bioem_cuda.cu 18.8 KB
Newer Older
Pilar Cossio's avatar
License  
Pilar Cossio committed
1
2
3
4
/* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
        < BioEM software for Bayesian inference of Electron Microscopy images>
            Copyright (C) 2014 Pilar Cossio, David Rohr and Gerhard Hummer.
            Max Planck Institute of Biophysics, Frankfurt, Germany.
5

Pilar Cossio's avatar
License  
Pilar Cossio committed
6
7
8
9
                See license statement for terms of distribution.

   ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

10
11
12
13
14
15
16
17
18
19
20
21
#define BIOEM_GPUCODE

#if defined(_WIN32)
#include <windows.h>
#endif

#include <iostream>
using namespace std;

#include "bioem_cuda_internal.h"
#include "bioem_algorithm.h"

22
23
24
25
26
27
28
#define checkCudaErrors(error) \
{ \
	if ((error) != cudaSuccess) \
	{ \
		printf("CUDA Error %d / %s (%s: %d)\n", error, cudaGetErrorString(error), __FILE__, __LINE__); \
		exit(1); \
	} \
29
30
}

David Rohr's avatar
David Rohr committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
static const char *cufftGetErrorStrung(cufftResult error)
{
    switch (error)
    {
        case CUFFT_SUCCESS:
            return "CUFFT_SUCCESS";

        case CUFFT_INVALID_PLAN:
            return "CUFFT_INVALID_PLAN";

        case CUFFT_ALLOC_FAILED:
            return "CUFFT_ALLOC_FAILED";

        case CUFFT_INVALID_TYPE:
            return "CUFFT_INVALID_TYPE";

        case CUFFT_INVALID_VALUE:
            return "CUFFT_INVALID_VALUE";

        case CUFFT_INTERNAL_ERROR:
            return "CUFFT_INTERNAL_ERROR";

        case CUFFT_EXEC_FAILED:
            return "CUFFT_EXEC_FAILED";

        case CUFFT_SETUP_FAILED:
            return "CUFFT_SETUP_FAILED";

        case CUFFT_INVALID_SIZE:
            return "CUFFT_INVALID_SIZE";

        case CUFFT_UNALIGNED_DATA:
            return "CUFFT_UNALIGNED_DATA";
    }
    return "UNKNOWN";
}

68
69
70
71
bioem_cuda::bioem_cuda()
{
	deviceInitialized = 0;
	GPUAlgo = getenv("GPUALGO") == NULL ? 2 : atoi(getenv("GPUALGO"));
72
73
	GPUAsync = getenv("GPUASYNC") == NULL ? 1 : atoi(getenv("GPUASYNC"));
	GPUWorkload = getenv("GPUWORKLOAD") == NULL ? 100 : atoi(getenv("GPUWORKLOAD"));
74
	GPUDualStream = getenv("GPUDUALSTREAM") == NULL ? 1 : atoi(getenv("GPUDUALSTREAM"));
75
76
77
78
79
80
81
}

bioem_cuda::~bioem_cuda()
{
	deviceExit();
}

82
__global__ void compareRefMap_kernel(const int iOrient, const int iConv, const myfloat_t* pMap, bioem_Probability pProb, const bioem_param_device param, const bioem_RefMap_Mod RefMap, const int cent_x, const int cent_y, const int maxRef)
83
84
{
	const int iRefMap = myBlockIdxX * myBlockDimX + myThreadIdxX;
85
	if (iRefMap < maxRef)
86
	{
87
		compareRefMap<0>(iRefMap, iOrient, iConv, pMap, pProb, param, RefMap, cent_x, cent_y);
88
89
90
	}
}

91
__global__ void compareRefMapShifted_kernel(const int iOrient, const int iConv, const myfloat_t* pMap, bioem_Probability pProb, const bioem_param_device param, const bioem_RefMap_Mod RefMap, const int maxRef)
92
93
{
	const int iRefMap = myBlockIdxX * myBlockDimX + myThreadIdxX;
94
	if (iRefMap < maxRef)
95
	{
96
		compareRefMapShifted<1>(iRefMap, iOrient, iConv, pMap, pProb, param, RefMap);
97
98
99
	}
}

