p2p_distr_mpi.hpp 49.7 KB
Newer Older
1
2
3
4
/******************************************************************************
*                                                                             *
*  Copyright 2019 Max Planck Institute for Dynamics and Self-Organization     *
*                                                                             *
Cristian Lalescu's avatar
Cristian Lalescu committed
5
*  This file is part of TurTLE.                                               *
6
*                                                                             *
Cristian Lalescu's avatar
Cristian Lalescu committed
7
*  TurTLE is free software: you can redistribute it and/or modify             *
8
9
10
11
*  it under the terms of the GNU General Public License as published          *
*  by the Free Software Foundation, either version 3 of the License,          *
*  or (at your option) any later version.                                     *
*                                                                             *
Cristian Lalescu's avatar
Cristian Lalescu committed
12
*  TurTLE is distributed in the hope that it will be useful,                  *
13
14
15
16
17
*  but WITHOUT ANY WARRANTY; without even the implied warranty of             *
*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the              *
*  GNU General Public License for more details.                               *
*                                                                             *
*  You should have received a copy of the GNU General Public License          *
Cristian Lalescu's avatar
Cristian Lalescu committed
18
*  along with TurTLE.  If not, see <http://www.gnu.org/licenses/>             *
19
20
21
22
23
24
25
*                                                                             *
* Contact: Cristian.Lalescu@ds.mpg.de                                         *
*                                                                             *
******************************************************************************/



26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#ifndef P2P_DISTR_MPI_HPP
#define P2P_DISTR_MPI_HPP

#include <mpi.h>

#include <vector>
#include <memory>
#include <cassert>

#include <type_traits>
#include <omp.h>
#include <algorithm>

#include "scope_timer.hpp"
#include "particles_utils.hpp"
#include "p2p_tree.hpp"
42
#include "lock_free_bool_array.hpp"
43
44
45
46

template <class partsize_t, class real_number>
class p2p_distr_mpi {
protected:
Cristian Lalescu's avatar
Cristian Lalescu committed
47
    static const int MaxNbRhs = 10;
48
49
50
51

    enum MpiTag{
        TAG_NB_PARTICLES,
        TAG_POSITION_PARTICLES,
52
        TAG_INDEX_PARTICLES,
53
54
55
56
57
58
59
60
        TAG_RESULT_PARTICLES,
    };

    struct NeighborDescriptor{
        partsize_t nbParticlesToExchange;
        int destProc;
        int nbLevelsToExchange;
        bool isRecv;
61
        int nbReceived;
62
63
64
65

        std::unique_ptr<real_number[]> toRecvAndMerge;
        std::unique_ptr<real_number[]> toCompute;
        std::unique_ptr<real_number[]> results;
66
        std::unique_ptr<partsize_t[]> indexes;
67
68
69
    };

    enum Action{
70
        NOTHING_TODO = 512,
71
72
73
        RECV_PARTICLES,
        COMPUTE_PARTICLES,
        RELEASE_BUFFER_PARTICLES,
74
        MERGE_PARTICLES
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
    };

    MPI_Comm current_com;

    int my_rank;
    int nb_processes;
    int nb_processes_involved;

    const std::pair<int,int> current_partition_interval;
    const int current_partition_size;
    const std::array<size_t,3> field_grid_dim;

    std::unique_ptr<int[]> partition_interval_size_per_proc;
    std::unique_ptr<int[]> partition_interval_offset_per_proc;

    std::unique_ptr<partsize_t[]> current_offset_particles_for_partition;

    std::vector<std::pair<Action,int>> whatNext;
    std::vector<MPI_Request> mpiRequests;
    std::vector<NeighborDescriptor> neigDescriptors;

    std::array<real_number,3> spatial_box_width;
    std::array<real_number,3> spatial_box_offset;

99
    const real_number cutoff_radius_compute;
100
    const int nb_cells_factor;
101
102
103
    const real_number cutoff_radius;
    std::array<long int,3> nb_cell_levels;

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
    template <class DataType, int sizeElement>
    static void permute_copy(const partsize_t offsetIdx, const partsize_t nbElements,
                             const std::pair<long int,partsize_t> permutation[],
                             DataType data[], std::vector<unsigned char>* buffer){
        buffer->resize(nbElements*sizeof(DataType)*sizeElement);
        DataType* dataBuffer = reinterpret_cast<DataType*>(buffer->data());

        // Permute
        for(partsize_t idxPart = 0 ; idxPart < nbElements ; ++idxPart){
            const partsize_t srcData = permutation[idxPart].second;
            const partsize_t destData = idxPart;
            for(int idxVal = 0 ; idxVal < sizeElement ; ++idxVal){
                dataBuffer[destData*sizeElement + idxVal]
                        = data[srcData*sizeElement + idxVal];
            }
        }

        // Copy back
        for(partsize_t idxPart = 0 ; idxPart < nbElements ; ++idxPart){
            const partsize_t srcData = idxPart;
            const partsize_t destData = idxPart+offsetIdx;
            for(int idxVal = 0 ; idxVal < sizeElement ; ++idxVal){
                data[destData*sizeElement + idxVal]
                        = dataBuffer[srcData*sizeElement + idxVal];
            }
        }
    }

132
    static int foundGridFactor(const real_number in_cutoff_radius, const std::array<real_number,3>& in_spatial_box_width){
133
        int idx_factor = 1;
134
        while(in_cutoff_radius <= in_spatial_box_width[IDXC_Z]/real_number(idx_factor+1)){
135
136
            idx_factor += 1;
        }
137
        return idx_factor;
138
139
    }

