bioem_cuda.cu 13.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
#define BIOEM_GPUCODE

#if defined(_WIN32)
#include <windows.h>
#endif

#include <iostream>
using namespace std;

#include "bioem_cuda_internal.h"
#include "bioem_algorithm.h"

13 14 15 16 17 18 19
#define checkCudaErrors(error) \
{ \
	if ((error) != cudaSuccess) \
	{ \
		printf("CUDA Error %d / %s (%s: %d)\n", error, cudaGetErrorString(error), __FILE__, __LINE__); \
		exit(1); \
	} \
20 21
}

David Rohr's avatar
David Rohr committed
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
static const char *cufftGetErrorStrung(cufftResult error)
{
    switch (error)
    {
        case CUFFT_SUCCESS:
            return "CUFFT_SUCCESS";

        case CUFFT_INVALID_PLAN:
            return "CUFFT_INVALID_PLAN";

        case CUFFT_ALLOC_FAILED:
            return "CUFFT_ALLOC_FAILED";

        case CUFFT_INVALID_TYPE:
            return "CUFFT_INVALID_TYPE";

        case CUFFT_INVALID_VALUE:
            return "CUFFT_INVALID_VALUE";

        case CUFFT_INTERNAL_ERROR:
            return "CUFFT_INTERNAL_ERROR";

        case CUFFT_EXEC_FAILED:
            return "CUFFT_EXEC_FAILED";

        case CUFFT_SETUP_FAILED:
            return "CUFFT_SETUP_FAILED";

        case CUFFT_INVALID_SIZE:
            return "CUFFT_INVALID_SIZE";

        case CUFFT_UNALIGNED_DATA:
            return "CUFFT_UNALIGNED_DATA";
    }
    return "UNKNOWN";
}

59 60 61 62
bioem_cuda::bioem_cuda()
{
	deviceInitialized = 0;
	GPUAlgo = getenv("GPUALGO") == NULL ? 2 : atoi(getenv("GPUALGO"));
63 64
	GPUAsync = getenv("GPUASYNC") == NULL ? 1 : atoi(getenv("GPUASYNC"));
	GPUWorkload = getenv("GPUWORKLOAD") == NULL ? 100 : atoi(getenv("GPUWORKLOAD"));
65 66 67 68 69 70 71
}

bioem_cuda::~bioem_cuda()
{
	deviceExit();
}

72
__global__ void compareRefMap_kernel(const int iOrient, const int iConv, const myfloat_t* pMap, bioem_Probability pProb, const bioem_param_device param, const bioem_RefMap_Mod RefMap, const int cent_x, const int cent_y, const int maxRef)
73 74
{
	const int iRefMap = myBlockIdxX * myBlockDimX + myThreadIdxX;
75
	if (iRefMap < maxRef)
76
	{
77
		compareRefMap<0>(iRefMap, iOrient, iConv, pMap, pProb, param, RefMap, cent_x, cent_y);
78 79 80
	}
}

81
__global__ void compareRefMapShifted_kernel(const int iOrient, const int iConv, const myfloat_t* pMap, bioem_Probability pProb, const bioem_param_device param, const bioem_RefMap_Mod RefMap, const int maxRef)
82 83
{
	const int iRefMap = myBlockIdxX * myBlockDimX + myThreadIdxX;
84
	if (iRefMap < maxRef)
85
	{
86
		compareRefMapShifted<1>(iRefMap, iOrient, iConv, pMap, pProb, param, RefMap);
87 88 89
	}
}

90 91 92 93 94 95
__global__ void cudaZeroMem(void* ptr, size_t size)
{
	int* myptr = (int*) ptr;
	int mysize = size / sizeof(int);
	int myid = myBlockDimX * myBlockIdxX + myThreadIdxX;
	int mygrid = myBlockDimX * myGridDimX;
96
	for (int i = myid; i < mysize; i += mygrid) myptr[i] = 0;
97 98
}

