bioem_algorithm.h 14.2 KB
Newer Older
qon's avatar
qon committed
1 2
#ifndef BIOEM_ALGORITHM_H
#define BIOEM_ALGORITHM_H
3 4 5
//#include <boost/iterator/iterator_concepts.hpp>

#ifndef BIOEM_GPUCODE
6
//#define SSECODE //Explicit SSE code, not correct yet since loop counter is assumed multiple of 4, anyway not faster than autovectorized code, only implemented for float, not for double.
7 8 9 10 11 12
#endif

#ifdef SSECODE
#include <emmintrin.h>
#include <smmintrin.h>
#endif
qon's avatar
qon committed
13

14 15 16
template <int GPUAlgo>
__device__ static inline void update_prob(const myfloat_t logpro, const int iRefMap, const int iOrient, const int iConv, const int cent_x, const int cent_y, bioem_Probability* pProb, myfloat_t* buf3 = NULL, int* bufint = NULL)
{
David Rohr's avatar
David Rohr committed
17 18
	// *******  Summing total Probabilities *************
	// ******* Need a constant because of numerical divergence*****
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
	if(pProb[iRefMap].Constoadd < logpro)
	{
		pProb[iRefMap].Total = pProb[iRefMap].Total * exp(-logpro + pProb[iRefMap].Constoadd);
		pProb[iRefMap].Constoadd = logpro;
	}

	//Summing probabilities for each orientation
	if(pProb[iRefMap].ConstAngle[iOrient] < logpro)
	{
		pProb[iRefMap].forAngles[iOrient] = pProb[iRefMap].forAngles[iOrient] * exp(-logpro + pProb[iRefMap].ConstAngle[iOrient]);
		pProb[iRefMap].ConstAngle[iOrient] = logpro;
	}

	if (GPUAlgo != 2)
	{
		pProb[iRefMap].Total += exp(logpro - pProb[iRefMap].Constoadd);
		pProb[iRefMap].forAngles[iOrient] += exp(logpro - pProb[iRefMap].ConstAngle[iOrient]);
	}

David Rohr's avatar
David Rohr committed
38
	// ********** Getting parameters that maximize the probability ***********
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
	if(pProb[iRefMap].max_prob < logpro)
	{
		pProb[iRefMap].max_prob = logpro;

		if (GPUAlgo == 2)
		{
			bufint[0] = 1;
			buf3[1] = logpro;
		}
		else
		{
			pProb[iRefMap].max_prob_cent_x = cent_x;
			pProb[iRefMap].max_prob_cent_y = cent_y;
		}
		pProb[iRefMap].max_prob_orient = iOrient;
		pProb[iRefMap].max_prob_conv = iConv;
	}
}

__device__ static inline myfloat_t calc_logpro(const bioem_param_device& param, const myfloat_t sum, const myfloat_t sumsquare, const myfloat_t crossproMapConv, const myfloat_t sumref, const myfloat_t sumsquareref)
{
	// Related to Reference calculated Projection
	const myfloat_t ForLogProb = (sumsquare * param.Ntotpi - sum * sum);

	// Products of different cross-correlations (first element in formula)
64 65
	const myfloat_t firstele = param.Ntotpi * (sumsquareref * sumsquare - crossproMapConv * crossproMapConv) +
							   2 * sumref * sum * crossproMapConv - sumsquareref * sum * sum - sumref * sumref * sumsquare;
66

David Rohr's avatar
David Rohr committed
67
	/// ******* Calculating log of Prob*********
68 69 70 71 72
	// As in fortran code: logpro=(3-Ntotpi)*0.5*log(firstele/pConvMap[iOrient].ForLogProbfromConv[iConv])+(Ntotpi*0.5-2)*log(Ntotpi-2)-0.5*log(pConvMap[iOrient].ForLogProbfromConv[iConv])+0.5*log(PI)+(1-Ntotpi*0.5)*(log(2*PI)+1);
	const myfloat_t logpro = (3 - param.Ntotpi) * 0.5 * log(firstele) + (param.Ntotpi * 0.5 - 2) * log((param.Ntotpi - 2) * ForLogProb);
	return(logpro);
}

73
__device__ static inline void calProb(int iRefMap, int iOrient, int iConv, myfloat_t sumC, myfloat_t sumsquareC, float value, int disx, int disy, bioem_Probability* pProb, const bioem_param_device& param, const bioem_RefMap& RefMap)
74
{
David Rohr's avatar
David Rohr committed
75 76 77
	// ********************************************************
	// *********** Calculates the BioEM probability ***********
	// ********************************************************
78 79 80 81 82

	const myfloat_t logpro = calc_logpro(param, sumC, sumsquareC, value, RefMap.sum_RefMap[iRefMap], RefMap.sumsquare_RefMap[iRefMap]);