100
101
102
103
104
105
__global__ void cudaZeroMem(void* ptr, size_t size)
{
	int* myptr = (int*) ptr;
	int mysize = size / sizeof(int);
	int myid = myBlockDimX * myBlockIdxX + myThreadIdxX;
	int mygrid = myBlockDimX * myGridDimX;
106
	for (int i = myid; i < mysize; i += mygrid) myptr[i] = 0;
107
108
}

109
__global__ void compareRefMapLoopShifts_kernel(const int iOrient, const int iConv, const myfloat_t* pMap, bioem_Probability pProb, const bioem_param_device param, const bioem_RefMap RefMap, const int blockoffset, const int nShifts, const int nShiftBits, const int maxRef)
110
111
112
113
114
115
116
117
118
{
	const size_t myid = (myBlockIdxX + blockoffset) * myBlockDimX + myThreadIdxX;
	const int iRefMap = myid >> (nShiftBits << 1);
	const int myRef = myThreadIdxX >> (nShiftBits << 1);
	const int myShiftIdx = (myid >> nShiftBits) & (nShifts - 1);
	const int myShiftIdy = myid & (nShifts - 1);
	const int myShift = myid & (nShifts * nShifts - 1);
	const int cent_x = myShiftIdx * param.GridSpaceCenter - param.maxDisplaceCenter;
	const int cent_y = myShiftIdy * param.GridSpaceCenter - param.maxDisplaceCenter;
119

120
	const bool threadActive = myShiftIdx < nShifts && myShiftIdy < nShifts && iRefMap < maxRef;
121

122
	compareRefMap<2>(iRefMap, iOrient, iConv, pMap, pProb, param, RefMap, cent_x, cent_y, myShift, nShifts * nShifts, myRef, threadActive);
123
124
}

125
__global__ void multComplexMap(const mycomplex_t* convmap, const mycomplex_t* refmap, mycuComplex_t* out, const int NumberPixelsTotal, const int MapSize, const int NumberMaps, const int Offset)
126
127
{
	if (myBlockIdxX >= NumberMaps) return;
128
	const mycuComplex_t* myin = (mycuComplex_t*) &refmap[(myBlockIdxX + Offset) * MapSize];
129
	const mycuComplex_t* myconv = (mycuComplex_t*) convmap;
130
	mycuComplex_t* myout = &out[myBlockIdxX * MapSize];
131
	for(int i = myThreadIdxX; i < NumberPixelsTotal; i += myBlockDimX)
132
	{
133
134
135
136
137
138
139
		mycuComplex_t val;
		const mycuComplex_t conv = myconv[i];
		const mycuComplex_t in = myin[i];

		val.x = conv.x * in.x + conv.y * in.y;
		val.y = conv.y * in.x - conv.x * in.y;
		myout[i] = val;
140
141
142
	}
}

143
__global__ void cuDoRefMapsFFT(const int iOrient, const int iConv, const myfloat_t* lCC, const myfloat_t sumC, const myfloat_t sumsquareC, bioem_Probability pProb, const bioem_param_device param, const bioem_RefMap RefMap, const int maxRef, const int Offset)
144
{
145
	if (myBlockIdxX * myBlockDimX + myThreadIdxX >= maxRef) return;
146
147
	const int iRefMap = myBlockIdxX * myBlockDimX + myThreadIdxX + Offset;
	const myfloat_t* mylCC = &lCC[(myBlockIdxX * myBlockDimX + myThreadIdxX) * param.NumberPixels * param.NumberPixels];
148
	doRefMapFFT(iRefMap, iOrient, iConv, mylCC, sumC, sumsquareC, pProb, param, RefMap);
149
150
}

151
152
153
154
155
156
157
158
159
160
161
162
163
template <class T> static inline T divup(T num, T divider) {return((num + divider - 1) / divider);}
static inline bool IsPowerOf2(int x) {return ((x > 0) && ((x & (x - 1)) == 0));}
#if defined(_WIN32)
static inline int ilog2 (int value)
{
	DWORD index;
	_BitScanReverse (&index, value);
	return(value);
}
#else
static inline int ilog2(int value) {return 31 - __builtin_clz(value);}
#endif

164
int bioem_cuda::compareRefMaps(int iOrient, int iConv, const myfloat_t* conv_map, mycomplex_t* localmultFFT, myfloat_t sumC, myfloat_t sumsquareC, const int startMap)
165
{
166
167
168
169
170
	if (startMap)
	{
		cout << "Error startMap not implemented for GPU Code\n";
		exit(1);
	}
171
172
173
174
	if (GPUAsync)
	{
		checkCudaErrors(cudaEventSynchronize(cudaEvent[iConv & 1]));
	}
175

