                       'consist of particles distributed according to '
                       'pcloud-type.'))
        parser.add_argument(
                '--pcloud-type',
                choices = ['random-cube',
                           'regular-cube'],
                dest = 'pcloud_type',
                default = 'random-cube')
        parser.add_argument(
               '--particle-cloud-size',
               type = float,
               dest = 'particle_cloud_size',
               default = 2*np.pi)
        return None
630
631
632
633
634
635
636
637
638
639
640
641
642
643
    def add_parser_arguments(
            self,
            parser):
        subparsers = parser.add_subparsers(
                dest = 'DNS_class',
                help = 'type of simulation to run')
        subparsers.required = True
        parser_NSVE = subparsers.add_parser(
                'NSVE',
                help = 'plain Navier-Stokes vorticity formulation')
        self.simulation_parser_arguments(parser_NSVE)
        self.job_parser_arguments(parser_NSVE)
        self.parameters_to_parser_arguments(parser_NSVE)

644
645
646
647
648
649
650
651
652
653
        parser_NSVE_no_output = subparsers.add_parser(
                'NSVE_no_output',
                help = 'plain Navier-Stokes vorticity formulation, checkpoints are NOT SAVED')
        self.simulation_parser_arguments(parser_NSVE_no_output)
        self.job_parser_arguments(parser_NSVE_no_output)
        self.parameters_to_parser_arguments(parser_NSVE_no_output)

        parser_NSVEparticles_no_output = subparsers.add_parser(
                'NSVEparticles_no_output',
                help = 'plain Navier-Stokes vorticity formulation, with basic fluid tracers, checkpoints are NOT SAVED')
654
655
656
657

        parser_NSVEp2 = subparsers.add_parser(
                'NSVEparticles',
                help = 'plain Navier-Stokes vorticity formulation, with basic fluid tracers')
658
659

        parser_NSVEp2p = subparsers.add_parser(
660
661
                'NSVEcomplex_particles',
                help = 'plain Navier-Stokes vorticity formulation, with oriented active particles')
Cristian Lalescu's avatar
Cristian Lalescu committed
662
663
664
665
666
667
668
669
670

        for parser in ['NSVEparticles_no_output', 'NSVEp2', 'NSVEp2p']:
            eval('self.simulation_parser_arguments({0})'.format('parser_' + parser))
            eval('self.job_parser_arguments({0})'.format('parser_' + parser))
            eval('self.particle_parser_arguments({0})'.format('parser_' + parser))
            eval('self.parameters_to_parser_arguments({0})'.format('parser_' + parser))
            eval('self.parameters_to_parser_arguments('
                    'parser_{0},'
                    'self.NSVEp_extra_parameters)'.format(parser))
671
        return None
672
673
    def prepare_launch(
            self,
674
675
            args = [],
            extra_parameters = None):
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
        """Set up reasonable parameters.

        With the default Lundgren forcing applied in the band [2, 4],
        we can estimate the dissipation, therefore we can estimate
        :math:`k_M \\eta_K` and constrain the viscosity.

        In brief, the command line parameter :math:`k_M \\eta_K` is
        used in the following formula for :math:`\\nu` (:math:`N` is the
        number of real space grid points per coordinate):

        .. math::

            \\nu = \\left(\\frac{2 k_M \\eta_K}{N} \\right)^{4/3}

        With this choice, the average dissipation :math:`\\varepsilon`
        will be close to 0.4, and the integral scale velocity will be
        close to 0.77, yielding the approximate value for the Taylor
        microscale and corresponding Reynolds number:

        .. math::

            \\lambda \\approx 4.75\\left(\\frac{2 k_M \\eta_K}{N} \\right)^{4/6}, \\hskip .5in
            R_\\lambda \\approx 3.7 \\left(\\frac{N}{2 k_M \\eta_K} \\right)^{4/6}