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
public:
    ////////////////////////////////////////////////////////////////////////////

    p2p_distr_mpi(MPI_Comm in_current_com,
                     const std::pair<int,int>& in_current_partitions,
                     const std::array<size_t,3>& in_field_grid_dim,
                     const std::array<real_number,3>& in_spatial_box_width,
                     const std::array<real_number,3>& in_spatial_box_offset,
                     const real_number in_cutoff_radius)
        : current_com(in_current_com),
            my_rank(-1), nb_processes(-1),nb_processes_involved(-1),
            current_partition_interval(in_current_partitions),
            current_partition_size(current_partition_interval.second-current_partition_interval.first),
            field_grid_dim(in_field_grid_dim),
            spatial_box_width(in_spatial_box_width), spatial_box_offset(in_spatial_box_offset),
155
            cutoff_radius_compute(in_cutoff_radius),
156
            nb_cells_factor(foundGridFactor(in_cutoff_radius, in_spatial_box_width)),
157
            cutoff_radius(in_spatial_box_width[IDXC_Z]/real_number(nb_cells_factor)){
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

        AssertMpi(MPI_Comm_rank(current_com, &my_rank));
        AssertMpi(MPI_Comm_size(current_com, &nb_processes));

        partition_interval_size_per_proc.reset(new int[nb_processes]);
        AssertMpi( MPI_Allgather( const_cast<int*>(&current_partition_size), 1, MPI_INT,
                                  partition_interval_size_per_proc.get(), 1, MPI_INT,
                                  current_com) );
        assert(partition_interval_size_per_proc[my_rank] == current_partition_size);

        partition_interval_offset_per_proc.reset(new int[nb_processes+1]);
        partition_interval_offset_per_proc[0] = 0;
        for(int idxProc = 0 ; idxProc < nb_processes ; ++idxProc){
            partition_interval_offset_per_proc[idxProc+1] = partition_interval_offset_per_proc[idxProc] + partition_interval_size_per_proc[idxProc];
        }

        current_offset_particles_for_partition.reset(new partsize_t[current_partition_size+1]);

        nb_processes_involved = nb_processes;
        while(nb_processes_involved != 0 && partition_interval_size_per_proc[nb_processes_involved-1] == 0){
            nb_processes_involved -= 1;
        }
        assert(nb_processes_involved != 0);
        for(int idx_proc_involved = 0 ; idx_proc_involved < nb_processes_involved ; ++idx_proc_involved){
            assert(partition_interval_size_per_proc[idx_proc_involved] != 0);
        }

185
        assert(int(field_grid_dim[IDXC_Z]) == partition_interval_offset_per_proc[nb_processes_involved]);
186

187
188
189
        nb_cell_levels[IDXC_X] = nb_cells_factor;
        nb_cell_levels[IDXC_Y] = nb_cells_factor;
        nb_cell_levels[IDXC_Z] = nb_cells_factor;
190
191
192
193
194
195
    }

    virtual ~p2p_distr_mpi(){}

    ////////////////////////////////////////////////////////////////////////////

196
197
198
199
200
201
202
203
    int getGridFactor() const{
        return nb_cells_factor;
    }

    real_number getGridCutoff() const{
        return cutoff_radius;
    }

204
    long int get_cell_coord_x_from_index(const long int index) const{
205
        return index % nb_cell_levels[IDXC_X];
206
207
208
    }

    long int get_cell_coord_y_from_index(const long int index) const{
209
210
        return (index % (nb_cell_levels[IDXC_X]*nb_cell_levels[IDXC_Y]))
                / nb_cell_levels[IDXC_X];
211
212
213
    }

    long int get_cell_coord_z_from_index(const long int index) const{
214
        return index / (nb_cell_levels[IDXC_X]*nb_cell_levels[IDXC_Y]);
215
216
217
    }

    long int first_cell_level_proc(const int dest_proc) const{
218
        const real_number field_section_width_z = spatial_box_width[IDXC_Z]/real_number(field_grid_dim[IDXC_Z]);
219
220
221
222
        return static_cast<long int>((field_section_width_z*real_number(partition_interval_offset_per_proc[dest_proc]))/cutoff_radius);
    }

    long int last_cell_level_proc(const int dest_proc) const{
223
        const real_number field_section_width_z = spatial_box_width[IDXC_Z]/real_number(field_grid_dim[IDXC_Z]);
224
        const long int limite = static_cast<long int>((field_section_width_z*real_number(partition_interval_offset_per_proc[dest_proc+1])
225
                                     - std::numeric_limits<real_number>::epsilon())/cutoff_radius);
226
227
228
229
230
        if(static_cast<real_number>(limite)*cutoff_radius
                == field_section_width_z*real_number(partition_interval_offset_per_proc[dest_proc+1])){
            return limite-1;
        }
        return limite;
231
232
    }

Cristian Lalescu's avatar
Cristian Lalescu committed
233
    real_number apply_pbc(real_number pos, IDX_COMPONENT_3D dim) const{
234
235
236
237
238
239
240
241
242
        while( pos < spatial_box_offset[dim] ){
            pos += spatial_box_width[dim];
        }
        while( spatial_box_width[dim]+spatial_box_offset[dim] <= pos){
            pos -= spatial_box_width[dim];
        }
        return pos;
    }

243
244
    std::array<long int,3> get_cell_coordinate(const real_number pos_x, const real_number pos_y,
                                               const real_number pos_z) const {
245
246
247
        const real_number diff_x = apply_pbc(pos_x,IDXC_X) - spatial_box_offset[IDXC_X];
        const real_number diff_y = apply_pbc(pos_y,IDXC_Y) - spatial_box_offset[IDXC_Y];
        const real_number diff_z = apply_pbc(pos_z,IDXC_Z) - spatial_box_offset[IDXC_Z];
248
        std::array<long int,3> coord;
249
250
251
        coord[IDXC_X] = static_cast<long int>(diff_x/cutoff_radius);
        coord[IDXC_Y] = static_cast<long int>(diff_y/cutoff_radius);
        coord[IDXC_Z] = static_cast<long int>(diff_z/cutoff_radius);
252
253
254
255
256
257
        return coord;
    }

    long int get_cell_idx(const real_number pos_x, const real_number pos_y,
                          const real_number pos_z) const {
        std::array<long int,3> coord = get_cell_coordinate(pos_x, pos_y, pos_z);
258
        return ((coord[IDXC_Z]*nb_cell_levels[IDXC_Y])+coord[IDXC_Y])*nb_cell_levels[IDXC_X]+coord[IDXC_X];
259
260
261
    }

    real_number compute_distance_r2(const real_number x1, const real_number y1, const real_number z1,
Berenger Bramas's avatar
Berenger Bramas committed
262
263
                                    const real_number x2, const real_number y2, const real_number z2,
                                    const real_number xshift_coef, const real_number yshift_coef, const real_number zshift_coef) const {
264
        real_number diff_x = std::abs(apply_pbc(x1,IDXC_X)-apply_pbc(x2,IDXC_X)+xshift_coef*spatial_box_width[IDXC_X]);
Berenger Bramas's avatar
Berenger Bramas committed
265
        assert(diff_x <= 2*cutoff_radius);
266

