bioem.cpp 26.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
#include <fstream>
#include <boost/program_options.hpp>
#include <iostream>
#include <algorithm>
#include <iterator>
#include <stdio.h>
#include <stdlib.h>
#include <string>
#include <cmath>
#include <omp.h>

#include <fftw3.h>
#include <math.h>
#include "cmodules/timer.h"

#include "param.h"
#include "bioem.h"
#include "model.h"
#include "map.h"


#include "bioem_algorithm.h"


using namespace boost;
namespace po = boost::program_options;

using namespace std;

// A helper function of Boost
template<class T>
ostream& operator<<(ostream& os, const vector<T>& v)
{
34 35
	copy(v.begin(), v.end(), ostream_iterator<T>(os, " "));
	return os;
36 37 38 39
}

bioem::bioem()
{
40
	FFTAlgo = getenv("FFTALGO") == NULL ? 0 : atoi(getenv("FFTALGO"));
41 42 43 44
}

bioem::~bioem()
{
David Rohr's avatar
David Rohr committed
45

46 47 48 49
}

int bioem::configure(int ac, char* av[])
{
50 51 52 53 54 55 56 57 58 59
	/**************************************************************************************/
	/**** Configuration Routine using boost for extracting parameters, models and maps ****/
	/**************************************************************************************/
	/****** And Precalculating necessary grids, map crosscorrelations and kernels  ********/
	/*************************************************************************************/

	/*** Inizialzing default variables ***/
	std::string infile,modelfile,mapfile;
	Model.readPDB=false;
	param.writeAngles=false;
60 61 62
	RefMap.dumpMap = false;
	RefMap.loadMap = false;

63 64 65
	/*************************************************************************************/
	cout << " ++++++++++++ FROM COMMAND LINE +++++++++++\n\n";
	/*************************************************************************************/
66

67
	/********************* Command line reading input with BOOST ************************/
68

69 70 71 72 73 74 75
	try {
		po::options_description desc("Command line inputs");
		desc.add_options()
		("Inputfile", po::value<std::string>(), "Name of input parameter file")
		("Modelfile", po::value< std::string>() , "Name of model file")
		("Particlesfile", po::value< std::string>(), "Name of paricles file")
		("ReadPDB", "(Optional) If reading model file in PDB format")
76 77
		("DumpMaps", "(Optional) Dump maps after they were red from maps file")
		("LoadMapDump", "(Optional) Read Maps from dump instead of maps file")
78 79 80 81 82 83 84 85
		("help", "(Optional) Produce help message")
		;

		po::positional_options_description p;
		p.add("Inputfile", -1);
		p.add("Modelfile", -1);
		p.add("Particlesfile", -1);
		p.add("ReadPDB", -1);
86 87 88
		p.add("DumpMaps", -1);
		p.add("LoadMapDump", -1);

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
		po::variables_map vm;
		po::store(po::command_line_parser(ac, av).
				  options(desc).positional(p).run(), vm);
		po::notify(vm);

		if((ac < 6)) {
			std::cout << desc << std::endl;
			return 0;
		}
		if (vm.count("help")) {
			cout << "Usage: options_description [options]\n";
			cout << desc;
			return 0;
		}

		if (vm.count("Inputfile"))
		{
			cout << "Input file is: ";
			cout << vm["Inputfile"].as< std::string >()<< "\n";
			infile=vm["Inputfile"].as< std::string >();
		}
		if (vm.count("Modelfile"))
		{
			cout << "Model file is: "
				 << vm["Modelfile"].as<  std::string  >() << "\n";
			modelfile=vm["Modelfile"].as<  std::string  >();
		}

		if (vm.count("ReadPDB"))
		{
			cout << "Reading model file in PDB format.\n";
			Model.readPDB=true;
		}

		if (vm.count("DumpMaps"))
		{
			cout << "Dumping Maps after reading from file.\n";
			RefMap.dumpMap = true;
		}

		if (vm.count("LoadMapDump"))
		{
			cout << "Loading Map dump.\n";
			RefMap.loadMap = true;
		}

		if (vm.count("Particlesfile"))
		{
			cout << "Paricle file is: "
				 << vm["Particlesfile"].as< std::string >() << "\n";
			mapfile=vm["Particlesfile"].as< std::string >();
		}
	}
	catch(std::exception& e)
	{
		cout << e.what() << "\n";
		return 1;
	}