        """
        opt = _code.prepare_launch(self, args = args)
702
703
704
705
        self.set_precision(opt.precision)
        self.dns_type = opt.DNS_class
        self.name = self.dns_type + '-' + self.fluid_precision + '-v' + bfps.__version__
        # merge parameters if needed
706
        if self.dns_type in ['NSVEparticles', 'NSVEcomplex_particles', 'NSVEparticles_no_output']:
707
708
            for k in self.NSVEp_extra_parameters.keys():
                self.parameters[k] = self.NSVEp_extra_parameters[k]
709
710
711
712
        if type(extra_parameters) != type(None):
            if self.dns_type in extra_parameters.keys():
                for k in extra_parameters[self.dns_type].keys():
                    self.parameters[k] = extra_parameters[self.dns_type][k]
713
714
715
716
        if ((self.parameters['niter_todo'] % self.parameters['niter_out']) != 0):
            self.parameters['niter_out'] = self.parameters['niter_todo']
        if len(opt.src_work_dir) == 0:
            opt.src_work_dir = os.path.realpath(opt.work_dir)
717
718
719
720
        if type(opt.dkx) == type(None):
            opt.dkx = 2. / opt.Lx
        if type(opt.dky) == type(None):
            opt.dky = 2. / opt.Ly
Cristian Lalescu's avatar
Cristian Lalescu committed
721
        if type(opt.dkz) == type(None):
722
            opt.dkz = 2. / opt.Lz
723
724
725
726
727
728
        if type(opt.nx) == type(None):
            opt.nx = opt.n
        if type(opt.ny) == type(None):
            opt.ny = opt.n
        if type(opt.nz) == type(None):
            opt.nz = opt.n
729
730
731
732
733
734
        if type(opt.fk0) == type(None):
            opt.fk0 = self.parameters['fk0']
        if type(opt.fk1) == type(None):
            opt.fk1 = self.parameters['fk1']
        if type(opt.injection_rate) == type(None):
            opt.injection_rate = self.parameters['injection_rate']
Cristian Lalescu's avatar
Cristian Lalescu committed
735
        if type(opt.dealias_type) == type(None):
736
            opt.dealias_type = self.parameters['dealias_type']
737
738
739
740
741
        if (opt.nx > opt.n or
            opt.ny > opt.n or
            opt.nz > opt.n):
            opt.n = min(opt.nx, opt.ny, opt.nz)
            print("Warning: '-n' parameter changed to minimum of nx, ny, nz. This affects the computation of nu.")
Chichi Lalescu's avatar
Chichi Lalescu committed
742
        self.parameters['dt'] = (opt.dtfactor / opt.n)
743
        self.parameters['nu'] = (opt.kMeta * 2 / opt.n)**(4./3)
Cristian Lalescu's avatar
Cristian Lalescu committed
744
745
746
747
748
        # check value of kMax
        kM = opt.n * 0.5
        if opt.dealias_type == 1:
            kM *= 0.8
        # tweak forcing/viscosity based on forcint type
Cristian Lalescu's avatar
Cristian Lalescu committed
749
        if opt.forcing_type == 'linear':
750
751
752
753
754
            # custom famplitude for 288 and 576
            if opt.n == 288:
                self.parameters['famplitude'] = 0.45
            elif opt.n == 576:
                self.parameters['famplitude'] = 0.47
Cristian Lalescu's avatar
Cristian Lalescu committed
755
        elif opt.forcing_type == 'fixed_energy_injection_rate':
756
757
            # use the fact that mean dissipation rate is equal to injection rate
            self.parameters['nu'] = (
Cristian Lalescu's avatar
Cristian Lalescu committed
758
                    opt.injection_rate *
759
                    (opt.kMeta / kM)**4)**(1./3)
760
        elif opt.forcing_type == 'fixed_energy':
Cristian Lalescu's avatar
Cristian Lalescu committed
761
762
            kf = 1. / (1./opt.fk0 +
                       1./opt.fk1)
763
764
765
766
