bioem.cpp 26.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
#include <fstream>
#include <boost/program_options.hpp>
#include <iostream>
#include <algorithm>
#include <iterator>
#include <stdio.h>
#include <stdlib.h>
#include <string>
#include <cmath>
#include <omp.h>

#include <fftw3.h>
#include <math.h>
#include "cmodules/timer.h"

#include "param.h"
#include "bioem.h"
#include "model.h"
#include "map.h"


#include "bioem_algorithm.h"


using namespace boost;
namespace po = boost::program_options;

using namespace std;

// A helper function of Boost
template<class T>
ostream& operator<<(ostream& os, const vector<T>& v)
{
34 35
	copy(v.begin(), v.end(), ostream_iterator<T>(os, " "));
	return os;
36 37 38 39
}

bioem::bioem()
{
40
	FFTAlgo = getenv("FFTALGO") == NULL ? 0 : atoi(getenv("FFTALGO"));
41 42 43 44
}

bioem::~bioem()
{
David Rohr's avatar
David Rohr committed
45

46 47 48 49
}

int bioem::configure(int ac, char* av[])
{
50 51 52 53 54 55 56 57 58 59
	/**************************************************************************************/
	/**** Configuration Routine using boost for extracting parameters, models and maps ****/
	/**************************************************************************************/
	/****** And Precalculating necessary grids, map crosscorrelations and kernels  ********/
	/*************************************************************************************/

	/*** Inizialzing default variables ***/
	std::string infile,modelfile,mapfile;
	Model.readPDB=false;
	param.writeAngles=false;
60 61 62
	RefMap.dumpMap = false;
	RefMap.loadMap = false;

63 64 65
	/*************************************************************************************/
	cout << " ++++++++++++ FROM COMMAND LINE +++++++++++\n\n";
	/*************************************************************************************/
66

67
	/********************* Command line reading input with BOOST ************************/
68

69 70 71 72 73 74 75
	try {
		po::options_description desc("Command line inputs");
		desc.add_options()
		("Inputfile", po::value<std::string>(), "Name of input parameter file")
		("Modelfile", po::value< std::string>() , "Name of model file")
		("Particlesfile", po::value< std::string>(), "Name of paricles file")
		("ReadPDB", "(Optional) If reading model file in PDB format")
76 77
		("DumpMaps", "(Optional) Dump maps after they were red from maps file")
		("LoadMapDump", "(Optional) Read Maps from dump instead of maps file")
78 79 80 81 82 83 84 85
		("help", "(Optional) Produce help message")
		;

		po::positional_options_description p;
		p.add("Inputfile", -1);
		p.add("Modelfile", -1);
		p.add("Particlesfile", -1);
		p.add("ReadPDB", -1);
86 87 88
		p.add("DumpMaps", -1);
		p.add("LoadMapDump", -1);

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
		po::variables_map vm;
		po::store(po::command_line_parser(ac, av).
				  options(desc).positional(p).run(), vm);
		po::notify(vm);

		if((ac < 6)) {
			std::cout << desc << std::endl;
			return 0;
		}
		if (vm.count("help")) {
			cout << "Usage: options_description [options]\n";
			cout << desc;
			return 0;
		}

		if (vm.count("Inputfile"))
		{
			cout << "Input file is: ";
			cout << vm["Inputfile"].as< std::string >()<< "\n";
			infile=vm["Inputfile"].as< std::string >();
		}
		if (vm.count("Modelfile"))
		{
			cout << "Model file is: "
				 << vm["Modelfile"].as<  std::string  >() << "\n";
			modelfile=vm["Modelfile"].as<  std::string  >();
		}

		if (vm.count("ReadPDB"))
		{
			cout << "Reading model file in PDB format.\n";
			Model.readPDB=true;
		}

		if (vm.count("DumpMaps"))
		{
			cout << "Dumping Maps after reading from file.\n";
			RefMap.dumpMap = true;
		}

		if (vm.count("LoadMapDump"))
		{
			cout << "Loading Map dump.\n";
			RefMap.loadMap = true;
		}

		if (vm.count("Particlesfile"))
		{
			cout << "Paricle file is: "
				 << vm["Particlesfile"].as< std::string >() << "\n";
			mapfile=vm["Particlesfile"].as< std::string >();
		}
	}
	catch(std::exception& e)
	{
		cout << e.what() << "\n";
		return 1;
	}

