param.cpp 10.4 KB
Newer Older
qon's avatar
qon committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <fstream>
#include <cstring>
#include <math.h>
#include <fftw3.h>

#include "param.h"
#include "map.h"

using namespace std;

bioem_param::bioem_param()
{
16
17
18
19
20
21
22
23
24
25
26
27
28
29
	//Number of Pixels
	param_device.NumberPixels=0;
	// Euler angle grid spacing
	angleGridPointsAlpha = 0;
	angleGridPointsBeta = 0;
	//Envelop function paramters
	numberGridPointsEnvelop = 0;
	//Contrast transfer function paramters
	numberGridPointsCTF_amp = 0;
	numberGridPointsCTF_phase = 0;

	/****center displacement paramters Equal in both directions***/
	param_device.maxDisplaceCenter = 0;
	numberGridPointsDisplaceCenter = 0;
30
31

	fft_plans_created = 0;
qon's avatar
qon committed
32
33
34
35
}

int bioem_param::readParameters()
{
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
	/**************************************************************************************/
	/***************************** Reading Input Parameters ******************************/
	/**************************************************************************************/

	ifstream input(fileinput);
	if (!input.good())
	{
		cout << "Failed to open file: " << fileinput << "\n";
		exit(0);
	}

	char line[512] = {0};
	char saveline[512];

	cout << "\n +++++++++++++++++++++++++++++++++++++++++ \n";
	cout << "\n		   READING PARAMETERS  \n\n";

	cout << " +++++++++++++++++++++++++++++++++++++++++ \n";
	while (!input.eof())
	{
		input.getline(line,512);
		strcpy(saveline,line);
		char *token = strtok(line," ");

		if (token==NULL || line[0] == '#' || strlen(token)==0)
		{
			// comment or blank line
		}
		else if (strcmp(token,"PIXEL_SIZE")==0)
		{
			token = strtok(NULL," ");
			pixelSize=atof(token);
			cout << "Pixel Sixe " << pixelSize << "\n";

		}
		else if (strcmp(token,"NUMBER_PIXELS")==0)
		{
			token = strtok(NULL," ");
			param_device.NumberPixels=int(atoi(token));
			cout << "Number of Pixels " << param_device.NumberPixels << "\n";

		}
		else if (strcmp(token,"GRIDPOINTS_ALPHA")==0)
		{
			token = strtok(NULL," ");
			angleGridPointsAlpha=int(atoi(token));
			cout << "Grid points alpha " << angleGridPointsAlpha << "\n";

		}
		else if (strcmp(token,"GRIDPOINTS_BETA")==0)
		{
			token = strtok(NULL," ");
			angleGridPointsBeta=int(atoi(token));
			cout << "Grid points beta " << angleGridPointsBeta << "\n";

		}

		else if (strcmp(token,"GRIDPOINTS_ENVELOPE")==0)
		{
			token = strtok(NULL," ");
			numberGridPointsEnvelop=int(atoi(token));
			cout << "Grid points envelope " << numberGridPointsEnvelop << "\n";

		}
		else if (strcmp(token,"START_ENVELOPE")==0)
		{
			token = strtok(NULL," ");
			startGridEnvelop=atof(token);
			cout << "Start Envelope " << startGridEnvelop << "\n";

		}
		else if (strcmp(token,"GRIDSPACE_ENVELOPE")==0)
		{
			token = strtok(NULL," ");
			gridEnvelop=atof(token);
			cout << "Grid spacing Envelope " << gridEnvelop << "\n";

		}
		else if (strcmp(token,"GRIDPOINTS_CTF_PHASE")==0)
		{
			token = strtok(NULL," ");
			numberGridPointsCTF_phase=int(atoi(token));
			cout << "Grid points CTF " << numberGridPointsCTF_phase << "\n";

		}
		else if (strcmp(token,"START_CTF_PHASE")==0)
		{
			token = strtok(NULL," ");
			startGridCTF_phase=atof(token);
			cout << "Start CTF " << startGridCTF_phase << "\n";

		}
		else if (strcmp(token,"GRIDSPACE_CTF_PHASE")==0)
		{
			token = strtok(NULL," ");
			gridCTF_phase=atof(token);
			cout << "Grid Space CTF " << gridCTF_phase << "\n";

		} else if (strcmp(token,"GRIDPOINTS_CTF_AMP")==0)
		{
			token = strtok(NULL," ");
			numberGridPointsCTF_amp=int(atoi(token));
			cout << "Grid points CTF " << numberGridPointsCTF_amp << "\n";

		}
		else if (strcmp(token,"START_CTF_AMP")==0)
		{
			token = strtok(NULL," ");
			startGridCTF_amp=atof(token);
			cout << "Start CTF " << startGridCTF_amp << "\n";