            self.parameters['nu'] = (
                    (opt.kMeta / kM)**(4./3) *
                    (np.pi / kf)**(1./3) *
                    (2*self.parameters['energy'] / 3)**0.5)
767
768
769
770
        if type(opt.checkpoints_per_file) == type(None):
            # hardcoded FFTW complex representation size
            field_size = 3*(opt.nx+2)*opt.ny*opt.nz*self.fluid_dtype.itemsize
            checkpoint_size = field_size
771
            if self.dns_type in ['NSVEparticles', 'NSVEcomplex_particles', 'NSVEparticles_no_output']:
772
773
774
                rhs_size = self.parameters['tracers0_integration_steps']
                if type(opt.tracers0_integration_steps) != type(None):
                    rhs_size = opt.tracers0_integration_steps
775
776
777
778
                nparticles = opt.nparticles
                if type(nparticles) == type(None):
                    nparticles = self.NSVEp_extra_parameters['nparticles']
                particle_size = (1+rhs_size)*3*nparticles*8
779
780
781
                checkpoint_size += particle_size
            if checkpoint_size < 1e9:
                opt.checkpoints_per_file = int(1e9 / checkpoint_size)
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
        self.pars_from_namespace(opt)
        return opt
    def launch(
            self,
            args = [],
            **kwargs):
        opt = self.prepare_launch(args = args)
        self.launch_jobs(opt = opt, **kwargs)
        return None
    def get_checkpoint_0_fname(self):
        return os.path.join(
                    self.work_dir,
                    self.simname + '_checkpoint_0.h5')
    def generate_tracer_state(
            self,
            rseed = None,
798
799
800
801
            species = 0):
        with h5py.File(self.get_checkpoint_0_fname(), 'a') as data_file:
            dset = data_file[
                'tracers{0}/state/0'.format(species)]
802
803
            if not type(rseed) == type(None):
                np.random.seed(rseed)
804
805
806
            nn = self.parameters['nparticles']
            cc = int(0)
            batch_size = int(1e6)
807
808
809
810
811
812
            def get_random_phases(npoints):
                return np.random.random(
                            (npoints, 3))*2*np.pi
            def get_random_versors(npoints):
                bla = np.random.normal(
                        size = (npoints, 3))
813
                bla  /= np.sum(bla**2, axis = 1)[:, None]**.5
814
                return bla
815
816
            while nn > 0:
                if nn > batch_size:
817
818
819
                    dset[cc*batch_size:(cc+1)*batch_size, :3] = get_random_phases(batch_size)
                    if dset.shape[1] == 6:
                        dset[cc*batch_size:(cc+1)*batch_size, 3:] = get_random_versors(batch_size)
820
821
                    nn -= batch_size
                else:
822
823
824
                    dset[cc*batch_size:cc*batch_size+nn, :3] = get_random_phases(nn)
                    if dset.shape[1] == 6:
                        dset[cc*batch_size:cc*batch_size+nn, 3:] = get_random_versors(nn)
825
826
827
                    nn = 0
                cc += 1
        return None
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
    def generate_vector_field(
            self,
            rseed = 7547,
            spectra_slope = 1.,
            amplitude = 1.,
            iteration = 0,
            field_name = 'vorticity',
            write_to_file = False,
            # to switch to constant field, use generate_data_3D_uniform
            # for scalar_generator
            scalar_generator = tools.generate_data_3D):
        """generate vector field.