	/********************* Reading Parameter Input ***************************/
	// copying inputfile to param class
	param.fileinput = infile.c_str();
	param.readParameters();

	/********************* Reading Model Input ******************************/
	// copying modelfile to model class
	Model.filemodel = modelfile.c_str();
	Model.readModel();

	/********************* Reading Particle Maps Input **********************/
	/********* HERE: PROBLEM if maps dont fit on the memory!! ***************/
	// copying mapfile to ref map class
	RefMap.filemap = mapfile.c_str();
	RefMap.readRefMaps(param);

	/****************** Precalculating Necessary Stuff *********************/
	precalculate();
David Rohr's avatar
David Rohr committed
166

167 168 169 170 171
	if (getenv("BIOEM_DEBUG_BREAK"))
	{
		param.nTotGridAngles = atoi(getenv("BIOEM_DEBUG_BREAK"));
		param.nTotCTFs = atoi(getenv("BIOEM_DEBUG_BREAK"));
	}
David Rohr's avatar
David Rohr committed
172

173 174
	deviceInit();

175
	return(0);
176 177 178 179
}

int bioem::precalculate()
{
180 181 182
	/**************************************************************************************/
	/* Precalculating Routine of Orientation grids, Map crosscorrelations and CTF Kernels */
	/**************************************************************************************/
183

184 185
	// Generating Grids of orientations
	param.CalculateGridsParam();
186

187 188 189 190 191 192 193 194 195 196
	myfloat_t sum,sumsquare;

	//Precalculating cross-correlations of maps
	for (int iRefMap = 0; iRefMap < RefMap.ntotRefMap ; iRefMap++)
	{
		calcross_cor(RefMap.Ref[iRefMap],sum,sumsquare);
		//Storing Crosscorrelations in Map class
		RefMap.sum_RefMap[iRefMap]=sum;
		RefMap.sumsquare_RefMap[iRefMap]=sumsquare;
	}
197

198 199
	// Precalculating CTF Kernels stored in class Param
	param.CalculateRefCTF();
200

201 202
	// Precalculating Maps in Fourier space
	RefMap.PreCalculateMapsFFT(param);
203

204
	return(0);
205 206 207 208 209
}


int bioem::run()
{
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
	/**************************************************************************************/
	/**** Main BioEM routine, projects, convolutes and compares with Map using OpenMP ****/
	/**************************************************************************************/

	/**** If we want to control the number of threads -> omp_set_num_threads(XX); ******/
	/****************** Declarying class of Probability Pointer  *************************/
	pProb = new bioem_Probability[RefMap.ntotRefMap];
	crossCor = new bioem_crossCor[RefMap.ntotRefMap];

	printf("\tInitializing\n");
	// Inizialzing Probabilites to zero and constant to -Infinity
	for (int iRefMap = 0; iRefMap < RefMap.ntotRefMap; iRefMap ++)
	{
		pProb[iRefMap].Total=0.0;
		pProb[iRefMap].Constoadd=-9999999;
		pProb[iRefMap].max_prob=-9999999;
		for (int iOrient = 0; iOrient < param.nTotGridAngles; iOrient ++)
227
		{
228 229 230 231 232
			pProb[iRefMap].forAngles[iOrient]=0.0;
			pProb[iRefMap].ConstAngle[iOrient]=-99999999;
		}
	}
	/**************************************************************************************/
233 234
	deviceStartRun();

235
	/******************************** MAIN CYCLE ******************************************/
David Rohr's avatar
David Rohr committed
236

237 238 239 240 241
	/*** Declaring Private variables for each thread *****/
	mycomplex_t* proj_mapFFT;
	bioem_map conv_map;
	mycomplex_t* conv_mapFFT;
	myfloat_t sumCONV,sumsquareCONV;
242 243

	//allocating fftw_complex vector
244 245 246
	proj_mapFFT= (mycomplex_t *) myfftw_malloc(sizeof(mycomplex_t) *param.param_device.NumberPixels*param.param_device.NumberPixels);
	conv_mapFFT= (mycomplex_t *) myfftw_malloc(sizeof(mycomplex_t)*param.param_device.NumberPixels*param.param_device.NumberPixels);