	//update_prob<-1>(logpro, iRefMap, iOrient, iConv, disx, disy, pProb);
	//GCC is too stupid to inline properly, so the code is copied here
83 84
	if(pProb[iRefMap].Constoadd < logpro)
	{
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
		pProb[iRefMap].Total = pProb[iRefMap].Total * exp(-logpro + pProb[iRefMap].Constoadd);
		pProb[iRefMap].Constoadd = logpro;
	}
	pProb[iRefMap].Total += exp(logpro - pProb[iRefMap].Constoadd);

	if(pProb[iRefMap].ConstAngle[iOrient] < logpro)
	{
		pProb[iRefMap].forAngles[iOrient] = pProb[iRefMap].forAngles[iOrient] * exp(-logpro + pProb[iRefMap].ConstAngle[iOrient]);
		pProb[iRefMap].ConstAngle[iOrient] = logpro;
	}
	pProb[iRefMap].forAngles[iOrient] += exp(logpro - pProb[iRefMap].ConstAngle[iOrient]);

	if(pProb[iRefMap].max_prob < logpro)
	{
		pProb[iRefMap].max_prob = logpro;
		pProb[iRefMap].max_prob_cent_x = disx;
		pProb[iRefMap].max_prob_cent_y = disy;
		pProb[iRefMap].max_prob_orient = iOrient;
		pProb[iRefMap].max_prob_conv = iConv;
	}
}

__device__ static inline void doRefMapFFT(const int iRefMap, const int iOrient, const int iConv, const myfloat_t* lCC, const myfloat_t sumC, const myfloat_t sumsquareC, bioem_Probability* pProb, const bioem_param_device& param, const bioem_RefMap& RefMap)
{
109
	for (int cent_x = 0; cent_x <= param.maxDisplaceCenter; cent_x = cent_x + param.GridSpaceCenter)
110
	{
111
		for (int cent_y = 0; cent_y <= param.maxDisplaceCenter; cent_y = cent_y + param.GridSpaceCenter)
112
		{
113
			calProb(iRefMap, iOrient, iConv, sumC, sumsquareC, (myfloat_t) lCC[cent_x * param.NumberPixels + cent_y] / (myfloat_t) (param.NumberPixels * param.NumberPixels), cent_x, cent_y, pProb, param, RefMap);
114
		}
115
		for (int cent_y = param.NumberPixels - param.maxDisplaceCenter; cent_y < param.NumberPixels; cent_y = cent_y + param.GridSpaceCenter)
116
		{
117
			calProb(iRefMap, iOrient, iConv, sumC, sumsquareC, (myfloat_t) lCC[cent_x * param.NumberPixels + cent_y] / (myfloat_t) (param.NumberPixels * param.NumberPixels), cent_x, param.NumberPixels - cent_y, pProb, param, RefMap);
118 119
		}
	}
120
	for (int cent_x = param.NumberPixels - param.maxDisplaceCenter; cent_x < param.NumberPixels; cent_x = cent_x + param.GridSpaceCenter)
121
	{
122
		for (int cent_y = 0; cent_y < param.maxDisplaceCenter; cent_y = cent_y + param.GridSpaceCenter)
123
		{
124
			calProb(iRefMap, iOrient, iConv, sumC, sumsquareC, (myfloat_t) lCC[cent_x * param.NumberPixels + cent_y] / (myfloat_t) (param.NumberPixels * param.NumberPixels), param.NumberPixels - cent_x, cent_y, pProb, param, RefMap);
125
		}
126
		for (int cent_y = param.NumberPixels - param.maxDisplaceCenter; cent_y <= param.NumberPixels; cent_y = cent_y + param.GridSpaceCenter)
127
		{
128
			calProb(iRefMap, iOrient, iConv, sumC, sumsquareC, (myfloat_t) lCC[cent_x * param.NumberPixels + cent_y] / (myfloat_t) (param.NumberPixels * param.NumberPixels), param.NumberPixels - cent_x, param.NumberPixels - cent_y, pProb, param, RefMap);
129 130 131 132
		}
	}
}

qon's avatar
qon committed
133
template <int GPUAlgo, class RefT>
134
__device__ static inline void compareRefMap(const int iRefMap, const int iOrient, const int iConv, const myfloat_t* Mapconv, bioem_Probability* pProb, const bioem_param_device& param, const RefT& RefMap,
135
		const int cent_x, const int cent_y, const int myShift = 0, const int nShifts2 = 0, const int myRef = 0, const bool threadActive = true)
qon's avatar
qon committed
136
{
137 138 139