        The generated field is not divergence free, but it has the proper
        shape.

        :param rseed: seed for random number generator
        :param spectra_slope: spectrum of field will look like k^(-p)
        :param amplitude: all amplitudes are multiplied with this value
        :param iteration: the field is written at this iteration
        :param field_name: the name of the field being generated
        :param write_to_file: should we write the field to file?
        :param scalar_generator: which function to use for generating the
            individual components.
            Possible values: bfps.tools.generate_data_3D,
            bfps.tools.generate_data_3D_uniform
        :type rseed: int
        :type spectra_slope: float
        :type amplitude: float
        :type iteration: int
        :type field_name: str
        :type write_to_file: bool
        :type scalar_generator: function

        :returns: ``Kdata``, a complex valued 4D ``numpy.array`` that uses the
            transposed FFTW layout.
            Kdata[ky, kz, kx, i] is the amplitude of mode (kx, ky, kz) for
            the i-th component of the field.
            (i.e. x is the fastest index and z the slowest index in the
            real-space representation).
        """
        np.random.seed(rseed)
        Kdata00 = scalar_generator(
871
872
873
                self.parameters['nz'],
                self.parameters['ny'],
                self.parameters['nx'],
874
875
876
                p = spectra_slope,
                amplitude = amplitude).astype(self.ctype)
        Kdata01 = scalar_generator(
877
878
879
                self.parameters['nz'],
                self.parameters['ny'],
                self.parameters['nx'],
880
881
882
                p = spectra_slope,
                amplitude = amplitude).astype(self.ctype)
        Kdata02 = scalar_generator(
883
884
885
                self.parameters['nz'],
                self.parameters['ny'],
                self.parameters['nx'],
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
                p = spectra_slope,
                amplitude = amplitude).astype(self.ctype)
        Kdata0 = np.zeros(
                Kdata00.shape + (3,),
                Kdata00.dtype)
        Kdata0[..., 0] = Kdata00
        Kdata0[..., 1] = Kdata01
        Kdata0[..., 2] = Kdata02
        Kdata1 = tools.padd_with_zeros(
                Kdata0,
                self.parameters['nz'],
                self.parameters['ny'],
                self.parameters['nx'])
        if write_to_file:
            Kdata1.tofile(
                    os.path.join(self.work_dir,
                                 self.simname + "_c{0}_i{1:0>5x}".format(field_name, iteration)))
        return Kdata1
904
905
906
907
908
909
910
911
912
913
914
    def copy_complex_field(
            self,
            src_file_name,
            src_dset_name,
            dst_file,
            dst_dset_name,
            make_link = True):
        # I define a min_shape thingie, but for now I only trust this method for
        # the case of increasing/decreasing by the same factor in all directions.
        # in principle we could write something more generic, but i'm not sure
        # how complicated that would be
915
916
        dst_shape = (self.parameters['ny'],
                     self.parameters['nz'],
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
                     (self.parameters['nx']+2) // 2,
                     3)
        src_file = h5py.File(src_file_name, 'r')
        if (src_file[src_dset_name].shape == dst_shape):
            if make_link and (src_file[src_dset_name].dtype == self.ctype):
                dst_file[dst_dset_name] = h5py.ExternalLink(
                        src_file_name,
                        src_dset_name)
            else:
                dst_file.create_dataset(
                        dst_dset_name,
                        shape = dst_shape,
                        dtype = self.ctype,
                        fillvalue = 0.0)
                for kz in range(src_file[src_dset_name].shape[0]):
                    dst_file[dst_dset_name][kz] = src_file[src_dset_name][kz]
        else:
            min_shape = (min(dst_shape[0], src_file[src_dset_name].shape[0]),
                         min(dst_shape[1], src_file[src_dset_name].shape[1]),
                         min(dst_shape[2], src_file[src_dset_name].shape[2]),
                         3)
938
            src_shape = src_file[src_dset_name].shape
939
940
941
            dst_file.create_dataset(
                    dst_dset_name,
                    shape = dst_shape,
942
943
                    dtype = np.dtype(self.ctype),
                    fillvalue = complex(0))
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
            for kz in range(min_shape[0]//2):
                dst_file[dst_dset_name][kz,:min_shape[1]//2, :min_shape[2]] = \
                        src_file[src_dset_name][kz, :min_shape[1]//2, :min_shape[2]]
                dst_file[dst_dset_name][kz,
                                        dst_shape[1] - min_shape[1]//2+1:,
                                        :min_shape[2]] = \
                        src_file[src_dset_name][kz,
                                                src_shape[1] - min_shape[1]//2+1,
                                                :min_shape[2]]
                if kz > 0:
                    dst_file[dst_dset_name][-kz,:min_shape[1]//2, :min_shape[2]] = \