247 248 249 250 251

	HighResTimer timer;

	printf("\tMain Loop (GridAngles %d, CTFs %d, RefMaps %d, Shifts (%d/%d)²), Pixels %d²\n", param.nTotGridAngles, param.nTotCTFs, RefMap.ntotRefMap, 2 * param.param_device.maxDisplaceCenter + param.param_device.GridSpaceCenter, param.param_device.GridSpaceCenter, param.param_device.NumberPixels);
	printf("\tInner Loop Count (%d %d %d) %lld\n", param.param_device.maxDisplaceCenter, param.param_device.GridSpaceCenter, param.param_device.NumberPixels, (long long int) (param.param_device.NumberPixels * param.param_device.NumberPixels * (2 * param.param_device.maxDisplaceCenter / param.param_device.GridSpaceCenter + 1) * (2 * param.param_device.maxDisplaceCenter / param.param_device.GridSpaceCenter + 1)));
252 253 254 255 256
	//#pragma omp parallel for
	for (int iProjectionOut = 0; iProjectionOut < param.nTotGridAngles; iProjectionOut++)
	{
		/***************************************************************************************/
		/***** Creating Projection for given orientation and transforming to Fourier space *****/
257
		timer.ResetStart();
258
		createProjection(iProjectionOut, proj_mapFFT);
259 260
		printf("Time Projection %d: %f\n", iProjectionOut, timer.GetCurrentElapsedTime());

261 262 263 264
		/***************************************************************************************/
		/***** **** Internal Loop over convolutions **** *****/
		for (int iConv = 0; iConv < param.nTotCTFs; iConv++)
		{
265
			printf("\t\tConvolution %d %d\n", iProjectionOut, iConv);
266 267
			/*** Calculating convolutions of projection map and crosscorrelations ***/

268
			timer.ResetStart();
269
			createConvolutedProjectionMap(iProjectionOut,iConv,proj_mapFFT,conv_map,conv_mapFFT,sumCONV,sumsquareCONV);
270 271
			printf("Time Convolution %d %d: %f\n", iProjectionOut, iConv, timer.GetCurrentElapsedTime());

272 273
			/***************************************************************************************/
			/*** Comparing each calculated convoluted map with all experimental maps ***/
274
			timer.ResetStart();
275 276 277 278 279 280 281 282 283
			if (FFTAlgo == 0)
			{
				compareRefMaps(iProjectionOut, iConv, conv_map);
			}
			else
			{
				compareRefMaps2(iProjectionOut, iConv,conv_mapFFT,sumCONV,sumsquareCONV);
			}

284 285 286
			const double compTime = timer.GetCurrentElapsedTime();
			const int nShifts = 2 * param.param_device.maxDisplaceCenter / param.param_device.GridSpaceCenter + 1;
			const double nFlops = (double) RefMap.ntotRefMap * (double) nShifts * (double) nShifts *
287
								  (((double) param.param_device.NumberPixels - (double) param.param_device.maxDisplaceCenter / 2.) * ((double) param.param_device.NumberPixels - (double) param.param_device.maxDisplaceCenter / 2.) * 5. + 25.) / compTime;
288
			const double nGBs = (double) RefMap.ntotRefMap * (double) nShifts * (double) nShifts *
289
								(((double) param.param_device.NumberPixels - (double) param.param_device.maxDisplaceCenter / 2.) * ((double) param.param_device.NumberPixels - (double) param.param_device.maxDisplaceCenter / 2.) * 2. + 8.) * (double) sizeof(myfloat_t) / compTime;
290 291 292
			const double nGBs2 = (double) RefMap.ntotRefMap * ((double) param.param_device.NumberPixels * (double) param.param_device.NumberPixels + 8.) * (double) sizeof(myfloat_t) / compTime;

			printf("Time Comparison %d %d: %f sec (%f GFlops, %f GB/s (cached), %f GB/s)\n", iProjectionOut, iConv, compTime, nFlops / 1000000000., nGBs / 1000000000., nGBs2 / 1000000000.);
293 294 295 296 297
		}
	}
	//deallocating fftw_complex vector
	myfftw_free(proj_mapFFT);
	myfftw_free(conv_mapFFT);
David Rohr's avatar
David Rohr committed
298

299 300
	deviceFinishRun();

301
	/************* Writing Out Probabilities ***************/
302

303
	/*** Angular Probability ***/
304

305 306 307 308
	// if(param.writeAngles){
	ofstream angProbfile;
	angProbfile.open ("ANG_PROB_iRefMap");
	// }
309

310 311
	ofstream outputProbFile;
	outputProbFile.open ("Output_Probabilities");
312