176
	if (FFTAlgo)
177
	{
178
		memcpy(&pConvMapFFT_Host[(iConv & 1) * param.FFTMapSize], localmultFFT, param.FFTMapSize * sizeof(mycomplex_t));
179
180
181
182
183
184
		checkCudaErrors(cudaMemcpyAsync(&pConvMapFFT[(iConv & 1) * param.FFTMapSize], &pConvMapFFT_Host[(iConv & 1) * param.FFTMapSize], param.FFTMapSize * sizeof(mycomplex_t), cudaMemcpyHostToDevice, cudaStream[GPUAsync ? 2 : 0]));
		if (GPUAsync)
		{
			checkCudaErrors(cudaEventRecord(cudaEvent[2], cudaStream[2]));
			checkCudaErrors(cudaStreamWaitEvent(cudaStream[0], cudaEvent[2], 0));
		}
185
		if (GPUDualStream)
186
		{
187
188
189
190
191
192
			checkCudaErrors(cudaEventRecord(cudaFFTEvent[0], cudaStream[0]));
			checkCudaErrors(cudaStreamWaitEvent(cudaStream[1], cudaFFTEvent[0], 0));
		}
		for (int i = 0, j = 0; i < maxRef; i += CUDA_FFTS_AT_ONCE, j++)
		{
			if (!GPUDualStream) j = 0;
193
			const int num = min(CUDA_FFTS_AT_ONCE, maxRef - i);
194
195
			multComplexMap<<<num, CUDA_THREAD_COUNT, 0, cudaStream[j & 1]>>>(&pConvMapFFT[(iConv & 1) * param.FFTMapSize], pRefMapsFFT, pFFTtmp2[j & 1], param.param_device.NumberPixels * param.param_device.NumberFFTPixels1D, param.FFTMapSize, num, i);
			cufftResult err = mycufftExecC2R(i + CUDA_FFTS_AT_ONCE > maxRef ? plan[1][j & 1] : plan[0][j & 1], pFFTtmp2[j & 1], pFFTtmp[j & 1]);
David Rohr's avatar
David Rohr committed
196
			if (err != CUFFT_SUCCESS)
197
			{
David Rohr's avatar
David Rohr committed
198
				cout << "Error running CUFFT " << cufftGetErrorStrung(err) << "\n";
199
200
				exit(1);
			}
201
			cuDoRefMapsFFT<<<divup(num, CUDA_THREAD_COUNT), CUDA_THREAD_COUNT, 0, cudaStream[j & 1]>>>(iOrient, iConv, pFFTtmp[j & 1], sumC, sumsquareC, pProb_device, param.param_device, *gpumap, num, i);
202
		}
203
		checkCudaErrors(cudaGetLastError());
204
205
206
207
208
		if (GPUDualStream)
		{
			checkCudaErrors(cudaEventRecord(cudaFFTEvent[1], cudaStream[1]));
			checkCudaErrors(cudaStreamWaitEvent(cudaStream[0], cudaFFTEvent[1], 0));
		}
209
210
211
	}
	else
	{
212
		checkCudaErrors(cudaMemcpyAsync(pConvMap_device[iConv & 1], conv_map, sizeof(myfloat_t) * RefMap.refMapSize, cudaMemcpyHostToDevice, cudaStream[0]));
213
214