99
__global__ void compareRefMapLoopShifts_kernel(const int iOrient, const int iConv, const myfloat_t* pMap, bioem_Probability pProb, const bioem_param_device param, const bioem_RefMap RefMap, const int blockoffset, const int nShifts, const int nShiftBits, const int maxRef)
100 101 102 103 104 105 106 107 108
{
	const size_t myid = (myBlockIdxX + blockoffset) * myBlockDimX + myThreadIdxX;
	const int iRefMap = myid >> (nShiftBits << 1);
	const int myRef = myThreadIdxX >> (nShiftBits << 1);
	const int myShiftIdx = (myid >> nShiftBits) & (nShifts - 1);
	const int myShiftIdy = myid & (nShifts - 1);
	const int myShift = myid & (nShifts * nShifts - 1);
	const int cent_x = myShiftIdx * param.GridSpaceCenter - param.maxDisplaceCenter;
	const int cent_y = myShiftIdy * param.GridSpaceCenter - param.maxDisplaceCenter;
109

110
	const bool threadActive = myShiftIdx < nShifts && myShiftIdy < nShifts && iRefMap < maxRef;
111

112
	compareRefMap<2>(iRefMap, iOrient, iConv, pMap, pProb, param, RefMap, cent_x, cent_y, myShift, nShifts * nShifts, myRef, threadActive);
113 114
}

115
__global__ void multComplexMap(const mycomplex_t* convmap, const mycomplex_t* refmap, mycuComplex_t* out, const int NumberPixelsTotal, const int MapSize, const int NumberMaps, const int Offset)
116 117
{
	if (myBlockIdxX >= NumberMaps) return;
118
	const mycuComplex_t* myin = (mycuComplex_t*) &refmap[(myBlockIdxX + Offset) * MapSize];
119
	const mycuComplex_t* myconv = (mycuComplex_t*) convmap;
120
	mycuComplex_t* myout = &out[myBlockIdxX * MapSize];
121
	for(int i = myThreadIdxX; i < NumberPixelsTotal; i += myBlockDimX)
122
	{
123 124 125 126 127 128 129
		mycuComplex_t val;
		const mycuComplex_t conv = myconv[i];
		const mycuComplex_t in = myin[i];

		val.x = conv.x * in.x + conv.y * in.y;
		val.y = conv.y * in.x - conv.x * in.y;
		myout[i] = val;
130 131 132
	}
}

133
__global__ void cuDoRefMapsFFT(const int iOrient, const int iConv, const myfloat_t* lCC, const myfloat_t sumC, const myfloat_t sumsquareC, bioem_Probability pProb, const bioem_param_device param, const bioem_RefMap RefMap, const int maxRef, const int Offset)
134
{
135
	if (myBlockIdxX * myBlockDimX + myThreadIdxX >= maxRef) return;
136 137
	const int iRefMap = myBlockIdxX * myBlockDimX + myThreadIdxX + Offset;
	const myfloat_t* mylCC = &lCC[(myBlockIdxX * myBlockDimX + myThreadIdxX) * param.NumberPixels * param.NumberPixels];
138
	doRefMapFFT(iRefMap, iOrient, iConv, mylCC, sumC, sumsquareC, pProb, param, RefMap);
139 140
}

141 142 143 144 145 146 147 148 149 150 151 152 153
template <class T> static inline T divup(T num, T divider) {return((num + divider - 1) / divider);}
static inline bool IsPowerOf2(int x) {return ((x > 0) && ((x & (x - 1)) == 0));}
#if defined(_WIN32)
static inline int ilog2 (int value)
{
	DWORD index;
	_BitScanReverse (&index, value);
	return(value);
}
#else
static inline int ilog2(int value) {return 31 - __builtin_clz(value);}
#endif

154
int bioem_cuda::compareRefMaps(int iOrient, int iConv, const myfloat_t* conv_map, mycomplex_t* localmultFFT, myfloat_t sumC, myfloat_t sumsquareC, const int startMap)
155
{
156 157 158 159 160
	if (startMap)
	{
		cout << "Error startMap not implemented for GPU Code\n";
		exit(1);
	}
161 162 163 164
	if (GPUAsync)
	{
		checkCudaErrors(cudaEventSynchronize(cudaEvent[iConv & 1]));
	}
165