	/********************* Reading Parameter Input ***************************/
	// copying inputfile to param class
	param.fileinput = infile.c_str();
	param.readParameters();

	/********************* Reading Model Input ******************************/
	// copying modelfile to model class
	Model.filemodel = modelfile.c_str();
	Model.readModel();

	/********************* Reading Particle Maps Input **********************/
	/********* HERE: PROBLEM if maps dont fit on the memory!! ***************/
	// copying mapfile to ref map class
	RefMap.filemap = mapfile.c_str();
	RefMap.readRefMaps(param);

	/****************** Precalculating Necessary Stuff *********************/
	precalculate();
David Rohr's avatar
David Rohr committed
166

167 168 169 170 171
	if (getenv("BIOEM_DEBUG_BREAK"))
	{
		param.nTotGridAngles = atoi(getenv("BIOEM_DEBUG_BREAK"));
		param.nTotCTFs = atoi(getenv("BIOEM_DEBUG_BREAK"));
	}
David Rohr's avatar
David Rohr committed
172

173 174
	deviceInit();

175
	return(0);
176 177 178 179
}

int bioem::precalculate()
{
180 181 182
	/**************************************************************************************/
	/* Precalculating Routine of Orientation grids, Map crosscorrelations and CTF Kernels */
	/**************************************************************************************/
183

184 185
	// Generating Grids of orientations
	param.CalculateGridsParam();
186

187 188 189 190 191 192 193 194 195 196
	myfloat_t sum,sumsquare;

	//Precalculating cross-correlations of maps
	for (int iRefMap = 0; iRefMap < RefMap.ntotRefMap ; iRefMap++)
	{
		calcross_cor(RefMap.Ref[iRefMap],sum,sumsquare);
		//Storing Crosscorrelations in Map class
		RefMap.sum_RefMap[iRefMap]=sum;
		RefMap.sumsquare_RefMap[iRefMap]=sumsquare;
	}
197

198 199
	// Precalculating CTF Kernels stored in class Param
	param.CalculateRefCTF();
200

201 202
	// Precalculating Maps in Fourier space
	RefMap.PreCalculateMapsFFT(param);
203

204
	return(0);
205 206 207 208 209
}


int bioem::run()
{
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
	/**************************************************************************************/
	/**** Main BioEM routine, projects, convolutes and compares with Map using OpenMP ****/
	/**************************************************************************************/

	/**** If we want to control the number of threads -> omp_set_num_threads(XX); ******/
	/****************** Declarying class of Probability Pointer  *************************/
	pProb = new bioem_Probability[RefMap.ntotRefMap];

	printf("\tInitializing\n");
	// Inizialzing Probabilites to zero and constant to -Infinity
	for (int iRefMap = 0; iRefMap < RefMap.ntotRefMap; iRefMap ++)
	{
		pProb[iRefMap].Total=0.0;
		pProb[iRefMap].Constoadd=-9999999;
		pProb[iRefMap].max_prob=-9999999;
		for (int iOrient = 0; iOrient < param.nTotGridAngles; iOrient ++)
226
		{
227 228 229 230 231
			pProb[iRefMap].forAngles[iOrient]=0.0;
			pProb[iRefMap].ConstAngle[iOrient]=-99999999;
		}
	}
	/**************************************************************************************/
232 233
	deviceStartRun();

234
	/******************************** MAIN CYCLE ******************************************/
David Rohr's avatar
David Rohr committed
235

236 237 238 239 240
	/*** Declaring Private variables for each thread *****/
	mycomplex_t* proj_mapFFT;
	bioem_map conv_map;
	mycomplex_t* conv_mapFFT;
	myfloat_t sumCONV,sumsquareCONV;
241 242

	//allocating fftw_complex vector
243 244 245
	proj_mapFFT= (mycomplex_t *) myfftw_malloc(sizeof(mycomplex_t) *param.param_device.NumberPixels*param.param_device.NumberPixels);
	conv_mapFFT= (mycomplex_t *) myfftw_malloc(sizeof(mycomplex_t)*param.param_device.NumberPixels*param.param_device.NumberPixels);