		if (GPUAlgo == 2) //Loop over shifts
215
		{
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
			const int nShifts = 2 * param.param_device.maxDisplaceCenter / param.param_device.GridSpaceCenter + 1;
			if (!IsPowerOf2(nShifts))
			{
				cout << "Invalid number of displacements, no power of two\n";
				exit(1);
			}
			if (CUDA_THREAD_COUNT % (nShifts * nShifts))
			{
				cout << "CUDA Thread count (" << CUDA_THREAD_COUNT << ") is no multiple of number of shifts (" << (nShifts * nShifts) << ")\n";
				exit(1);
			}
			if (nShifts > CUDA_MAX_SHIFT_REDUCE)
			{
				cout << "Too many displacements for CUDA reduction\n";
				exit(1);
			}
			const int nShiftBits = ilog2(nShifts);
			size_t totalBlocks = divup((size_t) maxRef * (size_t) nShifts * (size_t) nShifts, (size_t) CUDA_THREAD_COUNT);
			size_t nBlocks = CUDA_BLOCK_COUNT;
235
			for (size_t i = 0; i < totalBlocks; i += nBlocks)
236
			{
237
				compareRefMapLoopShifts_kernel<<<min(nBlocks, totalBlocks - i), CUDA_THREAD_COUNT, (CUDA_THREAD_COUNT * 2 + CUDA_THREAD_COUNT / (nShifts * nShifts) * 4) * sizeof(myfloat_t), cudaStream[0] >>> (iOrient, iConv, pConvMap_device[iConv & 1], pProb_device, param.param_device, *gpumap, i, nShifts, nShiftBits, maxRef);
238
			}
239
		}
240
		else if (GPUAlgo == 1) //Split shifts in multiple kernels
241
		{
242
			for (int cent_x = -param.param_device.maxDisplaceCenter; cent_x <= param.param_device.maxDisplaceCenter; cent_x = cent_x + param.param_device.GridSpaceCenter)
243
			{
244
				for (int cent_y = -param.param_device.maxDisplaceCenter; cent_y <= param.param_device.maxDisplaceCenter; cent_y = cent_y + param.param_device.GridSpaceCenter)
245
				{
246
					compareRefMap_kernel<<<divup(maxRef, CUDA_THREAD_COUNT), CUDA_THREAD_COUNT, 0, cudaStream[0]>>> (iOrient, iConv, pConvMap_device[iConv & 1], pProb_device, param.param_device, *pRefMap_device_Mod, cent_x, cent_y, maxRef);
247
248
				}
			}
249
		}
250
		else if (GPUAlgo == 0) //All shifts in one kernel
251
		{
252
			compareRefMapShifted_kernel<<<divup(maxRef, CUDA_THREAD_COUNT), CUDA_THREAD_COUNT, 0, cudaStream[0]>>> (iOrient, iConv, pConvMap_device[iConv & 1], pProb_device, param.param_device, *pRefMap_device_Mod, maxRef);
253
		}
254
		else
255
		{
256
257
			cout << "Invalid GPU Algorithm selected\n";
			exit(1);
258
		}
259
	}
260
261
	if (GPUWorkload < 100)
	{
262
		bioem::compareRefMaps(iOrient, iConv, conv_map, localmultFFT, sumC, sumsquareC, maxRef);
263
	}
264
265
	if (GPUAsync)
	{
266
		checkCudaErrors(cudaEventRecord(cudaEvent[iConv & 1], cudaStream[0]));
267
	}
268
269
	else
	{
270
		checkCudaErrors(cudaStreamSynchronize(cudaStream[0]));
271
272
273
274
	}
	return(0);
}

David Rohr's avatar
David Rohr committed
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
int bioem_cuda::selectCudaDevice()
{
	int count;
	
	long long int bestDeviceSpeed = -1;
	int bestDevice;
	cudaDeviceProp deviceProp;
	
	checkCudaErrors(cudaGetDeviceCount(&count));
	if (count == 0)
	{
		printf("No CUDA device detected\n");
		return(1);
	}
	for (int i = 0;i < count;i++)
	{
#if CUDA_VERSION > 3010
		size_t free, total;
#else
		unsigned int free, total;
#endif
		cuInit(0);
		CUdevice tmpDevice;
		cuDeviceGet(&tmpDevice, i);
		CUcontext tmpContext;
		cuCtxCreate(&tmpContext, 0, tmpDevice);
		if(cuMemGetInfo(&free, &total)) exit(1);
		cuCtxDestroy(tmpContext);
		checkCudaErrors(cudaGetDeviceProperties(&deviceProp, i));

David Rohr's avatar
David Rohr committed
305
		if (DebugOutput >= 1) printf("CUDA Device %2d: %s (Rev: %d.%d - Mem Avail %lld / %lld)\n", i, deviceProp.name, deviceProp.major, deviceProp.minor, (long long int) free, (long long int) deviceProp.totalGlobalMem);
David Rohr's avatar
David Rohr committed
306
307
308
309
310
311
312
313
314
315
		long long int deviceSpeed = (long long int) deviceProp.multiProcessorCount * (long long int) deviceProp.clockRate * (long long int) deviceProp.warpSize;
		if (deviceSpeed > bestDeviceSpeed)
		{
			bestDevice = i;
			bestDeviceSpeed = deviceSpeed;
		}
	}

	cudaGetDeviceProperties(&deviceProp ,bestDevice); 