166
	if (FFTAlgo)
167
	{
168
		checkCudaErrors(cudaMemcpyAsync(&pConvMapFFT[(iConv & 1) * param.FFTMapSize], localmultFFT, param.FFTMapSize * sizeof(mycomplex_t), cudaMemcpyHostToDevice, cudaStream));
169
		for (int i = 0; i < maxRef; i += CUDA_FFTS_AT_ONCE)
170
		{
171
			const int num = min(CUDA_FFTS_AT_ONCE, maxRef - i);
172
			multComplexMap<<<num, CUDA_THREAD_COUNT, 0, cudaStream>>>(&pConvMapFFT[(iConv & 1) * param.FFTMapSize], pRefMapsFFT, pFFTtmp2, param.param_device.NumberPixels * param.param_device.NumberFFTPixels1D, param.FFTMapSize, num, i);
David Rohr's avatar
David Rohr committed
173 174
			cufftResult err = mycufftExecC2R(i + CUDA_FFTS_AT_ONCE > maxRef ? plan[1] : plan[0], pFFTtmp2, pFFTtmp);
			if (err != CUFFT_SUCCESS)
175
			{
David Rohr's avatar
David Rohr committed
176
				cout << "Error running CUFFT " << cufftGetErrorStrung(err) << "\n";
177 178
				exit(1);
			}
179
			cuDoRefMapsFFT<<<divup(num, CUDA_THREAD_COUNT), CUDA_THREAD_COUNT, 0, cudaStream>>>(iOrient, iConv, pFFTtmp, sumC, sumsquareC, pProb_device, param.param_device, *gpumap, num, i);
180
		}
181 182 183 184
		checkCudaErrors(cudaGetLastError());
	}
	else
	{
185
		checkCudaErrors(cudaMemcpyAsync(pConvMap_device[iConv & 1], conv_map, sizeof(myfloat_t) * RefMap.refMapSize, cudaMemcpyHostToDevice, cudaStream));
186 187

		if (GPUAlgo == 2) //Loop over shifts
188
		{
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
			const int nShifts = 2 * param.param_device.maxDisplaceCenter / param.param_device.GridSpaceCenter + 1;
			if (!IsPowerOf2(nShifts))
			{
				cout << "Invalid number of displacements, no power of two\n";
				exit(1);
			}
			if (CUDA_THREAD_COUNT % (nShifts * nShifts))
			{
				cout << "CUDA Thread count (" << CUDA_THREAD_COUNT << ") is no multiple of number of shifts (" << (nShifts * nShifts) << ")\n";
				exit(1);
			}
			if (nShifts > CUDA_MAX_SHIFT_REDUCE)
			{
				cout << "Too many displacements for CUDA reduction\n";
				exit(1);
			}
			const int nShiftBits = ilog2(nShifts);
			size_t totalBlocks = divup((size_t) maxRef * (size_t) nShifts * (size_t) nShifts, (size_t) CUDA_THREAD_COUNT);
			size_t nBlocks = CUDA_BLOCK_COUNT;
208
			for (size_t i = 0; i < totalBlocks; i += nBlocks)
209
			{
210
				compareRefMapLoopShifts_kernel<<<min(nBlocks, totalBlocks - i), CUDA_THREAD_COUNT, (CUDA_THREAD_COUNT * 2 + CUDA_THREAD_COUNT / (nShifts * nShifts) * 4) * sizeof(myfloat_t), cudaStream >>> (iOrient, iConv, pConvMap_device[iConv & 1], pProb_device, param.param_device, *gpumap, i, nShifts, nShiftBits, maxRef);
211
			}
212
		}
213
		else if (GPUAlgo == 1) //Split shifts in multiple kernels
214
		{
215
			for (int cent_x = -param.param_device.maxDisplaceCenter; cent_x <= param.param_device.maxDisplaceCenter; cent_x = cent_x + param.param_device.GridSpaceCenter)
216
			{
217
				for (int cent_y = -param.param_device.maxDisplaceCenter; cent_y <= param.param_device.maxDisplaceCenter; cent_y = cent_y + param.param_device.GridSpaceCenter)
218
				{
219
					compareRefMap_kernel<<<divup(maxRef, CUDA_THREAD_COUNT), CUDA_THREAD_COUNT, 0, cudaStream>>> (iOrient, iConv, pConvMap_device[iConv & 1], pProb_device, param.param_device, *pRefMap_device_Mod, cent_x, cent_y, maxRef);
220 221
				}
			}
222
		}
223
		else if (GPUAlgo == 0) //All shifts in one kernel
224
		{
225
			compareRefMapShifted_kernel<<<divup(maxRef, CUDA_THREAD_COUNT), CUDA_THREAD_COUNT, 0, cudaStream>>> (iOrient, iConv, pConvMap_device[iConv & 1], pProb_device, param.param_device, *pRefMap_device_Mod, maxRef);
226
		}
227
		else
228
		{
229 230
			cout << "Invalid GPU Algorithm selected\n";
			exit(1);
231
		}
232
	}
233 234
	if (GPUWorkload < 100)
	{
235
		bioem::compareRefMaps(iOrient, iConv, conv_map, localmultFFT, sumC, sumsquareC, maxRef);
236
	}
237 238 239
	if (GPUAsync)
	{
		checkCudaErrors(cudaEventRecord(cudaEvent[iConv & 1], cudaStream));
240
	}
241 242 243 244 245 246 247 248 249 250
	else
	{
		checkCudaErrors(cudaStreamSynchronize(cudaStream));
	}
	return(0);
}