267
        real_number diff_y = std::abs(apply_pbc(y1,IDXC_X)-apply_pbc(y2,IDXC_X)+yshift_coef*spatial_box_width[IDXC_Y]);
Berenger Bramas's avatar
Berenger Bramas committed
268
        assert(diff_y <= 2*cutoff_radius);
269

270
        real_number diff_z = std::abs(apply_pbc(z1,IDXC_X)-apply_pbc(z2,IDXC_X)+zshift_coef*spatial_box_width[IDXC_Z]);
Berenger Bramas's avatar
Berenger Bramas committed
271
        assert(diff_z <= 2*cutoff_radius);
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
272
273
274

        return (diff_x*diff_x) + (diff_y*diff_y) + (diff_z*diff_z);
    }
275

276
    template <class computer_class, int size_particle_positions, int size_particle_rhs>
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
    void compute_distr(computer_class& in_computer,
                       const partsize_t current_my_nb_particles_per_partition[],
                       real_number particles_positions[],
                       real_number particles_current_rhs[],
                       partsize_t inout_index_particles[]){
        TIMEZONE("compute_distr");

        // Some processes might not be involved
        if(nb_processes_involved <= my_rank){
            return;
        }

        const long int my_top_z_cell_level = last_cell_level_proc(my_rank);
        const long int my_down_z_cell_level = first_cell_level_proc(my_rank);
        const long int my_nb_cell_levels = 1+my_top_z_cell_level-my_down_z_cell_level;

        current_offset_particles_for_partition[0] = 0;
        partsize_t myTotalNbParticles = 0;
        for(int idxPartition = 0 ; idxPartition < current_partition_size ; ++idxPartition){
            myTotalNbParticles += current_my_nb_particles_per_partition[idxPartition];
            current_offset_particles_for_partition[idxPartition+1] = current_offset_particles_for_partition[idxPartition] + current_my_nb_particles_per_partition[idxPartition];
        }

        // Compute box idx for each particle
        std::unique_ptr<long int[]> particles_coord(new long int[current_offset_particles_for_partition[current_partition_size]]);

        {
            for(int idxPartition = 0 ; idxPartition < current_partition_size ; ++idxPartition){
                #pragma omp parallel for schedule(static)
                for(partsize_t idxPart = current_offset_particles_for_partition[idxPartition] ; idxPart < current_offset_particles_for_partition[idxPartition+1] ; ++idxPart ){
307
308
309
                    particles_coord[idxPart] = get_cell_idx(particles_positions[(idxPart)*size_particle_positions + IDXC_X],
                                                                              particles_positions[(idxPart)*size_particle_positions + IDXC_Y],
                                                                              particles_positions[(idxPart)*size_particle_positions + IDXC_Z]);
310
311
312
313
314
                    assert(my_down_z_cell_level <= get_cell_coord_z_from_index(particles_coord[idxPart]));
                    assert(get_cell_coord_z_from_index(particles_coord[idxPart]) <= my_top_z_cell_level);
                }
            }

315
            std::vector<std::pair<long int,partsize_t>> part_to_sort;
316
317
318
319
320
321
322

            // Sort each partition in cells
            for(int idxPartition = 0 ; idxPartition < current_partition_size ; ++idxPartition){
                part_to_sort.clear();

                for(partsize_t idxPart = current_offset_particles_for_partition[idxPartition] ; idxPart < current_offset_particles_for_partition[idxPartition+1] ; ++idxPart ){
                    part_to_sort.emplace_back();
323
324
                    part_to_sort.back().first = particles_coord[idxPart];
                    part_to_sort.back().second = idxPart;
325
326
                }

327
                assert(partsize_t(part_to_sort.size()) == (current_my_nb_particles_per_partition[idxPartition]));
328
329

                std::sort(part_to_sort.begin(), part_to_sort.end(),
330
331
332
                          [](const std::pair<long int,partsize_t>& p1,
                             const std::pair<long int,partsize_t>& p2){
                    return p1.first < p2.first;
333
                });
334
335

                // Permute array using buffer
336
		// permute 4th function parameter using buffer, based on information in first 3 parameters
337
                std::vector<unsigned char> buffer;
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
                permute_copy<real_number, size_particle_positions>(
				current_offset_particles_for_partition[idxPartition],
                                current_my_nb_particles_per_partition[idxPartition],
                                part_to_sort.data(),
			       	particles_positions,
			       	&buffer);
                permute_copy<real_number, size_particle_rhs>(
				current_offset_particles_for_partition[idxPartition],
                                current_my_nb_particles_per_partition[idxPartition],
                                part_to_sort.data(),
			       	particles_current_rhs,
			       	&buffer);
                permute_copy<partsize_t, 1>(
				current_offset_particles_for_partition[idxPartition],
                                current_my_nb_particles_per_partition[idxPartition],
                                part_to_sort.data(),
			       	inout_index_particles,
			       	&buffer);
                permute_copy<long int, 1>(
				current_offset_particles_for_partition[idxPartition],
                                current_my_nb_particles_per_partition[idxPartition],
                                part_to_sort.data(),
			       	particles_coord.get(),
			       	&buffer);
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
            }
        }

