Title={{Image Restoration in Cryo-Electron Microscopy}},
Journal={{Methods in Enzymology}},
Year={{2010}},
Volume={{482}},
Pages={{35-72}}
}
@Article{AllegrettiNAT2015,
Title={{Horizontal membrane-intrinsic alpha-helices in the stator a-subunit of an F-type ATP synthase}},
Author={Allegretti, Matteo and Klusch, Niklas and Mills, Deryck J. and Vonck, Janet and Kuehlbrandt, Werner and Davies, Karen M.},
Journal={{Nature}},
Year={{2015}},
Month={{MAY 14}},
Number={{7551}},
Pages={{237+}},
Volume={{521}},
Abstract={{ATP, the universal energy currency of cells, is produced by F-type ATP synthases, which are ancient, membrane-bound nanomachines. F-type ATP synthases use the energy of a transmembrane electrochemical gradient to generate ATP by rotary catalysis. Protons moving across the membrane drive a rotor ring composed of 8-15 c-subunits(1). A central stalk transmits the rotation of the c-ring to the catalytic F-1 head, where a series of conformational changes results in ATP synthesis(2). A key unresolved question in this fundamental process is how protons pass through the membrane to drive ATP production. Mitochondrial ATP synthases form V-shaped homodimers in cristae membranes(3). Here we report the structure of a native and active mitochondrial ATP synthase dimer, determined by single-particle electron cryomicroscopy at 6.2 angstrom resolution. Our structure shows four long, horizontal membrane-intrinsic alpha-helices in the a-subunit, arranged in two hairpins at an angle of approximately 70 degrees relative to the c-ring helices. It has been proposed that a strictly conserved membrane-embedded arginine in the a-subunit couples proton translocation to c-ring rotation(4). A fit of the conserved carboxy-terminal a-subunit sequence places the conserved arginine next to a proton-binding c-subunit glutamate. The map shows a slanting solvent-accessible channel that extends from the mitochondrial matrix to the conserved arginine. Another hydrophilic cavity on the lumenal membrane surface defines a direct route for the protons to an essential histidine-glutamate pair(5). Our results provide unique new insights into the structure and function of rotary ATP synthases and explain how ATP production is coupled to proton translocation.}},
Address={{MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND}},
Affiliation={{Kuhlbrandt, W (Reprint Author), Max Planck Inst Biophys, Dept Struct Biol, Max von Laue Str 3, D-60438 Frankfurt, Germany. Allegretti, Matteo; Klusch, Niklas; Mills, Deryck J.; Vonck, Janet; Kuehlbrandt, Werner; Davies, Karen M., Max Planck Inst Biophys, Dept Struct Biol, D-60438 Frankfurt, Germany.}},
Cited-references={{ABRAHAMS JP, 1994, NATURE, V370, P621, DOI 10.1038/370621a0. ALLEGRETTI M, 2014, ELIFE, V0003. Andrade MA, 2001, J MOL BIOL, V309, P1, DOI 10.1006/jmbi.2001.4624. Angevine CM, 2003, J BIOL CHEM, V278, P6066, DOI 10.1074/jbc.M210199200. Atteia A, 2000, EUR J BIOCHEM, V267, P2850, DOI 10.1046/j.1432-1327.2000.01288.x. Cain B. D., 1988, J BIOL CHEM, V263, P6602. CAREAGA CL, 1992, J MOL BIOL, V226, P1219, DOI 10.1016/0022-2836(92)91063-U. Chen SX, 2013, ULTRAMICROSCOPY, V135, P24, DOI 10.1016/j.ultramic.2013.06.004. Davies KM, 2012, P NATL ACAD SCI USA, V109, P13602, DOI 