	// **********************  Calculating BioEM Probability ********************************
	// ************************* Loop of center displacement here ***************************
qon's avatar
qon committed
140

141
	// Taking into account the center displacement
qon's avatar
qon committed
142

143
	// Inizialzing crosscorrelations of calculated projected convolutions
144 145 146 147
#ifdef SSECODE
	myfloat_t sum, sumsquare, crossproMapConv;
	__m128 sum_v = _mm_setzero_ps(), sumsquare_v = _mm_setzero_ps(), cross_v = _mm_setzero_ps(), d1, d2;
#else
148 149 150
	myfloat_t sum = 0.0;
	myfloat_t sumsquare = 0.0;
	myfloat_t crossproMapConv = 0.0;
151
#endif
152
	// Loop over Pixels to calculate dot product and cross-correlations of displaced Ref Conv. Map
153
	myfloat_t logpro;
David Rohr's avatar
David Rohr committed
154
	if (GPUAlgo != 2 || threadActive)
qon's avatar
qon committed
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
	{
		int iStart, jStart, iEnd, jEnd;
		if (cent_x < 0)
		{
			iStart = -cent_x;
			iEnd = param.NumberPixels;
		}
		else
		{
			iStart = 0;
			iEnd = param.NumberPixels - cent_x;
		}
		if (cent_y < 0)
		{
			jStart = -cent_y;
			jEnd = param.NumberPixels;
		}
		else
		{
			jStart = 0;
			jEnd = param.NumberPixels - cent_y;
		}

		for (int i = iStart; i < iEnd; i += 1)
		{
180 181 182 183 184
#ifdef SSECODE
			const float* ptr1 = &Mapconv.points[i + cent_x][jStart + cent_y];
			const float* ptr2 = RefMap.getp(iRefMap, i, jStart);
			int j;
			const int count = jEnd - jStart;
185
			for (j = 0; j <= count - 4; j += 4)
186 187 188 189 190 191 192 193 194 195
			{
				d1 = _mm_loadu_ps(ptr1);
				d2 = _mm_loadu_ps(ptr2);
				sum_v = _mm_add_ps(sum_v, d1);
				sumsquare_v = _mm_add_ps(sumsquare_v, _mm_mul_ps(d1, d1));
				cross_v = _mm_add_ps(cross_v, _mm_mul_ps(d1, d2));
				ptr1 += 4;
				ptr2 += 4;
			}
#else
qon's avatar
qon committed
196 197
			for (int j = jStart; j < jEnd; j += 1)
			{
198
				const myfloat_t pointMap = Mapconv[(i + cent_x) * param.NumberPixels + j + cent_y];
qon's avatar
qon committed
199 200 201 202 203
				const myfloat_t pointRefMap = RefMap.get(iRefMap, i, j);
				crossproMapConv += pointMap * pointRefMap;
				// Crosscorrelation of calculated displaced map
				sum += pointMap;
				// Calculate Sum of pixels squared
204
				sumsquare += pointMap * pointMap;
qon's avatar
qon committed
205
			}
206
#endif
qon's avatar
qon committed
207
		}
208 209 210 211 212 213 214 215 216 217 218
#ifdef SSECODE
		sum_v = _mm_hadd_ps(sum_v, sum_v);
		sumsquare_v = _mm_hadd_ps(sumsquare_v, sumsquare_v);
		cross_v = _mm_hadd_ps(cross_v, cross_v);
		sum_v = _mm_hadd_ps(sum_v, sum_v);
		sumsquare_v = _mm_hadd_ps(sumsquare_v, sumsquare_v);
		cross_v = _mm_hadd_ps(cross_v, cross_v);
		sum = _mm_cvtss_f32(sum_v);
		sumsquare = _mm_cvtss_f32(sumsquare_v);
		crossproMapConv = _mm_cvtss_f32(cross_v);
#endif
David Rohr's avatar
David Rohr committed
219

220
		// Calculating elements in BioEM Probability formula
221
		logpro = calc_logpro(param, sum, sumsquare, crossproMapConv, RefMap.sum_RefMap[iRefMap], RefMap.sumsquare_RefMap[iRefMap]);
222 223 224 225 226
	}
	else
	{
		logpro = 0;
	}
qon's avatar
qon committed
227 228 229 230 231 232 233 234