246 247 248 249 250

	HighResTimer timer;

	printf("\tMain Loop (GridAngles %d, CTFs %d, RefMaps %d, Shifts (%d/%d)²), Pixels %d²\n", param.nTotGridAngles, param.nTotCTFs, RefMap.ntotRefMap, 2 * param.param_device.maxDisplaceCenter + param.param_device.GridSpaceCenter, param.param_device.GridSpaceCenter, param.param_device.NumberPixels);
	printf("\tInner Loop Count (%d %d %d) %lld\n", param.param_device.maxDisplaceCenter, param.param_device.GridSpaceCenter, param.param_device.NumberPixels, (long long int) (param.param_device.NumberPixels * param.param_device.NumberPixels * (2 * param.param_device.maxDisplaceCenter / param.param_device.GridSpaceCenter + 1) * (2 * param.param_device.maxDisplaceCenter / param.param_device.GridSpaceCenter + 1)));
251 252 253 254
	for (int iProjectionOut = 0; iProjectionOut < param.nTotGridAngles; iProjectionOut++)
	{
		/***************************************************************************************/
		/***** Creating Projection for given orientation and transforming to Fourier space *****/
255
		timer.ResetStart();
256
		createProjection(iProjectionOut, proj_mapFFT);
257 258
		printf("Time Projection %d: %f\n", iProjectionOut, timer.GetCurrentElapsedTime());

259 260 261 262
		/***************************************************************************************/
		/***** **** Internal Loop over convolutions **** *****/
		for (int iConv = 0; iConv < param.nTotCTFs; iConv++)
		{
263
			printf("\t\tConvolution %d %d\n", iProjectionOut, iConv);
264 265
			/*** Calculating convolutions of projection map and crosscorrelations ***/

266
			timer.ResetStart();
267
			createConvolutedProjectionMap(iProjectionOut,iConv,proj_mapFFT,conv_map,conv_mapFFT,sumCONV,sumsquareCONV);
268 269
			printf("Time Convolution %d %d: %f\n", iProjectionOut, iConv, timer.GetCurrentElapsedTime());

270 271
			/***************************************************************************************/
			/*** Comparing each calculated convoluted map with all experimental maps ***/
272
			timer.ResetStart();
273 274 275 276 277 278 279 280 281
			if (FFTAlgo == 0)
			{
				compareRefMaps(iProjectionOut, iConv, conv_map);
			}
			else
			{
				compareRefMaps2(iProjectionOut, iConv,conv_mapFFT,sumCONV,sumsquareCONV);
			}

282 283 284
			const double compTime = timer.GetCurrentElapsedTime();
			const int nShifts = 2 * param.param_device.maxDisplaceCenter / param.param_device.GridSpaceCenter + 1;
			const double nFlops = (double) RefMap.ntotRefMap * (double) nShifts * (double) nShifts *
285
								  (((double) param.param_device.NumberPixels - (double) param.param_device.maxDisplaceCenter / 2.) * ((double) param.param_device.NumberPixels - (double) param.param_device.maxDisplaceCenter / 2.) * 5. + 25.) / compTime;
286
			const double nGBs = (double) RefMap.ntotRefMap * (double) nShifts * (double) nShifts *
287
								(((double) param.param_device.NumberPixels - (double) param.param_device.maxDisplaceCenter / 2.) * ((double) param.param_device.NumberPixels - (double) param.param_device.maxDisplaceCenter / 2.) * 2. + 8.) * (double) sizeof(myfloat_t) / compTime;
288 289 290
			const double nGBs2 = (double) RefMap.ntotRefMap * ((double) param.param_device.NumberPixels * (double) param.param_device.NumberPixels + 8.) * (double) sizeof(myfloat_t) / compTime;

			printf("Time Comparison %d %d: %f sec (%f GFlops, %f GB/s (cached), %f GB/s)\n", iProjectionOut, iConv, compTime, nFlops / 1000000000., nGBs / 1000000000., nGBs2 / 1000000000.);
291 292 293 294 295
		}
	}
	//deallocating fftw_complex vector
	myfftw_free(proj_mapFFT);
	myfftw_free(conv_mapFFT);
David Rohr's avatar
David Rohr committed
296

297 298
	deviceFinishRun();

299
	/************* Writing Out Probabilities ***************/
300

301
	/*** Angular Probability ***/
302

303 304 305 306
	// if(param.writeAngles){
	ofstream angProbfile;
	angProbfile.open ("ANG_PROB_iRefMap");
	// }
307