        // Build the tree
        p2p_tree<std::vector<std::pair<partsize_t,partsize_t>>> my_tree(nb_cell_levels);

        for(int idxPartition = 0 ; idxPartition < current_partition_size ; ++idxPartition){
            long int current_cell_idx = -1;
            partsize_t current_nb_particles_in_cell = 0;
            partsize_t current_cell_offset = 0;

            for(partsize_t idx_part = current_offset_particles_for_partition[idxPartition] ;
                            idx_part != current_offset_particles_for_partition[idxPartition+1]; ++idx_part){
                if(particles_coord[idx_part] != current_cell_idx){
                    if(current_nb_particles_in_cell){
                        my_tree.getCell(current_cell_idx).emplace_back(current_cell_offset,current_nb_particles_in_cell);
                    }
                    current_cell_idx = particles_coord[idx_part];
                    current_nb_particles_in_cell = 1;
                    current_cell_offset = idx_part;
382
383
384
                }
                else{
                    current_nb_particles_in_cell += 1;
385
386
387
388
389
390
391
392
393
                }
            }
            if(current_nb_particles_in_cell){
                my_tree.getCell(current_cell_idx).emplace_back(current_cell_offset,current_nb_particles_in_cell);

            }
        }

        // Offset per cell layers
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
394
        long int previous_index = 0;
395
        variable_used_only_in_assert(previous_index);
396
397
398
399
        std::unique_ptr<partsize_t[]> particles_offset_layers(new partsize_t[my_nb_cell_levels+1]());
        for(int idxPartition = 0 ; idxPartition < current_partition_size ; ++idxPartition){
            for(partsize_t idx_part = current_offset_particles_for_partition[idxPartition] ;
                            idx_part != current_offset_particles_for_partition[idxPartition+1]; ++idx_part){
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
400
401
402
403
404
405
                const long int part_box_z_index = get_cell_coord_z_from_index(particles_coord[idx_part]);
                assert(my_down_z_cell_level <= part_box_z_index);
                assert(part_box_z_index <= my_top_z_cell_level);
                particles_offset_layers[part_box_z_index+1-my_down_z_cell_level] += 1;
                assert(previous_index <= part_box_z_index);
                previous_index = part_box_z_index;
406
407
            }
        }
408
        for(long int idx_layer = 0 ; idx_layer < my_nb_cell_levels ; ++idx_layer){
409
410
411
412
413
414
415
416
417
418
419
420
421
            particles_offset_layers[idx_layer+1] += particles_offset_layers[idx_layer];
        }

        // Reset vectors
        assert(whatNext.size() == 0);
        assert(mpiRequests.size() == 0);
        neigDescriptors.clear();

        // Find process with at least one neighbor
        {
            int dest_proc = (my_rank+1)%nb_processes_involved;
            while(dest_proc != my_rank
                  && (my_top_z_cell_level == first_cell_level_proc(dest_proc)
422
                      || (my_top_z_cell_level+1)%nb_cell_levels[IDXC_Z] == first_cell_level_proc(dest_proc))){
423
424
425
                // Find if we have to send 1 or 2 cell levels
                int nb_levels_to_send = 1;
                if(my_nb_cell_levels > 1 // I have more than one level
426
                        && (my_top_z_cell_level-1+2)%nb_cell_levels[IDXC_Z] <= last_cell_level_proc(dest_proc)){
427
428
429
430
431
432
433
434
                    nb_levels_to_send += 1;
                }

                NeighborDescriptor descriptor;
                descriptor.destProc = dest_proc;
                descriptor.nbLevelsToExchange = nb_levels_to_send;
                descriptor.nbParticlesToExchange = particles_offset_layers[my_nb_cell_levels] - particles_offset_layers[my_nb_cell_levels-nb_levels_to_send];
                descriptor.isRecv = false;
435
                descriptor.nbReceived = 0;
436
437
438
439
440
441
442
443
444

                neigDescriptors.emplace_back(std::move(descriptor));

                dest_proc = (dest_proc+1)%nb_processes_involved;
            }

            int src_proc = (my_rank-1+nb_processes_involved)%nb_processes_involved;
            while(src_proc != my_rank
                  && (last_cell_level_proc(src_proc) == my_down_z_cell_level
445
                      || (last_cell_level_proc(src_proc)+1)%nb_cell_levels[IDXC_Z] == my_down_z_cell_level)){
446
447
448
                // Find if we have to send 1 or 2 cell levels
                int nb_levels_to_recv = 1;
                if(my_nb_cell_levels > 1 // I have more than one level
449
                        && first_cell_level_proc(src_proc) <= (my_down_z_cell_level-1+2)%nb_cell_levels[IDXC_Z]){
450
451
452
453
454
455
456
457
                    nb_levels_to_recv += 1;
                }

                NeighborDescriptor descriptor;
                descriptor.destProc = src_proc;
                descriptor.nbLevelsToExchange = nb_levels_to_recv;
                descriptor.nbParticlesToExchange = -1;
                descriptor.isRecv = true;
458
                descriptor.nbReceived = 0;
459
460
461
462
463
464
465
466
467
468
469
470
471
472

                neigDescriptors.emplace_back(std::move(descriptor));

                src_proc = (src_proc-1+nb_processes_involved)%nb_processes_involved;
            }
        }