		}
		else if (strcmp(token,"GRIDSPACE_CTF_AMP")==0)
		{
			token = strtok(NULL," ");
			gridCTF_amp=atof(token);
			cout << "Grid Space CTF " << gridCTF_amp << "\n";

		}
		else if (strcmp(token,"MAX_D_CENTER")==0)
		{
			token = strtok(NULL," ");
			param_device.maxDisplaceCenter=int(atoi(token));
			cout << "Maximum displacement Center " <<  param_device.maxDisplaceCenter << "\n";

		}
		else if (strcmp(token,"PIXEL_GRID_CENTER")==0)
		{
			token = strtok(NULL," ");
			param_device.GridSpaceCenter=int(atoi(token));
			cout << "Grid space displacement center " <<   param_device.GridSpaceCenter << "\n";

		}
		else if (strcmp(token,"WRITE_PROB_ANGLES")==0)
		{
			writeAngles=true;
			cout << "Writing Probabilies of each angle \n";

		}

	}
	input.close();
	cout << " +++++++++++++++++++++++++++++++++++++++++ \n";
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

	cout << "Preparing FFTs\n";
	releaseFFTPlans();
	mycomplex_t *tmp_map, *tmp_map2;
	tmp_map = (mycomplex_t *) myfftw_malloc(sizeof(mycomplex_t) * param_device.NumberPixels * param_device.NumberPixels);
	tmp_map2 = (mycomplex_t *) myfftw_malloc(sizeof(mycomplex_t) * param_device.NumberPixels * param_device.NumberPixels);

	fft_plan_c2c_forward = myfftw_plan_dft_2d(param_device.NumberPixels, param_device.NumberPixels, tmp_map, tmp_map2, FFTW_FORWARD, FFTW_MEASURE);
	fft_plan_c2c_backward = myfftw_plan_dft_2d(param_device.NumberPixels, param_device.NumberPixels, tmp_map, tmp_map2, FFTW_BACKWARD, FFTW_MEASURE);

	if (fft_plan_c2c_forward == 0 || fft_plan_c2c_backward == 0)
	{
		cout << "Error planing FFTs\n";
		exit(1);
	}

	myfftw_free(tmp_map);
	myfftw_free(tmp_map2);
	fft_plans_created = 1;
	cout << " +++++++++++++++++++++++++++++++++++++++++ \n";

200
	return(0);
qon's avatar
qon committed
201
202
}

203
204
205
206
207
208
209
210
211
212
void bioem_param::releaseFFTPlans()
{
	if (fft_plans_created)
	{
		myfftw_destroy_plan(fft_plan_c2c_forward);
		myfftw_destroy_plan(fft_plan_c2c_backward);
	}
	fft_plans_created = 0;
}

qon's avatar
qon committed
213
214
int bioem_param::CalculateGridsParam() //TO DO FOR QUATERNIONS
{
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
	/**************************************************************************************/
	/**************** Routine that pre-calculates Euler angle grids **********************/
	/************************************************************************************/
	myfloat_t grid_alpha,cos_grid_beta;
	int n=0;

	//alpha and gamma are uniform in -PI,PI
	grid_alpha=2*M_PI/float(angleGridPointsAlpha);

	//cosine beta is uniform in -1,1
	cos_grid_beta=2.0/float(angleGridPointsBeta);

	// Euler Angle Array
	for (int ialpha = 0; ialpha < angleGridPointsAlpha; ialpha ++)
	{

		for (int ibeta = 0; ibeta < angleGridPointsBeta; ibeta ++)
		{
			for (int igamma = 0; igamma < angleGridPointsAlpha; igamma ++)
			{
				angles[n].pos[0]= float(ialpha)*grid_alpha-M_PI+grid_alpha*0.5; //ALPHA centered in the middle
				angles[n].pos[1]= acos(float(ibeta)*cos_grid_beta-1+cos_grid_beta*0.5); //BETA centered in the middle
				angles[n].pos[2]= float(igamma)*grid_alpha-M_PI+grid_alpha*0.5; //GAMMA centered in the middle
				n++;
			}
		}
	}
	nTotGridAngles=n;

	/********** Calculating normalized volumen element *********/

	param_device.volu=grid_alpha*grid_alpha*cos_grid_beta*float(param_device.GridSpaceCenter)*pixelSize*float(param_device.GridSpaceCenter)*pixelSize
					  *gridCTF_phase*gridCTF_amp*gridEnvelop/(2*M_PI)/(2*M_PI)/2/(2*float(param_device.maxDisplaceCenter))/(2*float(param_device.maxDisplaceCenter))/(float(numberGridPointsCTF_amp)*gridCTF_amp+startGridCTF_amp)
					  /(float(numberGridPointsCTF_phase)*gridCTF_phase+startGridCTF_phase)/(float(numberGridPointsEnvelop)*gridEnvelop+startGridEnvelop);