#ifdef BIOEM_GPUCODE
	if (GPUAlgo == 2)
	{
		extern __shared__ myfloat_t buf[];
		myfloat_t* buf2 = &buf[myBlockDimX];
		myfloat_t* buf3 = &buf2[myBlockDimX + 4 * myRef];
		int* bufint = (int*) buf3;
David Rohr's avatar
David Rohr committed
235

qon's avatar
qon committed
236 237 238 239 240 241
		buf[myThreadIdxX] = logpro;
		if (myShift == 0)
		{
			bufint[0] = 0;
		}
		__syncthreads();
David Rohr's avatar
David Rohr committed
242

qon's avatar
qon committed
243 244 245 246 247
		if (nShifts2 == CUDA_MAX_SHIFT_REDUCE) // 1024
		{
			if (myShift < 512) if (buf[myThreadIdxX + 512] > buf[myThreadIdxX]) buf[myThreadIdxX] = buf[myThreadIdxX + 512];
			__syncthreads();
		}
David Rohr's avatar
David Rohr committed
248

qon's avatar
qon committed
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
		if (nShifts2 >= 512)
		{
			if (myShift < 256) if (buf[myThreadIdxX + 256] > buf[myThreadIdxX]) buf[myThreadIdxX] = buf[myThreadIdxX + 256];
			__syncthreads();
		}

		if (nShifts2 >= 256)
		{
			if (myShift < 128) if (buf[myThreadIdxX + 128] > buf[myThreadIdxX]) buf[myThreadIdxX] = buf[myThreadIdxX + 128];
			__syncthreads();
		}

		if (nShifts2 >= 128)
		{
			if (myShift < 64) if (buf[myThreadIdxX + 64] > buf[myThreadIdxX]) buf[myThreadIdxX] = buf[myThreadIdxX + 64];
			__syncthreads();
		}

		if (myShift < 32) //Warp Size is 32, threads are synched automatically
		{
269
			volatile myfloat_t* vbuf = buf; //Mem must be volatile such that memory access is not reordered
qon's avatar
qon committed
270 271 272 273 274 275 276 277 278
			if (nShifts2 >= 64 && vbuf[myThreadIdxX + 32] > vbuf[myThreadIdxX]) vbuf[myThreadIdxX] = vbuf[myThreadIdxX + 32];
			if (nShifts2 >= 32 && vbuf[myThreadIdxX + 16] > vbuf[myThreadIdxX]) vbuf[myThreadIdxX] = vbuf[myThreadIdxX + 16];
			if (nShifts2 >= 16 && vbuf[myThreadIdxX + 8] > vbuf[myThreadIdxX]) vbuf[myThreadIdxX] = vbuf[myThreadIdxX + 8];
			if (nShifts2 >= 8 && vbuf[myThreadIdxX + 4] > vbuf[myThreadIdxX]) vbuf[myThreadIdxX] = vbuf[myThreadIdxX + 4];
			if (nShifts2 >= 4 && vbuf[myThreadIdxX + 2] > vbuf[myThreadIdxX]) vbuf[myThreadIdxX] = vbuf[myThreadIdxX + 2];
			if (nShifts2 >= 2 && vbuf[myThreadIdxX + 1] > vbuf[myThreadIdxX]) vbuf[myThreadIdxX] = vbuf[myThreadIdxX + 1];
			if (myShift == 0 && iRefMap < RefMap.ntotRefMap)
			{
				const myfloat_t logpro_max = vbuf[myThreadIdxX];
279
				update_prob<GPUAlgo>(logpro_max, iRefMap, iOrient, iConv, -1, -1, pProb, buf3, bufint);
qon's avatar
qon committed
280 281
			}
		}
David Rohr's avatar
David Rohr committed
282

qon's avatar
qon committed
283 284 285 286 287 288
		__syncthreads();
		if (bufint[0] == 1 && buf3[1] == logpro && iRefMap < RefMap.ntotRefMap && atomicAdd(&bufint[0], 1) == 1)
		{
			pProb[iRefMap].max_prob_cent_x = cent_x;
			pProb[iRefMap].max_prob_cent_y = cent_y;
		}
David Rohr's avatar
David Rohr committed
289

qon's avatar
qon committed
290
		__syncthreads();
David Rohr's avatar
David Rohr committed
291

qon's avatar
qon committed
292 293 294 295 296 297
		if (iRefMap < RefMap.ntotRefMap)
		{
			buf[myThreadIdxX] = exp(logpro - pProb[iRefMap].Constoadd);
			buf2[myThreadIdxX] = exp(logpro - pProb[iRefMap].ConstAngle[iOrient]);
		}
		__syncthreads();
David Rohr's avatar
David Rohr committed
298