308 309
	ofstream outputProbFile;
	outputProbFile.open ("Output_Probabilities");
310

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
	for (int iRefMap = 0; iRefMap < RefMap.ntotRefMap; iRefMap ++)
	{
		/**** Total Probability ***/
		outputProbFile << "RefMap " << iRefMap << " Probability  "  << log(pProb[iRefMap].Total)+pProb[iRefMap].Constoadd+0.5*log(M_PI)+(1-param.param_device.Ntotpi*0.5)*(log(2*M_PI)+1)+log(param.param_device.volu) << " Constant " << pProb[iRefMap].Constoadd  << "\n";

		outputProbFile << "RefMap " << iRefMap << " Maximizing Param: ";

		/*** Param that maximize probability****/
		outputProbFile << (pProb[iRefMap].max_prob + 0.5 * log(M_PI) + (1 - param.param_device.Ntotpi * 0.5) * (log(2 * M_PI) + 1) + log(param.param_device.volu)) << " ";
		outputProbFile << param.angles[pProb[iRefMap].max_prob_orient].pos[0] << " ";
		outputProbFile << param.angles[pProb[iRefMap].max_prob_orient].pos[1] << " ";
		outputProbFile << param.angles[pProb[iRefMap].max_prob_orient].pos[2] << " ";
		outputProbFile << param.CtfParam[pProb[iRefMap].max_prob_conv].pos[0] << " ";
		outputProbFile << param.CtfParam[pProb[iRefMap].max_prob_conv].pos[1] << " ";
		outputProbFile << param.CtfParam[pProb[iRefMap].max_prob_conv].pos[2] << " ";
326 327
		outputProbFile << pProb[iRefMap].max_prob_cent_x << " ";
		outputProbFile << pProb[iRefMap].max_prob_cent_y;
328
		outputProbFile << "\n";
329

330
		/*** For individual files***/ //angProbfile.open ("ANG_PROB_"iRefMap);
331

332
		if(param.writeAngles)
333
		{
334 335 336
			for (int iProjectionOut = 0; iProjectionOut < param.nTotGridAngles; iProjectionOut++)
			{
				angProbfile << " " << iRefMap << " " << param.angles[iProjectionOut].pos[0] << " " << param.angles[iProjectionOut].pos[1] << " " << param.angles[iProjectionOut].pos[2] << " " << log(pProb[iRefMap].forAngles[iProjectionOut])+pProb[iRefMap].ConstAngle[iProjectionOut]+0.5*log(M_PI)+(1-param.param_device.Ntotpi*0.5)*(log(2*M_PI)+1)+log(param.param_device.volu) << " " << log(param.param_device.volu) << "\n";
337

338 339 340
			}
		}
	}
341

342 343
	angProbfile.close();
	outputProbFile.close();
344

345
	//Deleting allocated pointers
346

347 348 349 350 351 352 353 354 355 356 357
	if (pProb)
	{
		delete[] pProb;
		pProb = NULL;
	}

	if (param.refCTF)
	{
		delete[] param.refCTF;
		param.refCTF =NULL;
	}
358

359 360 361 362 363 364
	if(RefMap.RefMapFFT)
	{
		delete[] RefMap.RefMapFFT;
		RefMap.RefMapFFT = NULL;
	}
	return(0);
365 366
}

367
int bioem::compareRefMaps(int iProjectionOut, int iConv, const bioem_map& conv_map, const int startMap)
368
{
369
#pragma omp parallel for
370 371 372 373 374
	for (int iRefMap = startMap; iRefMap < RefMap.ntotRefMap; iRefMap ++)
	{
		compareRefMapShifted<-1>(iRefMap,iProjectionOut,iConv,conv_map, pProb, param.param_device, RefMap);
	}
	return(0);
375 376
}

377
int bioem::compareRefMaps2(int iOrient, int iConv, mycomplex_t* localConvFFT,myfloat_t sumC,myfloat_t sumsquareC)
378
{
379
#pragma omp parallel
380
	{
381
		mycomplex_t *localCCT, *lCC;
382 383 384
		localCCT= (mycomplex_t *) myfftw_malloc(sizeof(mycomplex_t) *param.param_device.NumberPixels*param.param_device.NumberPixels);
		lCC= (mycomplex_t *) myfftw_malloc(sizeof(mycomplex_t) *param.param_device.NumberPixels*param.param_device.NumberPixels);