David Rohr's avatar
David Rohr committed
316
	if (DebugOutput >= 2)
David Rohr's avatar
David Rohr committed
317
	{
David Rohr's avatar
David Rohr committed
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
		printf("Using CUDA Device %s with Properties:\n", deviceProp.name);
		printf("totalGlobalMem = %lld\n", (unsigned long long int) deviceProp.totalGlobalMem);
		printf("sharedMemPerBlock = %lld\n", (unsigned long long int) deviceProp.sharedMemPerBlock);
		printf("regsPerBlock = %d\n", deviceProp.regsPerBlock);
		printf("warpSize = %d\n", deviceProp.warpSize);
		printf("memPitch = %lld\n", (unsigned long long int) deviceProp.memPitch);
		printf("maxThreadsPerBlock = %d\n", deviceProp.maxThreadsPerBlock);
		printf("maxThreadsDim = %d %d %d\n", deviceProp.maxThreadsDim[0], deviceProp.maxThreadsDim[1], deviceProp.maxThreadsDim[2]);
		printf("maxGridSize = %d %d %d\n", deviceProp.maxGridSize[0], deviceProp.maxGridSize[1], deviceProp.maxGridSize[2]);
		printf("totalConstMem = %lld\n", (unsigned long long int) deviceProp.totalConstMem);
		printf("major = %d\n", deviceProp.major);
		printf("minor = %d\n", deviceProp.minor);
		printf("clockRate = %d\n", deviceProp.clockRate);
		printf("memoryClockRate = %d\n", deviceProp.memoryClockRate);
		printf("multiProcessorCount = %d\n", deviceProp.multiProcessorCount);
		printf("textureAlignment = %lld\n", (unsigned long long int) deviceProp.textureAlignment);
David Rohr's avatar
David Rohr committed
334
335
	}
	
David Rohr's avatar
David Rohr committed
336
337
338
339
340
	if (DebugOutput >= 1)
	{
		printf("BioEM for CUDA initialized, %d GPUs found, using GPU %d\n", count, bestDevice);
	}
	
David Rohr's avatar
David Rohr committed
341
342
343
	return(0);
}

344
345
346
int bioem_cuda::deviceInit()
{
	deviceExit();
David Rohr's avatar
David Rohr committed
347
	
348
	selectCudaDevice();
349

350
351
	if (FFTAlgo) GPUAlgo = 2;

352
353
354
355
356
	gpumap = new bioem_RefMap;
	memcpy(gpumap, &RefMap, sizeof(bioem_RefMap));
	if (FFTAlgo == 0)
	{
		checkCudaErrors(cudaMalloc(&maps, sizeof(myfloat_t) * RefMap.ntotRefMap * RefMap.refMapSize));
357
358
359
360
361
362
363
364
365
366
367
368
369

		if (GPUAlgo == 0 || GPUAlgo == 1)
		{
			pRefMap_device_Mod = (bioem_RefMap_Mod*) gpumap;
			bioem_RefMap_Mod* RefMapGPU = new bioem_RefMap_Mod;
			RefMapGPU->init(RefMap);
			checkCudaErrors(cudaMemcpy(maps, RefMapGPU->maps, sizeof(myfloat_t) * RefMap.ntotRefMap * RefMap.refMapSize, cudaMemcpyHostToDevice));
			delete RefMapGPU;
		}
		else
		{
			checkCudaErrors(cudaMemcpy(maps, RefMap.maps, sizeof(myfloat_t) * RefMap.ntotRefMap * RefMap.refMapSize, cudaMemcpyHostToDevice));
		}
370
371
372
373
374
375
376
377
378
	}
	checkCudaErrors(cudaMalloc(&sum, sizeof(myfloat_t) * RefMap.ntotRefMap));
	checkCudaErrors(cudaMemcpy(sum, RefMap.sum_RefMap, sizeof(myfloat_t) * RefMap.ntotRefMap, cudaMemcpyHostToDevice));
	checkCudaErrors(cudaMalloc(&sumsquare, sizeof(myfloat_t) * RefMap.ntotRefMap));
	checkCudaErrors(cudaMemcpy(sumsquare, RefMap.sumsquare_RefMap, sizeof(myfloat_t) * RefMap.ntotRefMap, cudaMemcpyHostToDevice));
	gpumap->maps = maps;
	gpumap->sum_RefMap = sum;
	gpumap->sumsquare_RefMap = sumsquare;