        //////////////////////////////////////////////////////////////////////
        /// Exchange the number of particles in each partition
        /// Could involve only here but I do not think it will be a problem
        //////////////////////////////////////////////////////////////////////

        assert(whatNext.size() == 0);
        assert(mpiRequests.size() == 0);
473
474
475
476
#ifndef NDEBUG // Just for assertion
        std::vector<int> willsend(nb_processes_involved, 0);
        std::vector<int> willrecv(nb_processes_involved, 0);
#endif
477
478
479
480
481
482
483
484
485
486
487

        for(int idxDescr = 0 ; idxDescr < int(neigDescriptors.size()) ; ++idxDescr){
            NeighborDescriptor& descriptor = neigDescriptors[idxDescr];

            if(descriptor.isRecv == false){
                whatNext.emplace_back(std::pair<Action,int>{NOTHING_TODO, -1});
                mpiRequests.emplace_back();
                AssertMpi(MPI_Isend(const_cast<partsize_t*>(&descriptor.nbParticlesToExchange),
                                    1, particles_utils::GetMpiType(partsize_t()),
                                    descriptor.destProc, TAG_NB_PARTICLES,
                                    current_com, &mpiRequests.back()));
488
489
490
#ifndef NDEBUG // Just for assertion
                willsend[descriptor.destProc] += 1;
#endif
491
492
493
494
                if(descriptor.nbParticlesToExchange){
                    whatNext.emplace_back(std::pair<Action,int>{NOTHING_TODO, -1});
                    mpiRequests.emplace_back();
                    assert(descriptor.nbParticlesToExchange*size_particle_positions < std::numeric_limits<int>::max());
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
495
                    AssertMpi(MPI_Isend(const_cast<real_number*>(&particles_positions[particles_offset_layers[my_nb_cell_levels-descriptor.nbLevelsToExchange]*size_particle_positions]),
496
497
498
499
                              int(descriptor.nbParticlesToExchange*size_particle_positions), particles_utils::GetMpiType(real_number()),
                              descriptor.destProc, TAG_POSITION_PARTICLES,
                              current_com, &mpiRequests.back()));

500
501
502
503
504
505
506
507
                    whatNext.emplace_back(std::pair<Action,int>{NOTHING_TODO, -1});
                    mpiRequests.emplace_back();
                    assert(descriptor.nbParticlesToExchange*size_particle_positions < std::numeric_limits<int>::max());
                    AssertMpi(MPI_Isend(const_cast<partsize_t*>(&inout_index_particles[particles_offset_layers[my_nb_cell_levels-descriptor.nbLevelsToExchange]]),
                              int(descriptor.nbParticlesToExchange), particles_utils::GetMpiType(partsize_t()),
                              descriptor.destProc, TAG_INDEX_PARTICLES,
                              current_com, &mpiRequests.back()));

508
509
                    assert(descriptor.toRecvAndMerge == nullptr);
                    descriptor.toRecvAndMerge.reset(new real_number[descriptor.nbParticlesToExchange*size_particle_rhs]);
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
510
                    whatNext.emplace_back(std::pair<Action,int>{MERGE_PARTICLES, idxDescr});
511
512
513
514
515
516
517
518
                    mpiRequests.emplace_back();
                    assert(descriptor.nbParticlesToExchange*size_particle_rhs < std::numeric_limits<int>::max());
                    AssertMpi(MPI_Irecv(descriptor.toRecvAndMerge.get(), int(descriptor.nbParticlesToExchange*size_particle_rhs),
                                        particles_utils::GetMpiType(real_number()), descriptor.destProc, TAG_RESULT_PARTICLES,
                                        current_com, &mpiRequests.back()));
                }
            }
            else{
519
520
521
#ifndef NDEBUG // Just for assertion
                willrecv[descriptor.destProc] += 1;
#endif
522
523
524
525
526
527
528
529
                whatNext.emplace_back(std::pair<Action,int>{RECV_PARTICLES, idxDescr});
                mpiRequests.emplace_back();
                AssertMpi(MPI_Irecv(&descriptor.nbParticlesToExchange,
                      1, particles_utils::GetMpiType(partsize_t()), descriptor.destProc, TAG_NB_PARTICLES,
                      current_com, &mpiRequests.back()));
            }
        }

530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
#ifndef NDEBUG // Just for assertion
        {
            if(myrank == 0){
                std::vector<int> willsendall(nb_processes_involved*nb_processes_involved, 0);// TODO debug
                std::vector<int> willrecvall(nb_processes_involved*nb_processes_involved, 0);// TODO debug

                MPI_Gather(willrecv.data(), nb_processes_involved, MPI_INT, willrecvall.data(),
                            nb_processes_involved, MPI_INT, 0, MPI_COMM_WORLD);
                MPI_Gather(willsend.data(), nb_processes_involved, MPI_INT, willsendall.data(),
                            nb_processes_involved, MPI_INT, 0, MPI_COMM_WORLD);

                for(int idxproc = 0 ; idxproc < nb_processes_involved ; ++idxproc){
                    for(int idxtest = 0 ; idxtest < nb_processes_involved ; ++idxtest){
                        assert(willsendall[idxproc*nb_processes_involved + idxtest]
                                == willrecvall[idxtest*nb_processes_involved + idxproc]);
                    }
                }
            }
            else{
                MPI_Gather(willrecv.data(), nb_processes_involved, MPI_INT, nullptr,
                            0, MPI_INT, 0, MPI_COMM_WORLD);
                MPI_Gather(willsend.data(), nb_processes_involved, MPI_INT, nullptr,
                            0, MPI_INT, 0, MPI_COMM_WORLD);
            }
        }
#endif

557
558
        lock_free_bool_array cells_locker(512);

559
560
561
562
563
        std::vector<std::unique_ptr<computer_class>> computer_for_all_threads(omp_get_num_threads()-1);
        for(int idxThread = 1 ; idxThread < omp_get_num_threads() ; ++idxThread){
            computer_for_all_threads[idxThread-1].reset(new computer_class(in_computer));
        }

564
565
566
        TIMEZONE_OMP_INIT_PREPARALLEL(omp_get_max_threads())
        #pragma omp parallel default(shared)
        {
567
            computer_class& computer_thread = (omp_get_thread_num() == 0 ? in_computer : *computer_for_all_threads[omp_get_thread_num()-1]);
568
569
570
            #pragma omp master
            {
                while(mpiRequests.size()){
Berenger Bramas's avatar
Berenger Bramas committed
571
                    TIMEZONE("wait-loop");
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
                    assert(mpiRequests.size() == whatNext.size());

                    int idxDone = int(mpiRequests.size());
                    {
                        TIMEZONE("wait");
                        AssertMpi(MPI_Waitany(int(mpiRequests.size()), mpiRequests.data(), &idxDone, MPI_STATUSES_IGNORE));
                    }
                    const std::pair<Action, int> releasedAction = whatNext[idxDone];
                    std::swap(mpiRequests[idxDone], mpiRequests[mpiRequests.size()-1]);
                    std::swap(whatNext[idxDone], whatNext[mpiRequests.size()-1]);
                    mpiRequests.pop_back();
                    whatNext.pop_back();