385 386 387 388 389 390 391
		const int num_threads = omp_get_num_threads();
		const int thread_id = omp_get_thread_num();
		const int mapsPerThread = (RefMap.ntotRefMap + num_threads - 1) / num_threads;
		const int iStart = thread_id * mapsPerThread;
		const int iEnd = min(RefMap.ntotRefMap, (thread_id + 1) * mapsPerThread);

		for (int iRefMap = iStart; iRefMap < iEnd; iRefMap ++)
392
		{
393
			calculateCCFFT(iRefMap,iOrient, iConv, sumC,sumsquareC, localConvFFT, localCCT,lCC);
394 395 396 397
		}
		myfftw_free(localCCT);
		myfftw_free(lCC);
	}
398

399 400 401 402
	return(0);
}

/////////////NEW ROUTINE ////////////////
403
inline int bioem::calculateCCFFT(int iRefMap, int iOrient, int iConv, myfloat_t sumC,myfloat_t sumsquareC, mycomplex_t* localConvFFT,mycomplex_t* localCCT,mycomplex_t* lCC)
404 405 406 407 408 409 410 411 412 413
{
	for(int i=0; i < param.param_device.NumberPixels ; i++ )
	{
		for(int j=0; j < param.param_device.NumberPixels ; j++ )
		{
			localCCT[i*param.param_device.NumberPixels+j][0]=localConvFFT[i*param.param_device.NumberPixels+j][0]*RefMap.RefMapFFT[iRefMap].cpoints[i*param.param_device.NumberPixels+j][0]+localConvFFT[i*param.param_device.NumberPixels+j][1]*RefMap.RefMapFFT[iRefMap].cpoints[i*param.param_device.NumberPixels+j][1];
			localCCT[i*param.param_device.NumberPixels+j][1]=localConvFFT[i*param.param_device.NumberPixels+j][1]*RefMap.RefMapFFT[iRefMap].cpoints[i*param.param_device.NumberPixels+j][0]-localConvFFT[i*param.param_device.NumberPixels+j][0]*RefMap.RefMapFFT[iRefMap].cpoints[i*param.param_device.NumberPixels+j][1];
		}
	}

414
	myfftw_execute_dft(param.fft_plan_c2c_backward,localCCT,lCC);
415 416 417 418 419 420

// Storing CORRELATIONS FOR CORRESPONDING DISPLACEMENTS & Normalizing after Backward FFT
	for (int cent_x = 0; cent_x <= param.param_device.maxDisplaceCenter; cent_x=cent_x+param.param_device.GridSpaceCenter)
	{
		for (int cent_y = 0; cent_y <= param.param_device.maxDisplaceCenter; cent_y=cent_y+param.param_device.GridSpaceCenter)
		{
421
			calProb(iRefMap, iOrient, iConv, sumC, sumsquareC, (myfloat_t) lCC[cent_x*param.param_device.NumberPixels+cent_y][0]/ (myfloat_t) (param.param_device.NumberPixels * param.param_device.NumberPixels), cent_x, cent_y);
422 423 424
		}
		for (int cent_y = param.param_device.NumberPixels-param.param_device.maxDisplaceCenter; cent_y < param.param_device.NumberPixels; cent_y=cent_y+param.param_device.GridSpaceCenter)
		{
425
			calProb(iRefMap, iOrient, iConv, sumC, sumsquareC, (myfloat_t) lCC[cent_x*param.param_device.NumberPixels+cent_y][0]/ (myfloat_t) (param.param_device.NumberPixels*param.param_device.NumberPixels), cent_x, param.param_device.NumberPixels-cent_y);
426 427 428 429 430 431
		}
	}
	for (int cent_x = param.param_device.NumberPixels-param.param_device.maxDisplaceCenter; cent_x < param.param_device.NumberPixels; cent_x=cent_x+param.param_device.GridSpaceCenter)
	{
		for (int cent_y = 0; cent_y < param.param_device.maxDisplaceCenter; cent_y=cent_y+param.param_device.GridSpaceCenter)
		{
432
			calProb(iRefMap, iOrient, iConv, sumC, sumsquareC, (myfloat_t) lCC[cent_x*param.param_device.NumberPixels+cent_y][0]/ (myfloat_t) (param.param_device.NumberPixels*param.param_device.NumberPixels), param.param_device.NumberPixels-cent_x, cent_y);
433 434 435
		}
		for (int cent_y = param.param_device.NumberPixels-param.param_device.maxDisplaceCenter; cent_y <= param.param_device.NumberPixels; cent_y=cent_y+param.param_device.GridSpaceCenter)
		{
436
			calProb(iRefMap, iOrient, iConv, sumC, sumsquareC, (myfloat_t) lCC[cent_x*param.param_device.NumberPixels+cent_y][0]/ (myfloat_t) (param.param_device.NumberPixels*param.param_device.NumberPixels), param.param_device.NumberPixels-cent_x, param.param_device.NumberPixels-cent_y);
437 438
		}
	}
439