379
	checkCudaErrors(cudaMalloc(&pProb_memory, pProb_device.get_size(RefMap.ntotRefMap, param.nTotGridAngles, param.param_device.writeAngles)));
380
	for (int i = 0; i < 2; i++)
381
	{
382
		checkCudaErrors(cudaStreamCreate(&cudaStream[i]));
383
		checkCudaErrors(cudaEventCreate(&cudaEvent[i]));
384
		checkCudaErrors(cudaEventCreate(&cudaFFTEvent[i]));
385
		checkCudaErrors(cudaMalloc(&pConvMap_device[i], sizeof(myfloat_t) * RefMap.refMapSize));
386
	}
387
388
389
390
391
	if (GPUAsync)
	{
		checkCudaErrors(cudaStreamCreate(&cudaStream[2]));
		checkCudaErrors(cudaEventCreate(&cudaEvent[2]));
	}
392

393
394
	if (FFTAlgo)
	{
395
		checkCudaErrors(cudaMalloc(&pRefMapsFFT, RefMap.ntotRefMap * param.FFTMapSize * sizeof(mycomplex_t)));
396
397
398
399
		checkCudaErrors(cudaMalloc(&pFFTtmp2[0], CUDA_FFTS_AT_ONCE * param.FFTMapSize * 2 * sizeof(mycomplex_t)));
		checkCudaErrors(cudaMalloc(&pFFTtmp[0], CUDA_FFTS_AT_ONCE * param.param_device.NumberPixels * param.param_device.NumberPixels * 2 * sizeof(myfloat_t)));
		pFFTtmp2[1] = pFFTtmp2[0] + CUDA_FFTS_AT_ONCE * param.FFTMapSize;
		pFFTtmp[1] = pFFTtmp[0] + CUDA_FFTS_AT_ONCE * param.param_device.NumberPixels * param.param_device.NumberPixels;
400
		checkCudaErrors(cudaMalloc(&pConvMapFFT, param.FFTMapSize * sizeof(mycomplex_t) * 2));
401
		checkCudaErrors(cudaHostAlloc(&pConvMapFFT_Host, param.FFTMapSize * sizeof(mycomplex_t) * 2, 0));
402
		checkCudaErrors(cudaMemcpy(pRefMapsFFT, RefMap.RefMapsFFT, RefMap.ntotRefMap * param.FFTMapSize * sizeof(mycomplex_t), cudaMemcpyHostToDevice));
403
404
	}

405
406
407
408
409
410
411
	deviceInitialized = 1;
	return(0);
}

int bioem_cuda::deviceExit()
{
	if (deviceInitialized == 0) return(0);
412

413

David Rohr's avatar
David Rohr committed
414
	cudaFree(pProb_memory);
415
416
	cudaFree(sum);
	cudaFree(sumsquare);
417
	for (int i = 0; i < 2; i++)
418
	{
419
		cudaStreamDestroy(cudaStream[i]);
420
		cudaEventDestroy(cudaEvent[i]);
421
		cudaEventDestroy(cudaFFTEvent[i]);
422
		cudaFree(pConvMap_device[i]);
423
	}
424
425
426
427
	if (FFTAlgo)
	{
		cudaFree(pRefMapsFFT);
		cudaFree(pConvMapFFT);
428
		cudaFreeHost(pConvMapFFT_Host);
429
430
		cudaFree(pFFTtmp[0]);
		cudaFree(pFFTtmp2[0]);
431
	}
432
433
434
435
436
437
438
439
	else
	{
		cudaFree(maps);
	}
	if (GPUAlgo == 0 || GPUAlgo == 1)
	{
		cudaFree(pRefMap_device_Mod);
	}
440
441
442
443
444
445
	if (GPUAsync)
	{
		cudaStreamDestroy(cudaStream[2]);
		cudaEventDestroy(cudaEvent[2]);
	}