                            src_file[src_dset_name][-kz, :min_shape[1]//2, :min_shape[2]]
                    dst_file[dst_dset_name][-kz,
                                            dst_shape[1] - min_shape[1]//2+1:,
                                            :min_shape[2]] = \
                            src_file[src_dset_name][-kz,
                                                    src_shape[1] - min_shape[1]//2+1,
                                                    :min_shape[2]]
962
        return None
963
964
965
966
967
968
969
970
971
    def generate_particle_data(
            self,
            opt = None):
        if self.parameters['nparticles'] > 0:
            self.generate_tracer_state(
                    species = 0,
                    rseed = opt.particle_rand_seed)
            if not os.path.exists(self.get_particle_file_name()):
                with h5py.File(self.get_particle_file_name(), 'w') as particle_file:
Cristian Lalescu's avatar
Cristian Lalescu committed
972
                    particle_file.create_group('tracers0/position')
973
974
                    particle_file.create_group('tracers0/velocity')
                    particle_file.create_group('tracers0/acceleration')
975
                    if self.dns_type in ['NSVEcomplex_particles']:
976
                        particle_file.create_group('tracers0/orientation')
977
                        particle_file.create_group('tracers0/velocity_gradient')
978
        return None
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
    def launch_jobs(
            self,
            opt = None,
            particle_initial_condition = None):
        if not os.path.exists(os.path.join(self.work_dir, self.simname + '.h5')):
            # take care of fields' initial condition
            if not os.path.exists(self.get_checkpoint_0_fname()):
                f = h5py.File(self.get_checkpoint_0_fname(), 'w')
                if len(opt.src_simname) > 0:
                    source_cp = 0
                    src_file = 'not_a_file'
                    while True:
                        src_file = os.path.join(
                            os.path.realpath(opt.src_work_dir),
                            opt.src_simname + '_checkpoint_{0}.h5'.format(source_cp))
                        f0 = h5py.File(src_file, 'r')
                        if '{0}'.format(opt.src_iteration) in f0['vorticity/complex'].keys():
                            f0.close()
                            break
                        source_cp += 1
999
                    self.copy_complex_field(
1000
                            src_file,
1001
1002
1003
                            'vorticity/complex/{0}'.format(opt.src_iteration),
                            f,
                            'vorticity/complex/{0}'.format(0))
1004
1005
1006
1007
1008
1009
1010
                else:
                    data = self.generate_vector_field(
                           write_to_file = False,
                           spectra_slope = 2.0,
                           amplitude = 0.05)
                    f['vorticity/complex/{0}'.format(0)] = data
                f.close()
1011
            ## take care of particles' initial condition
1012
            #if self.dns_type in ['NSVEparticles', 'NSVEparticles_no_output']:
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
            #    if opt.pclouds > 1:
            #        np.random.seed(opt.particle_rand_seed)
            #        if opt.pcloud_type == 'random-cube':
            #            particle_initial_condition = (
            #                np.random.random((opt.pclouds, 1, 3))*2*np.pi +
            #                np.random.random((1, self.parameters['nparticles'], 3))*opt.particle_cloud_size)
            #        elif opt.pcloud_type == 'regular-cube':
            #            onedarray = np.linspace(
            #                    -opt.particle_cloud_size/2,
            #                    opt.particle_cloud_size/2,
            #                    self.parameters['nparticles'])
            #            particle_initial_condition = np.zeros(
            #                    (opt.pclouds,
            #                     self.parameters['nparticles'],
            #                     self.parameters['nparticles'],
            #                     self.parameters['nparticles'], 3),
            #                    dtype = np.float64)
            #            particle_initial_condition[:] = \
            #                np.random.random((opt.pclouds, 1, 1, 1, 3))*2*np.pi
            #            particle_initial_condition[..., 0] += onedarray[None, None, None, :]
            #            particle_initial_condition[..., 1] += onedarray[None, None, :, None]
            #            particle_initial_condition[..., 2] += onedarray[None, :, None, None]
1035
            self.write_par(
1036
                    particle_ic = None)
1037
            if self.dns_type in ['NSVEparticles', 'NSVEcomplex_particles', 'NSVEparticles_no_output']:
1038
                self.generate_particle_data(opt = opt)
1039
1040
1041
1042
1043
1044
1045
1046
        self.run(
                nb_processes = opt.nb_processes,
                nb_threads_per_process = opt.nb_threads_per_process,
                njobs = opt.njobs,
                hours = opt.minutes // 60,
                minutes = opt.minutes % 60,
                no_submit = opt.no_submit)
        return None
Cristian Lalescu's avatar
Cristian Lalescu committed
1047