qon's avatar
qon committed
299 300 301 302 303 304 305 306 307
		if (nShifts2 == CUDA_MAX_SHIFT_REDUCE) // 1024
		{
			if (myShift < 512)
			{
				buf[myThreadIdxX] += buf[myThreadIdxX + 512];
				buf2[myThreadIdxX] += buf2[myThreadIdxX + 512];
			}
			__syncthreads();
		}
David Rohr's avatar
David Rohr committed
308

qon's avatar
qon committed
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
		if (nShifts2 >= 512)
		{
			if (myShift < 256)
			{
				buf[myThreadIdxX] += buf[myThreadIdxX + 256];
				buf2[myThreadIdxX] += buf2[myThreadIdxX + 256];
			}
			__syncthreads();
		}

		if (nShifts2 >= 256)
		{
			if (myShift < 128)
			{
				buf[myThreadIdxX] += buf[myThreadIdxX + 128];
				buf2[myThreadIdxX] += buf2[myThreadIdxX + 128];
			}
			__syncthreads();
		}

		if (nShifts2 >= 128)
		{
			if (myShift < 64)
			{
				buf[myThreadIdxX] += buf[myThreadIdxX + 64];
				buf2[myThreadIdxX] += buf2[myThreadIdxX + 64];
			}
			__syncthreads();
		}

		if (myShift < 32) //Warp Size is 32, threads are synched automatically
		{
341 342
			volatile myfloat_t* vbuf = buf; //Mem must be volatile such that memory access is not reordered
			volatile myfloat_t* vbuf2 = buf2;
qon's avatar
qon committed
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
			if (nShifts2 >= 64)
			{
				vbuf[myThreadIdxX] += vbuf[myThreadIdxX + 32];
				vbuf2[myThreadIdxX] += vbuf2[myThreadIdxX + 32];
			}
			if (nShifts2 >= 32)
			{
				vbuf[myThreadIdxX] += vbuf[myThreadIdxX + 16];
				vbuf2[myThreadIdxX] += vbuf2[myThreadIdxX + 16];
			}
			if (nShifts2 >= 16)
			{
				vbuf[myThreadIdxX] += vbuf[myThreadIdxX + 8];
				vbuf2[myThreadIdxX] += vbuf2[myThreadIdxX + 8];
			}
			if (nShifts2 >= 8)
			{
				vbuf[myThreadIdxX] += vbuf[myThreadIdxX + 4];
				vbuf2[myThreadIdxX] += vbuf2[myThreadIdxX + 4];
			}
			if (nShifts2 >= 4)
			{
				vbuf[myThreadIdxX] += vbuf[myThreadIdxX + 2];
				vbuf2[myThreadIdxX] += vbuf2[myThreadIdxX + 2];
			}
			if (nShifts2 >= 2)
			{
				vbuf[myThreadIdxX] += vbuf[myThreadIdxX + 1];
				vbuf2[myThreadIdxX] += vbuf2[myThreadIdxX + 1];
			}
			if (myShift == 0 && iRefMap < RefMap.ntotRefMap)
			{
				pProb[iRefMap].Total += vbuf[myThreadIdxX];
				pProb[iRefMap].forAngles[iOrient] += vbuf2[myThreadIdxX];
			}
		}
	}
	else
#endif

383
		// Summing & Storing total/Orientation Probabilites for each map
384
	{
385
		update_prob < -1 > (logpro, iRefMap, iOrient, iConv, cent_x, cent_y, pProb);
386
	}
qon's avatar
qon committed
387 388 389
}

template <int GPUAlgo, class RefT>
390
__device__ static inline void compareRefMapShifted(const int iRefMap, const int iOrient, const int iConv, const myfloat_t* Mapconv, bioem_Probability* pProb, const bioem_param_device& param, const RefT& RefMap)
qon's avatar
qon committed
391
{
392
	for (int cent_x = -param.maxDisplaceCenter; cent_x <= param.maxDisplaceCenter; cent_x = cent_x + param.GridSpaceCenter)
393
	{
394
		for (int cent_y = -param.maxDisplaceCenter; cent_y <= param.maxDisplaceCenter; cent_y = cent_y + param.GridSpaceCenter)
395
		{
qon's avatar
qon committed
396
			compareRefMap<GPUAlgo>(iRefMap, iOrient, iConv, Mapconv, pProb, param, RefMap, cent_x, cent_y);
397 398
		}
	}
qon's avatar
qon committed
399 400 401
}

#endif