440 441
	return (0);
}
442

443
inline int bioem::calProb(int iRefMap,int iOrient, int iConv,myfloat_t sumC,myfloat_t sumsquareC, int value, int disx, int disy)
444
{
445

446 447 448
	/********************************************************/
	/*********** Calculates the BioEM probability ***********/
	/********************************************************/
449

450
	const myfloat_t ForLogProb = (sumsquareC * param.param_device.Ntotpi - sumC * sumC);
451

452
		// Products of different cross-correlations (first element in formula)
453 454
		const myfloat_t firstele = param.param_device.Ntotpi * (RefMap.sumsquare_RefMap[iRefMap] * sumsquareC -   value * value) +
								   2 * RefMap.sum_RefMap[iRefMap] * sumC *   value - RefMap.sumsquare_RefMap[iRefMap] * sumC * sumC - RefMap.sum_RefMap[iRefMap] * RefMap.sum_RefMap[iRefMap] * sumsquareC;
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481

		//******* Calculating log of Prob*********/
		// As in fortran code: logpro=(3-Ntotpi)*0.5*log(firstele/pConvMap[iOrient].ForLogProbfromConv[iConv])+(Ntotpi*0.5-2)*log(Ntotpi-2)-0.5*log(pConvMap[iOrient].ForLogProbfromConv[iConv])+0.5*log(PI)+(1-Ntotpi*0.5)*(log(2*PI)+1);
		const myfloat_t logpro = (3 - param.param_device.Ntotpi) * 0.5 * log(firstele) + (param.param_device.Ntotpi * 0.5 - 2) * log((param.param_device.Ntotpi - 2) * ForLogProb);
//   cout << n <<" " << firstele << " "<< logpro << "\n";
		{
			/*******  Summing total Probabilities *************/
			/******* Need a constant because of numerical divergence*****/
			if(pProb[iRefMap].Constoadd < logpro)
			{
				pProb[iRefMap].Total = pProb[iRefMap].Total * exp(-logpro + pProb[iRefMap].Constoadd);
				pProb[iRefMap].Constoadd = logpro;
			}
			pProb[iRefMap].Total += exp(logpro - pProb[iRefMap].Constoadd);

			//Summing probabilities for each orientation
			if(pProb[iRefMap].ConstAngle[iOrient] < logpro)
			{
				pProb[iRefMap].forAngles[iOrient] = pProb[iRefMap].forAngles[iOrient] * exp(-logpro + pProb[iRefMap].ConstAngle[iOrient]);
				pProb[iRefMap].ConstAngle[iOrient] = logpro;
			}
			pProb[iRefMap].forAngles[iOrient] += exp(logpro - pProb[iRefMap].ConstAngle[iOrient]);

			/********** Getting parameters that maximize the probability ***********/
			if(pProb[iRefMap].max_prob < logpro)
			{
				pProb[iRefMap].max_prob = logpro;
482 483
				pProb[iRefMap].max_prob_cent_x = disx;
				pProb[iRefMap].max_prob_cent_y = disy;
484 485 486 487 488
				pProb[iRefMap].max_prob_orient = iOrient;
				pProb[iRefMap].max_prob_conv = iConv;
			}
		}
	return (0);
489 490 491
}