                    //////////////////////////////////////////////////////////////////////
                    /// Data to exchange particles
                    //////////////////////////////////////////////////////////////////////
                    if(releasedAction.first == RECV_PARTICLES){
Berenger Bramas's avatar
Berenger Bramas committed
589
                        TIMEZONE("post-recv-particles");
590
                        NeighborDescriptor& descriptor = neigDescriptors[releasedAction.second];
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
591
                        assert(descriptor.isRecv);
592
593
594
595
                        const int destProc = descriptor.destProc;
                        const partsize_t NbParticlesToReceive = descriptor.nbParticlesToExchange;
                        assert(NbParticlesToReceive != -1);
                        assert(descriptor.toCompute == nullptr);
596
                        assert(descriptor.indexes == nullptr);
597
598
599

                        if(NbParticlesToReceive){
                            descriptor.toCompute.reset(new real_number[NbParticlesToReceive*size_particle_positions]);
600
                            whatNext.emplace_back(std::pair<Action,int>{COMPUTE_PARTICLES, releasedAction.second});
601
602
603
604
605
                            mpiRequests.emplace_back();
                            assert(NbParticlesToReceive*size_particle_positions < std::numeric_limits<int>::max());
                            AssertMpi(MPI_Irecv(descriptor.toCompute.get(), int(NbParticlesToReceive*size_particle_positions),
                                                particles_utils::GetMpiType(real_number()), destProc, TAG_POSITION_PARTICLES,
                                                current_com, &mpiRequests.back()));
606

607
                            descriptor.indexes.reset(new partsize_t[NbParticlesToReceive]);
608
609
610
611
612
613
                            whatNext.emplace_back(std::pair<Action,int>{COMPUTE_PARTICLES, releasedAction.second});
                            mpiRequests.emplace_back();
                            assert(NbParticlesToReceive*size_particle_positions < std::numeric_limits<int>::max());
                            AssertMpi(MPI_Irecv(descriptor.indexes.get(), int(NbParticlesToReceive),
                                                particles_utils::GetMpiType(partsize_t()), destProc, TAG_INDEX_PARTICLES,
                                                current_com, &mpiRequests.back()));
614
615
616
617
618
619
620
621
                        }
                    }

                    //////////////////////////////////////////////////////////////////////
                    /// Computation
                    //////////////////////////////////////////////////////////////////////
                    if(releasedAction.first == COMPUTE_PARTICLES){
                        NeighborDescriptor& descriptor = neigDescriptors[releasedAction.second];
622
623
624
625
626
627
628
629
630
631
                        descriptor.nbReceived += 1;
                        assert(descriptor.nbReceived <= 2);

                        if(descriptor.nbReceived == 2){
                            TIMEZONE("compute-particles");
                            NeighborDescriptor& descriptor = neigDescriptors[releasedAction.second];
                            assert(descriptor.isRecv);
                            const partsize_t NbParticlesToReceive = descriptor.nbParticlesToExchange;

                            assert(descriptor.toCompute != nullptr);
632
                            assert(descriptor.indexes != nullptr);
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
                            descriptor.results.reset(new real_number[NbParticlesToReceive*size_particle_rhs]);
                            computer_thread.template init_result_array<size_particle_rhs>(descriptor.results.get(), NbParticlesToReceive);

                            // Compute
                            partsize_t idxPart = 0;
                            while(idxPart != NbParticlesToReceive){
                                const long int current_cell_idx = get_cell_idx(descriptor.toCompute[idxPart*size_particle_positions + IDXC_X],
                                                                               descriptor.toCompute[idxPart*size_particle_positions + IDXC_Y],
                                                                               descriptor.toCompute[idxPart*size_particle_positions + IDXC_Z]);
                                partsize_t nb_parts_in_cell = 1;
                                while(idxPart+nb_parts_in_cell != NbParticlesToReceive
                                      && current_cell_idx == get_cell_idx(descriptor.toCompute[(idxPart+nb_parts_in_cell)*size_particle_positions + IDXC_X],
                                                                         descriptor.toCompute[(idxPart+nb_parts_in_cell)*size_particle_positions + IDXC_Y],
                                                                         descriptor.toCompute[(idxPart+nb_parts_in_cell)*size_particle_positions + IDXC_Z])){
                                    nb_parts_in_cell += 1;
                                }
649

650
651
652
653
654
                                #pragma omp task default(shared) firstprivate(idxPart, nb_parts_in_cell, current_cell_idx)
                                {
                                    const std::vector<std::pair<partsize_t,partsize_t>>* neighbors[27];
                                    long int neighbors_indexes[27];
                                    std::array<real_number,3> shift[27];
655
656
657
658
659
660
                                    const int nbNeighbors = my_tree.getNeighbors(
						    current_cell_idx,
						    neighbors,
						    neighbors_indexes,
						    shift,
						    true);
661
662
663
664
665
666
667
668

                                    // with other interval
                                    for(int idx_neighbor = 0 ; idx_neighbor < nbNeighbors ; ++idx_neighbor){
                                        cells_locker.lock(neighbors_indexes[idx_neighbor]);