int bioem_cuda::deviceInit()
{
	deviceExit();
251

252 253
	if (FFTAlgo) GPUAlgo = 2;

254 255 256 257 258
	gpumap = new bioem_RefMap;
	memcpy(gpumap, &RefMap, sizeof(bioem_RefMap));
	if (FFTAlgo == 0)
	{
		checkCudaErrors(cudaMalloc(&maps, sizeof(myfloat_t) * RefMap.ntotRefMap * RefMap.refMapSize));
259 260 261 262 263 264 265 266 267 268 269 270 271

		if (GPUAlgo == 0 || GPUAlgo == 1)
		{
			pRefMap_device_Mod = (bioem_RefMap_Mod*) gpumap;
			bioem_RefMap_Mod* RefMapGPU = new bioem_RefMap_Mod;
			RefMapGPU->init(RefMap);
			checkCudaErrors(cudaMemcpy(maps, RefMapGPU->maps, sizeof(myfloat_t) * RefMap.ntotRefMap * RefMap.refMapSize, cudaMemcpyHostToDevice));
			delete RefMapGPU;
		}
		else
		{
			checkCudaErrors(cudaMemcpy(maps, RefMap.maps, sizeof(myfloat_t) * RefMap.ntotRefMap * RefMap.refMapSize, cudaMemcpyHostToDevice));
		}
272 273 274 275 276 277 278 279 280
	}
	checkCudaErrors(cudaMalloc(&sum, sizeof(myfloat_t) * RefMap.ntotRefMap));
	checkCudaErrors(cudaMemcpy(sum, RefMap.sum_RefMap, sizeof(myfloat_t) * RefMap.ntotRefMap, cudaMemcpyHostToDevice));
	checkCudaErrors(cudaMalloc(&sumsquare, sizeof(myfloat_t) * RefMap.ntotRefMap));
	checkCudaErrors(cudaMemcpy(sumsquare, RefMap.sumsquare_RefMap, sizeof(myfloat_t) * RefMap.ntotRefMap, cudaMemcpyHostToDevice));
	gpumap->maps = maps;
	gpumap->sum_RefMap = sum;
	gpumap->sumsquare_RefMap = sumsquare;

281
	checkCudaErrors(cudaStreamCreate(&cudaStream));
282 283 284
	pProb_device = pProb;
	checkCudaErrors(cudaMalloc(&pProb_device.ptr, pProb_device.get_size(RefMap.ntotRefMap, param.nTotGridAngles)));
	pProb_device.set_pointers();
285
	for (int i = 0; i < 2; i++)
286 287
	{
		checkCudaErrors(cudaEventCreate(&cudaEvent[i]));
288
		checkCudaErrors(cudaMalloc(&pConvMap_device[i], sizeof(myfloat_t) * RefMap.refMapSize));
289
	}
290