492
int bioem::createProjection(int iMap,mycomplex_t* mapFFT)
493
{
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
	/**************************************************************************************/
	/****  BioEM Create Projection routine in Euler angle predefined grid****************
	********************* and turns projection into Fourier space **********************/
	/**************************************************************************************/

	myfloat3_t RotatedPointsModel[Model.nPointsModel];
	myfloat_t rotmat[3][3];
	myfloat_t alpha, gam,beta;
	mycomplex_t* localproj;

	localproj= (mycomplex_t *) myfftw_malloc(sizeof(mycomplex_t) *param.param_device.NumberPixels*param.param_device.NumberPixels);
	memset(localproj,0,param.param_device.NumberPixels*param.param_device.NumberPixels*sizeof(*localproj));

	alpha=param.angles[iMap].pos[0];
	beta=param.angles[iMap].pos[1];
	gam=param.angles[iMap].pos[2];

	/**** To see how things are going: cout << "Id " << omp_get_thread_num() <<  " Angs: " << alpha << " " << beta << " " << gam << "\n"; ***/

	/********** Creat Rotation with pre-defiend grid of orientations**********/

	rotmat[0][0]=cos(gam)*cos(alpha)-cos(beta)*sin(alpha)*sin(gam);
	rotmat[0][1]=cos(gam)*sin(alpha)+cos(beta)*cos(alpha)*sin(gam);
	rotmat[0][2]=sin(gam)*sin(beta);
	rotmat[1][0]=-sin(gam)*cos(alpha)-cos(beta)*sin(alpha)*cos(gam);
	rotmat[1][1]=-sin(gam)*sin(alpha)+cos(beta)*cos(alpha)*cos(gam);
	rotmat[1][2]=cos(gam)*sin(beta);
	rotmat[2][0]=sin(beta)*sin(alpha);
	rotmat[2][1]=-sin(beta)*cos(alpha);
	rotmat[2][2]=cos(beta);


	for(int n=0; n< Model.nPointsModel; n++)
	{
		RotatedPointsModel[n].pos[0]=0.0;
		RotatedPointsModel[n].pos[1]=0.0;
		RotatedPointsModel[n].pos[2]=0.0;
	}
	for(int n=0; n< Model.nPointsModel; n++)
	{
		for(int k=0; k< 3; k++)
		{
			for(int j=0; j< 3; j++)
			{
				RotatedPointsModel[n].pos[k]+=rotmat[k][j]*Model.PointsModel[n].pos[j];
			}
		}
	}

	int i, j;

	/************ Projection over the Z axis********************/
	for(int n=0; n< Model.nPointsModel; n++)
	{
		//Getting pixel that represents coordinates & shifting the start at to Numpix/2,Numpix/2 )
549 550
		i=floor(RotatedPointsModel[n].pos[0]/param.pixelSize+ (myfloat_t) param.param_device.NumberPixels / 2.0f + 0.5f);
		j=floor(RotatedPointsModel[n].pos[1]/param.pixelSize+ (myfloat_t) param.param_device.NumberPixels / 2.0f + 0.5f);
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574

		localproj[i*param.param_device.NumberPixels+j][0]+=Model.densityPointsModel[n]/Model.NormDen;
	}

	/**** Output Just to check****/
	if(iMap==10)
	{
		ofstream myexamplemap;
		ofstream myexampleRot;
		myexamplemap.open ("MAP_i10");
		myexampleRot.open ("Rot_i10");
		myexamplemap << "ANGLES " << alpha << " " << beta << " " << gam << "\n";
		for(int k=0; k<param.param_device.NumberPixels; k++)
		{
			for(int j=0; j<param.param_device.NumberPixels; j++) myexamplemap << "\nMAP " << k << " " << j<< " " <<localproj[k*param.param_device.NumberPixels+j][0];
		}
		myexamplemap << " \n";
		for(int n=0; n< Model.nPointsModel; n++)myexampleRot << "\nCOOR " << RotatedPointsModel[n].pos[0] << " " << RotatedPointsModel[n].pos[1] << " " << RotatedPointsModel[n].pos[2];
		myexamplemap.close();
		myexampleRot.close();
	}

	/***** Converting projection to Fourier Space for Convolution later with kernel****/
	/********** Omp Critical is necessary with FFTW*******/
575
	myfftw_execute_dft(param.fft_plan_c2c_forward,localproj,mapFFT);
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604

	return(0);
}

int bioem::createConvolutedProjectionMap(int iMap,int iConv,mycomplex_t* lproj,bioem_map& Mapconv,mycomplex_t* localmultFFT,myfloat_t& sumC,myfloat_t& sumsquareC)
{
	/**************************************************************************************/
	/****  BioEM Create Convoluted Projection Map routine, multiplies in Fourier **********
	**************** calculated Projection with convoluted precalculated Kernel**********
	*************** and Backtransforming it to real Space ******************************/
	/**************************************************************************************/

	mycomplex_t* localconvFFT;
	localconvFFT= (mycomplex_t *) myfftw_malloc(sizeof(mycomplex_t)*param.param_device.NumberPixels*param.param_device.NumberPixels);