                                        for(size_t idx_2 = 0 ; idx_2 < (*neighbors[idx_neighbor]).size() ; ++idx_2){
                                            for(partsize_t idx_p1 = 0 ; idx_p1 < nb_parts_in_cell ; ++idx_p1){
                                                for(partsize_t idx_p2 = 0 ; idx_p2 < (*neighbors[idx_neighbor])[idx_2].second ; ++idx_p2){
669
670
671
672
673
674
675
676
                                                    const real_number dist_r2 = compute_distance_r2(
								    descriptor.toCompute[(idxPart+idx_p1)*size_particle_positions + IDXC_X],
                                                                    descriptor.toCompute[(idxPart+idx_p1)*size_particle_positions + IDXC_Y],
                                                                    descriptor.toCompute[(idxPart+idx_p1)*size_particle_positions + IDXC_Z],
                                                                    particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions + IDXC_X],
                                                                    particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions + IDXC_Y],
                                                                    particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions + IDXC_Z],
                                                                    shift[idx_neighbor][IDXC_X], shift[idx_neighbor][IDXC_Y], shift[idx_neighbor][IDXC_Z]);
677
678
679
680
681
682
683
684
                                                    if(dist_r2 < cutoff_radius_compute*cutoff_radius_compute){
                                                        computer_thread.template compute_interaction<size_particle_positions, size_particle_rhs>(
                                                                            descriptor.indexes[(idxPart+idx_p1)],
                                                                            &descriptor.toCompute[(idxPart+idx_p1)*size_particle_positions],
                                                                            &descriptor.results[(idxPart+idx_p1)*size_particle_rhs],
                                                                            inout_index_particles[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)],
                                                                            &particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions],
                                                                            &particles_current_rhs[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_rhs],
685
686
687
688
689
                                                                            dist_r2,
									    cutoff_radius_compute,
									    shift[idx_neighbor][IDXC_X],
									    shift[idx_neighbor][IDXC_Y],
									    shift[idx_neighbor][IDXC_Z]);
690
                                                    }
691
                                                }
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
692
                                            }
693
                                        }
694

695
696
                                        cells_locker.unlock(neighbors_indexes[idx_neighbor]);
                                    }
697
698
                                }

699
700
                                idxPart += nb_parts_in_cell;
                            }
701

702
                            #pragma omp taskwait
703

704
705
706
707
708
709
710
711
712
                            // Send back
                            const int destProc = descriptor.destProc;
                            whatNext.emplace_back(std::pair<Action,int>{RELEASE_BUFFER_PARTICLES, releasedAction.second});
                            mpiRequests.emplace_back();
                            assert(NbParticlesToReceive*size_particle_rhs < std::numeric_limits<int>::max());
                            AssertMpi(MPI_Isend(descriptor.results.get(), int(NbParticlesToReceive*size_particle_rhs),
                                                particles_utils::GetMpiType(real_number()), destProc, TAG_RESULT_PARTICLES,
                                                current_com, &mpiRequests.back()));
                            delete[] descriptor.toCompute.release();
713
                            delete[] descriptor.indexes.release();
714
                        }
715
716
                    }
                    //////////////////////////////////////////////////////////////////////
717
                    /// Release memory that was sent back
718
                    //////////////////////////////////////////////////////////////////////
719
720
                    if(releasedAction.first == RELEASE_BUFFER_PARTICLES){
                        NeighborDescriptor& descriptor = neigDescriptors[releasedAction.second];
721
                        assert(descriptor.results != nullptr);
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
722
                        assert(descriptor.isRecv);
Cristian Lalescu's avatar
Cristian Lalescu committed
723
                        delete[] descriptor.results.release();
724
725
726
727
                    }
                    //////////////////////////////////////////////////////////////////////
                    /// Merge
                    //////////////////////////////////////////////////////////////////////
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
728
                    if(releasedAction.first == MERGE_PARTICLES){
Berenger Bramas's avatar
Berenger Bramas committed
729
                        TIMEZONE("merge");
730
                        NeighborDescriptor& descriptor = neigDescriptors[releasedAction.second];
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
731
                        assert(descriptor.isRecv == false);
732
                        assert(descriptor.toRecvAndMerge != nullptr);
733
                        computer_thread.template reduce_particles_rhs<size_particle_rhs>(&particles_current_rhs[particles_offset_layers[my_nb_cell_levels-descriptor.nbLevelsToExchange]*size_particle_rhs],
Berenger Bramas's avatar
Debug    
Berenger Bramas committed
734
                                descriptor.toRecvAndMerge.get(), descriptor.nbParticlesToExchange);
Cristian Lalescu's avatar
Cristian Lalescu committed
735
                        delete[] descriptor.toRecvAndMerge.release();
736
737
738
739
740
741
742
743
                    }
                }
            }
        }

        assert(whatNext.size() == 0);
        assert(mpiRequests.size() == 0);

744
745
746
747
748
749
750
        {
            computer_class& computer_thread = (omp_get_thread_num() == 0 ? in_computer : *computer_for_all_threads[omp_get_thread_num()-1]);
            // Compute self data
            for(const auto& iter_cell : my_tree){
                TIMEZONE("proceed-leaf");
                const long int currenct_cell_idx = iter_cell.first;
                const std::vector<std::pair<partsize_t,partsize_t>>* intervals_ptr = &iter_cell.second;
751

752
753
754
755
756
    #pragma omp task default(shared) firstprivate(currenct_cell_idx, intervals_ptr)
                {
                    const std::vector<std::pair<partsize_t,partsize_t>>& intervals = (*intervals_ptr);