446
	delete gpumap;
447
	cudaThreadExit();
448

449
450
451
452
453
454
	deviceInitialized = 0;
	return(0);
}

int bioem_cuda::deviceStartRun()
{
David Rohr's avatar
David Rohr committed
455
456
457
458
459
460
461
462
463
464
465
466
	if (GPUWorkload >= 100)
	{
		maxRef = RefMap.ntotRefMap;
		pProb_host = &pProb;
	}
	else
	{
		maxRef = (size_t) RefMap.ntotRefMap * (size_t) GPUWorkload / 100;
		pProb_host = new bioem_Probability;
		pProb_host->init(maxRef, param.nTotGridAngles, *this);
		pProb_host->copyFrom(&pProb, *this);
	}
467

David Rohr's avatar
David Rohr committed
468
469
470
	pProb_device = *pProb_host;
	pProb_device.ptr = pProb_memory;
	pProb_device.set_pointers();
471
	checkCudaErrors(cudaMemcpyAsync(pProb_device.ptr, pProb_host->ptr, pProb_host->get_size(maxRef, param.nTotGridAngles, param.param_device.writeAngles), cudaMemcpyHostToDevice, cudaStream[0]));
472
473
474

	if (FFTAlgo)
	{
475
		for (int j = 0;j < 2;j++)
476
		{
477
			for (int i = 0; i < 2; i++)
478
			{
479
				if (i && maxRef % CUDA_FFTS_AT_ONCE == 0) continue;
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
				int n[2] = {param.param_device.NumberPixels, param.param_device.NumberPixels};
				if (cufftPlanMany(&plan[i][j], 2, n, NULL, 1, param.FFTMapSize, NULL, 1, 0, MY_CUFFT_C2R, i ? (maxRef % CUDA_FFTS_AT_ONCE) : CUDA_FFTS_AT_ONCE) != CUFFT_SUCCESS)
				{
					cout << "Error planning CUFFT\n";
					exit(1);
				}
				if (cufftSetCompatibilityMode(plan[i][j], CUFFT_COMPATIBILITY_NATIVE) != CUFFT_SUCCESS)
				{
					cout << "Error planning CUFFT compatibility\n";
					exit(1);
				}
				if (cufftSetStream(plan[i][j], cudaStream[j]) != CUFFT_SUCCESS)
				{
					cout << "Error setting CUFFT stream\n";
					exit(1);
				}
496
			}
497
			if (!GPUDualStream) break;
498
499
		}
	}
500
501
502
503
504
	return(0);
}

int bioem_cuda::deviceFinishRun()
{
505
	if (GPUAsync) cudaStreamSynchronize(cudaStream[0]);
506
	checkCudaErrors(cudaMemcpyAsync(pProb_host->ptr, pProb_device.ptr, pProb_host->get_size(maxRef, param.nTotGridAngles, param.param_device.writeAngles), cudaMemcpyDeviceToHost, cudaStream[0]));
507

508
509
	if (FFTAlgo)
	{
510
511
		for (int j = 0;j < 2;j++)
		{
512
513
514
515
516
			for (int i = 0; i < 2; i++)
			{
				if (i && maxRef % CUDA_FFTS_AT_ONCE == 0) continue;
				cufftDestroy(plan[i][j]);
			}
517
518
			if (!GPUDualStream) break;
		}
519
	}
David Rohr's avatar
David Rohr committed
520
521
522
523
	cudaThreadSynchronize();
	if (GPUWorkload < 100)
	{
		pProb.copyFrom(pProb_host, *this);
524
		free_device_host(pProb_host->ptr);
David Rohr's avatar
David Rohr committed
525
526
		delete[] pProb_host;
	}
527

528
529
530
	return(0);
}

531
532
533
534
535
536
537
538
539
540
541
542
void* bioem_cuda::malloc_device_host(size_t size)
{
	void* ptr;
	checkCudaErrors(cudaHostAlloc(&ptr, size, 0));
	return(ptr);
}

void bioem_cuda::free_device_host(void* ptr)
{
	cudaFreeHost(ptr);
}

543
544
bioem* bioem_cuda_create()
{
David Rohr's avatar
David Rohr committed
545
546
547
548
549
550
551
552
553
	int count;
	
	if (cudaGetDeviceCount(&count) != cudaSuccess) count = 0;
	if (count == 0)
	{
		printf("No CUDA device available, using fallback to CPU version\n");
		return new bioem;
	}

554
555
	return new bioem_cuda;
}