	/**** Multiplying FFTmap with corresponding kernel ****/

	for(int i=0; i < param.param_device.NumberPixels ; i++ )
	{
		for(int j=0; j < param.param_device.NumberPixels ; j++ )
		{   //Projection*CONJ(KERNEL)
			localmultFFT[i*param.param_device.NumberPixels+j][0]=lproj[i*param.param_device.NumberPixels+j][0]*param.refCTF[iConv].cpoints[i*param.param_device.NumberPixels+j][0]+lproj[i*param.param_device.NumberPixels+j][1]*param.refCTF[iConv].cpoints[i*param.param_device.NumberPixels+j][1];
			localmultFFT[i*param.param_device.NumberPixels+j][1]=lproj[i*param.param_device.NumberPixels+j][1]*param.refCTF[iConv].cpoints[i*param.param_device.NumberPixels+j][0]-lproj[i*param.param_device.NumberPixels+j][0]*param.refCTF[iConv].cpoints[i*param.param_device.NumberPixels+j][1];
			// cout << "GG " << i << " " << j << " " << param.refCTF[iConv].cpoints[i*param.param_device.NumberPixels+j][0] << " " <<param.refCTF[iConv].cpoints[i*param.param_device.NumberPixels+j][1] <<" " <<lproj[i*param.param_device.NumberPixels+j][0] <<" " <<lproj[i*param.param_device.NumberPixels+j][1] << "\n";
		}
	}

	/**** Bringing convoluted Map to real Space ****/
605
	myfftw_execute_dft(param.fft_plan_c2c_backward,localmultFFT,localconvFFT);
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628

	/****Asigning convolution fftw_complex to bioem_map ****/
	for(int i=0; i < param.param_device.NumberPixels ; i++ )
	{
		for(int j=0; j < param.param_device.NumberPixels ; j++ )
		{
			Mapconv.points[i][j]=localconvFFT[i*param.param_device.NumberPixels+j][0];
		}
	}

	/*** Calculating Cross-correlations of cal-convoluted map with its self *****/
	sumC=0;
	sumsquareC=0;
	for(int i=0; i < param.param_device.NumberPixels ; i++ )
	{
		for(int j=0; j < param.param_device.NumberPixels ; j++ )
		{
			sumC+=localconvFFT[i*param.param_device.NumberPixels+j][0];
			sumsquareC+=localconvFFT[i*param.param_device.NumberPixels+j][0]*localconvFFT[i*param.param_device.NumberPixels+j][0];
		}
	}
	/*** The DTF gives an unnormalized value so have to divded by the total number of pixels in Fourier ***/
	// Normalizing
629 630
	sumC=sumC/ (myfloat_t) (param.param_device.NumberPixels*param.param_device.NumberPixels);
	sumsquareC=sumsquareC / pow((myfloat_t) param.param_device.NumberPixels,4);
631 632

	/**** Freeing fftw_complex created (dont know if omp critical is necessary) ****/
633
	myfftw_free(localconvFFT);
634 635

	return(0);
636 637 638 639
}

int bioem::calcross_cor(bioem_map& localmap,myfloat_t& sum,myfloat_t& sumsquare)
{
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
	/*********************** Routine to calculate Cross correlations***********************/

	sum=0.0;
	sumsquare=0.0;
	for (int i = 0; i < param.param_device.NumberPixels; i++)
	{
		for (int j = 0; j < param.param_device.NumberPixels; j++)
		{
			// Calculate Sum of pixels
			sum += localmap.points[i][j];
			// Calculate Sum of pixels squared
			sumsquare += localmap.points[i][j]*localmap.points[i][j];
		}
	}
	return(0);
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
}

int bioem::deviceInit()
{
	return(0);
}

int bioem::deviceStartRun()
{
	return(0);
}

int bioem::deviceFinishRun()
{
	return(0);
}