                    cells_locker.lock(currenct_cell_idx);
757

758
759
                    for(size_t idx_1 = 0 ; idx_1 < intervals.size() ; ++idx_1){
                        // self interval
760
                        for(partsize_t idx_p1 = 0 ; idx_p1 < intervals[idx_1].second ; ++idx_p1){
761
                            for(partsize_t idx_p2 = idx_p1+1 ; idx_p2 < intervals[idx_1].second ; ++idx_p2){
762
763
764
                                const real_number dist_r2 = compute_distance_r2(particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDXC_X],
                                                                                particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDXC_Y],
                                                                                particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDXC_Z],
765
766
767
                                                                                particles_positions[(intervals[idx_1].first+idx_p2)*size_particle_positions + IDXC_X],
                                                                                particles_positions[(intervals[idx_1].first+idx_p2)*size_particle_positions + IDXC_Y],
                                                                                particles_positions[(intervals[idx_1].first+idx_p2)*size_particle_positions + IDXC_Z],
768
769
                                                                                0, 0, 0);
                                if(dist_r2 < cutoff_radius_compute*cutoff_radius_compute){
770
                                    computer_thread.template compute_interaction<size_particle_positions,size_particle_rhs>(
771
                                                        inout_index_particles[(intervals[idx_1].first+idx_p1)],
772
773
                                                        &particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions],
                                                        &particles_current_rhs[(intervals[idx_1].first+idx_p1)*size_particle_rhs],
774
                                                        inout_index_particles[(intervals[idx_1].first+idx_p2)],
775
776
                                                        &particles_positions[(intervals[idx_1].first+idx_p2)*size_particle_positions],
                                                        &particles_current_rhs[(intervals[idx_1].first+idx_p2)*size_particle_rhs],
777
                                                        dist_r2, cutoff_radius_compute, 0, 0, 0);
778
779
                                }
                            }
780
                        }
781
782
783
784
785
786
787
788
789
790
791
792
793
794

                        // with other interval
                        for(size_t idx_2 = idx_1+1 ; idx_2 < intervals.size() ; ++idx_2){
                            for(partsize_t idx_p1 = 0 ; idx_p1 < intervals[idx_1].second ; ++idx_p1){
                                for(partsize_t idx_p2 = 0 ; idx_p2 < intervals[idx_2].second ; ++idx_p2){
                                    const real_number dist_r2 = compute_distance_r2(particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDXC_X],
                                                                                    particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDXC_Y],
                                                                                    particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDXC_Z],
                                                                                    particles_positions[(intervals[idx_2].first+idx_p2)*size_particle_positions + IDXC_X],
                                                                                    particles_positions[(intervals[idx_2].first+idx_p2)*size_particle_positions + IDXC_Y],
                                                                                    particles_positions[(intervals[idx_2].first+idx_p2)*size_particle_positions + IDXC_Z],
                                                                                    0, 0, 0);
                                    if(dist_r2 < cutoff_radius_compute*cutoff_radius_compute){
                                        computer_thread.template compute_interaction<size_particle_positions,size_particle_rhs>(
795
                                                            inout_index_particles[(intervals[idx_1].first+idx_p1)],
796
797
                                                            &particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions],
                                                            &particles_current_rhs[(intervals[idx_1].first+idx_p1)*size_particle_rhs],
798
                                                            inout_index_particles[(intervals[idx_2].first+idx_p2)],
799
800
801
802
803
804
805
                                                            &particles_positions[(intervals[idx_2].first+idx_p2)*size_particle_positions],
                                                            &particles_current_rhs[(intervals[idx_2].first+idx_p2)*size_particle_rhs],
                                                            dist_r2, cutoff_radius_compute, 0, 0, 0);
                                    }
                                }
                            }
                        }
806
807
                    }

808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
                    const std::vector<std::pair<partsize_t,partsize_t>>* neighbors[27];
                    long int neighbors_indexes[27];
                    std::array<real_number,3> shift[27];
                    const int nbNeighbors = my_tree.getNeighbors(currenct_cell_idx, neighbors, neighbors_indexes, shift, false);

                    for(size_t idx_1 = 0 ; idx_1 < intervals.size() ; ++idx_1){
                        // with other interval
                        for(int idx_neighbor = 0 ; idx_neighbor < nbNeighbors ; ++idx_neighbor){
                            if(currenct_cell_idx < neighbors_indexes[idx_neighbor]){
                                cells_locker.lock(neighbors_indexes[idx_neighbor]);

                                for(size_t idx_2 = 0 ; idx_2 < (*neighbors[idx_neighbor]).size() ; ++idx_2){
                                    for(partsize_t idx_p1 = 0 ; idx_p1 < intervals[idx_1].second ; ++idx_p1){
                                        for(partsize_t idx_p2 = 0 ; idx_p2 < (*neighbors[idx_neighbor])[idx_2].second ; ++idx_p2){
                                            const real_number dist_r2 = compute_distance_r2(particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDXC_X],
                                                                                            particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDXC_Y],
                                                                                            particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions + IDXC_Z],
                                                                                            particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions + IDXC_X],
                                                                                            particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions + IDXC_Y],
                                                                                            particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions + IDXC_Z],
                                                                                            shift[idx_neighbor][IDXC_X], shift[idx_neighbor][IDXC_Y], shift[idx_neighbor][IDXC_Z]);
                                            if(dist_r2 < cutoff_radius_compute*cutoff_radius_compute){
                                                computer_thread.template compute_interaction<size_particle_positions,size_particle_rhs>(
831
                                                                    inout_index_particles[(intervals[idx_1].first+idx_p1)],
832
833
                                                                    &particles_positions[(intervals[idx_1].first+idx_p1)*size_particle_positions],
                                                                    &particles_current_rhs[(intervals[idx_1].first+idx_p1)*size_particle_rhs],
834
                                                                    inout_index_particles[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)],
835
836
837
838
                                                                    &particles_positions[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_positions],
                                                                    &particles_current_rhs[((*neighbors[idx_neighbor])[idx_2].first+idx_p2)*size_particle_rhs],
                                                                    dist_r2, cutoff_radius_compute, shift[idx_neighbor][IDXC_X], shift[idx_neighbor][IDXC_Y], shift[idx_neighbor][IDXC_Z]);
                                            }
839
                                        }
840
                                    }
841
                                }
842
                                cells_locker.unlock(neighbors_indexes[idx_neighbor]);
843
844
845
                            }
                        }
                    }
846

847
848
                    cells_locker.unlock(currenct_cell_idx);
                }
849
850
            }
        }
851
852
853
854

        for(int idxThread = 1 ; idxThread < omp_get_num_threads() ; ++idxThread){
            in_computer.merge(*computer_for_all_threads[idxThread-1]);
        }
855
856
857
858
    }
};

#endif