291 292
	if (FFTAlgo)
	{
293 294
		checkCudaErrors(cudaMalloc(&pRefMapsFFT, RefMap.ntotRefMap * param.FFTMapSize * sizeof(mycomplex_t)));
		checkCudaErrors(cudaMalloc(&pFFTtmp2, CUDA_FFTS_AT_ONCE * param.FFTMapSize * sizeof(mycomplex_t)));
295
		checkCudaErrors(cudaMalloc(&pFFTtmp, CUDA_FFTS_AT_ONCE * param.param_device.NumberPixels * param.param_device.NumberPixels * sizeof(myfloat_t)));
296 297
		checkCudaErrors(cudaMalloc(&pConvMapFFT, param.FFTMapSize * sizeof(mycomplex_t) * 2));
		checkCudaErrors(cudaMemcpy(pRefMapsFFT, RefMap.RefMapsFFT, RefMap.ntotRefMap * param.FFTMapSize * sizeof(mycomplex_t), cudaMemcpyHostToDevice));
298 299
	}

300 301 302 303 304 305 306
	deviceInitialized = 1;
	return(0);
}

int bioem_cuda::deviceExit()
{
	if (deviceInitialized == 0) return(0);
307

308
	cudaStreamDestroy(cudaStream);
309
	cudaFree(pProb_device.ptr);
310 311
	cudaFree(sum);
	cudaFree(sumsquare);
312
	for (int i = 0; i < 2; i++)
313 314
	{
		cudaEventDestroy(cudaEvent[i]);
315
		cudaFree(pConvMap_device[i]);
316
	}
317 318 319 320
	if (FFTAlgo)
	{
		cudaFree(pRefMapsFFT);
		cudaFree(pConvMapFFT);
321
		//cudaFree(pFFTtmp);
322 323
		cudaFree(pFFTtmp2);
	}
324 325 326 327 328 329 330 331 332
	else
	{
		cudaFree(maps);
	}
	if (GPUAlgo == 0 || GPUAlgo == 1)
	{
		cudaFree(pRefMap_device_Mod);
	}
	delete gpumap;
333
	cudaThreadExit();
334

335 336 337 338 339 340
	deviceInitialized = 0;
	return(0);
}

int bioem_cuda::deviceStartRun()
{
341
	maxRef = GPUWorkload >= 100 ? RefMap.ntotRefMap : ((size_t) RefMap.ntotRefMap * (size_t) GPUWorkload / 100);
342

343
	cudaMemcpy(pProb_device.ptr, pProb.ptr, pProb.get_size(RefMap.ntotRefMap, param.nTotGridAngles), cudaMemcpyHostToDevice);
344 345 346

	if (FFTAlgo)
	{
347
		for (int i = 0; i < 2; i++)
348 349
		{
			int n[2] = {param.param_device.NumberPixels, param.param_device.NumberPixels};
350
			if (cufftPlanMany(&plan[i], 2, n, NULL, 1, param.FFTMapSize, NULL, 1, 0, MY_CUFFT_C2R, i ? (maxRef % CUDA_FFTS_AT_ONCE) : CUDA_FFTS_AT_ONCE) != CUFFT_SUCCESS)
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
			{
				cout << "Error planning CUFFT\n";
				exit(1);
			}
			if (cufftSetCompatibilityMode(plan[i], CUFFT_COMPATIBILITY_NATIVE) != CUFFT_SUCCESS)
			{
				cout << "Error planning CUFFT compatibility\n";
				exit(1);
			}
			if (cufftSetStream(plan[i], cudaStream) != CUFFT_SUCCESS)
			{
				cout << "Error setting CUFFT stream\n";
				exit(1);
			}
		}
	}
367 368 369 370 371 372
	return(0);
}

int bioem_cuda::deviceFinishRun()
{
	if (GPUAsync) cudaStreamSynchronize(cudaStream);
373
	cudaMemcpy(pProb.ptr, pProb_device.ptr, pProb.get_size(RefMap.ntotRefMap, param.nTotGridAngles), cudaMemcpyDeviceToHost);
374

375 376
	if (FFTAlgo)
	{
377
		for (int i = 0; i < 2; i++) cufftDestroy(plan[i]);
378 379
	}

380 381 382 383 384 385 386
	return(0);
}

bioem* bioem_cuda_create()
{
	return new bioem_cuda;
}