	/*** Number of total pixels***/

	param_device.Ntotpi=float(param_device.NumberPixels*param_device.NumberPixels);
	param_device.NtotDist=(2*int(param_device.maxDisplaceCenter/param_device.GridSpaceCenter)+1)*(2*int(param_device.maxDisplaceCenter/param_device.GridSpaceCenter)+1);

	return(0);
qon's avatar
qon committed
256
257
258
259
260
261

}


int bioem_param::CalculateRefCTF()
{
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
	/**************************************************************************************/
	/********** Routine that pre-calculates Kernels for Convolution **********************/
	/************************************************************************************/

	myfloat_t amp,env,phase,ctf,radsq;
	mycomplex_t* localCTF;
	int nctfmax=int(float(param_device.NumberPixels)/2.0);
	int n=0;

	localCTF= (mycomplex_t *) myfftw_malloc(sizeof(mycomplex_t) * param_device.NumberPixels*param_device.NumberPixels);
	refCTF = new bioem_map_forFFT[MAX_REF_CTF];


	for (int iamp = 0; iamp <  numberGridPointsCTF_amp ; iamp++) //Loop over amplitud
	{
		amp=float(iamp)*gridCTF_amp + startGridCTF_amp;

		for (int iphase = 0; iphase <  numberGridPointsCTF_phase ; iphase++)//Loop over phase
		{
			phase=float(iphase)*gridCTF_phase + startGridCTF_phase;

			for ( int ienv = 0; ienv <  numberGridPointsEnvelop ; ienv++)//Loop over envelope
			{
				env=float(ienv)*gridEnvelop + startGridEnvelop;

				memset(localCTF,0,param_device.NumberPixels*param_device.NumberPixels*sizeof(mycomplex_t));

				//Assigning CTF values
				for(int i=0; i< nctfmax; i++)
				{
					for(int j=0; j< nctfmax; j++)
					{
						radsq=float(i*i+j*j)*pixelSize*pixelSize;
						ctf=exp(-radsq*env/2.0)*(amp*cos(radsq*phase/2.0)-sqrt((1-amp*amp))*sin(radsq*phase/2.0));

						localCTF[i*param_device.NumberPixels+j][0]=(myfloat_t) ctf;
						localCTF[i*param_device.NumberPixels+param_device.NumberPixels-j-1][0]=(myfloat_t) ctf;
						localCTF[(param_device.NumberPixels-i-1)*param_device.NumberPixels+j][0]=(myfloat_t) ctf;
						localCTF[(param_device.NumberPixels-i-1)*param_device.NumberPixels+param_device.NumberPixels-j-1][0]=(myfloat_t) ctf;
					}
				}
				//Creatting FFT_Forward of Kernel to store
				mycomplex_t* localout;
				localout= (mycomplex_t *) myfftw_malloc(sizeof(mycomplex_t) *param_device.NumberPixels*param_device.NumberPixels);
				//Calling FFT_Forward
307
				myfftw_execute_dft(fft_plan_c2c_forward,localCTF,localout);
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334

				// Normalizing and saving the Reference CTFs
				for(int i=0; i < param_device.NumberPixels ; i++ )
				{
					for(int j=0; j < param_device.NumberPixels ; j++ )
					{
						refCTF[n].cpoints[i*param_device.NumberPixels+j][0]=localout[i*param_device.NumberPixels+j][0];
						refCTF[n].cpoints[i*param_device.NumberPixels+j][1]=localout[i*param_device.NumberPixels+j][1];
					}
				}
				CtfParam[n].pos[0]=amp;
				CtfParam[n].pos[1]=phase;
				CtfParam[n].pos[2]=env;
				n++;
				myfftw_free(localout);
				if(n>MAX_REF_CTF)
				{   cout << n << "PROBLEM WITH CTF KERNEL PARAMETERS AND MAX NUMBER ALLOWED\n";
					exit(1);
				}
			}
		}
	}

	myfftw_free(localCTF);
	nTotCTFs=n;

	return(0);
qon's avatar
qon committed
335
336
337
338
339
}


bioem_param::~bioem_param()
{
340
	releaseFFTPlans();
341
342
343
344
345
346
347
348
	param_device.NumberPixels=0;
	angleGridPointsAlpha = 0;
	angleGridPointsBeta = 0;
	numberGridPointsEnvelop = 0;
	numberGridPointsCTF_amp = 0;
	numberGridPointsCTF_phase = 0;
	param_device.maxDisplaceCenter = 0;
	numberGridPointsDisplaceCenter = 0;
qon's avatar
qon committed
349
}