10.1073/pnas.1204593109. Davies KM, 2011, P NATL ACAD SCI USA, V108, P14121, DOI 10.1073/pnas.1103621108. Hakulinen JK, 2012, P NATL ACAD SCI USA, V109, pE2050, DOI 10.1073/pnas.1203971109. HATCH LP, 1995, J BIOL CHEM, V270, P29407. HOPPE J, 1982, FEBS LETT, V145, P21, DOI 10.1016/0014-5793(82)81198-8. Jiang WP, 1998, P NATL ACAD SCI USA, V95, P6607, DOI 10.1073/pnas.95.12.6607. Junge W, 1997, TRENDS BIOCHEM SCI, V22, P420, DOI 10.1016/S0968-0004(97)01129-8. Kucukelbir A, 2014, NAT METHODS, V11, P63, DOI {[}10.1038/nmeth.2727, 10.1038/NMETH.2727]. Larkin MA, 2007, BIOINFORMATICS, V23, P2947, DOI 10.1093/bioinformatics/btm404. Lau WCY, 2012, NATURE, V481, P214, DOI 10.1038/nature10699. Li XM, 2013, NAT METHODS, V10, P584, DOI 10.1038/nmeth.2472. Ludtke SJ, 1999, J STRUCT BIOL, V128, P82, DOI 10.1006/jsbi.1999.4174. Matthies D., 2014, NATURE COMMUN, V5. Mills DJ, 2013, ELIFE, V2, DOI 10.7554/eLife.00218. Mindell JA, 2003, J STRUCT BIOL, V142, P334, DOI 10.1016/S1047-8477(03)00069-8. Mitome N, 2010, BIOCHEM J, V430, P171, DOI 10.1042/BJ20100621. Moore KJ, 2008, J BIOL CHEM, V283, P13044, DOI 10.1074/jbc.M800900200. Moore KJ, 2008, J BIOL CHEM, V283, P31726, DOI 10.1074/jbc.M803848200. Pettersen EF, 2004, J COMPUT CHEM, V25, P1605, DOI 10.1002/jcc.20084. Pogoryelov D, 2012, P NATL ACAD SCI USA, V109, pE1599, DOI 10.1073/pnas.1120027109. Pogoryelov D, 2010, NAT CHEM BIOL, V6, P891, DOI {[}10.1038/nchembio.457, 10.1038/NCHEMBIO.457]. Rees DM, 2009, P NATL ACAD SCI USA, V106, P21597, DOI 10.1073/pnas.0910365106. Scheres SHW, 2014, ELIFE, V3, DOI 10.7554/eLife.03665. Scheres SHW, 2012, J STRUCT BIOL, V180, P519, DOI 10.1016/j.jsb.2012.09.006. Schroder GF, 2007, STRUCTURE, V15, P1630, DOI 10.1016/j.str.2007.09.021. Schwem BE, 2006, J BIOL CHEM, V281, P37861, DOI 10.1074/jbc.M607453200. Senes A, 2004, CURR OPIN STRUC BIOL, V14, P465, DOI 10.1016/j.sbi.2004.07.007. Steed PR, 2014, J BIOL CHEM, V289, P2127, DOI 10.1074/jbc.M113.527879. Symersky J, 2012, NAT STRUCT MOL BIOL, V19, P485, DOI 10.1038/nsmb.2284. Tang G, 2007, J STRUCT BIOL, V157, P38, DOI 10.1016/j.jsb.2006.05.009. van Lis R, 2005, BBA-BIOENERGETICS, V1708, P23, DOI 10.1016/j.bbabio.2004.12.010. van Lis R, 2007, PLANT PHYSIOL, V144, P1190, DOI 10.1104/pp.106.094060. Vazquez-Acevedo M, 2006, J BIOENERG BIOMEMBR, V38, P271, DOI 10.1007/s10863-006-9046-x. Villavicencio-Queijeiro A, 2009, J BIOENERG BIOMEMBR, V41, P1, DOI 10.1007/s10863-009-9203-0. Vincent OD, 2007, J BIOL CHEM, V282, P33788, DOI 10.1074/jbc.M706904200. Wada T, 1999, J BIOL CHEM, V274, P17353, DOI 10.1074/jbc.274.24.17353. Wong W, 2014, ELIFE, V3, DOI 10.7554/eLife.03080.}},
Doc-delivery-number={{CH9SY}},
Doi={{10.1038/nature14185}},
Eissn={{1476-4687}},
Funding-acknowledgement={{Max Planck Society; Deutsche Forschungsgemeinschaft Cluster of Excellence Frankfurt `Macromolecular Complexes'}},
Funding-text={{We thank T. Meier and J. D. Faraldo-Gomez for discussions and reading the manuscript. O. Yildiz and J. F. Castillo-Hernandez provided computer support. This work was funded by the Max Planck Society (M.A., N.K., D.J.M., J.V., K.M.D., W.K.) and the Deutsche Forschungsgemeinschaft Cluster of Excellence Frankfurt `Macromolecular Complexes' (K.M.D., W.K.).}},