313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
	for (int iRefMap = 0; iRefMap < RefMap.ntotRefMap; iRefMap ++)
	{
		/**** Total Probability ***/
		outputProbFile << "RefMap " << iRefMap << " Probability  "  << log(pProb[iRefMap].Total)+pProb[iRefMap].Constoadd+0.5*log(M_PI)+(1-param.param_device.Ntotpi*0.5)*(log(2*M_PI)+1)+log(param.param_device.volu) << " Constant " << pProb[iRefMap].Constoadd  << "\n";

		outputProbFile << "RefMap " << iRefMap << " Maximizing Param: ";

		/*** Param that maximize probability****/
		outputProbFile << (pProb[iRefMap].max_prob + 0.5 * log(M_PI) + (1 - param.param_device.Ntotpi * 0.5) * (log(2 * M_PI) + 1) + log(param.param_device.volu)) << " ";
		outputProbFile << param.angles[pProb[iRefMap].max_prob_orient].pos[0] << " ";
		outputProbFile << param.angles[pProb[iRefMap].max_prob_orient].pos[1] << " ";
		outputProbFile << param.angles[pProb[iRefMap].max_prob_orient].pos[2] << " ";
		outputProbFile << param.CtfParam[pProb[iRefMap].max_prob_conv].pos[0] << " ";
		outputProbFile << param.CtfParam[pProb[iRefMap].max_prob_conv].pos[1] << " ";
		outputProbFile << param.CtfParam[pProb[iRefMap].max_prob_conv].pos[2] << " ";
328 329
		outputProbFile << pProb[iRefMap].max_prob_cent_x << " ";
		outputProbFile << pProb[iRefMap].max_prob_cent_y;
330
		outputProbFile << "\n";
331

332
		/*** For individual files***/ //angProbfile.open ("ANG_PROB_"iRefMap);
333

334
		if(param.writeAngles)
335
		{
336 337 338
			for (int iProjectionOut = 0; iProjectionOut < param.nTotGridAngles; iProjectionOut++)
			{
				angProbfile << " " << iRefMap << " " << param.angles[iProjectionOut].pos[0] << " " << param.angles[iProjectionOut].pos[1] << " " << param.angles[iProjectionOut].pos[2] << " " << log(pProb[iRefMap].forAngles[iProjectionOut])+pProb[iRefMap].ConstAngle[iProjectionOut]+0.5*log(M_PI)+(1-param.param_device.Ntotpi*0.5)*(log(2*M_PI)+1)+log(param.param_device.volu) << " " << log(param.param_device.volu) << "\n";
339

340 341 342
			}
		}
	}
343

344 345
	angProbfile.close();
	outputProbFile.close();
346

347
	//Deleting allocated pointers
348

349 350 351 352 353 354 355 356 357 358 359
	if (pProb)
	{
		delete[] pProb;
		pProb = NULL;
	}

	if (param.refCTF)
	{
		delete[] param.refCTF;
		param.refCTF =NULL;
	}
360

361 362 363 364 365
	if (crossCor)
	{
		delete[] crossCor;
		crossCor = NULL;
	}
366

367 368 369 370 371 372
	if(RefMap.RefMapFFT)
	{
		delete[] RefMap.RefMapFFT;
		RefMap.RefMapFFT = NULL;
	}
	return(0);
373 374
}

375
int bioem::compareRefMaps(int iProjectionOut, int iConv, const bioem_map& conv_map, const int startMap)
376
{
377
#pragma omp parallel for
378 379 380 381 382
	for (int iRefMap = startMap; iRefMap < RefMap.ntotRefMap; iRefMap ++)
	{
		compareRefMapShifted<-1>(iRefMap,iProjectionOut,iConv,conv_map, pProb, param.param_device, RefMap);
	}
	return(0);
383 384
}

385
int bioem::compareRefMaps2(int iOrient, int iConv, mycomplex_t* localConvFFT,myfloat_t sumC,myfloat_t sumsquareC)
386
{
387
#pragma omp parallel for
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
	for (int iRefMap = 0; iRefMap < RefMap.ntotRefMap; iRefMap ++)
	{

		mycomplex_t* localCCT;
		localCCT= (mycomplex_t *) myfftw_malloc(sizeof(mycomplex_t) *param.param_device.NumberPixels*param.param_device.NumberPixels);

		mycomplex_t* lCC;
		lCC= (mycomplex_t *) myfftw_malloc(sizeof(mycomplex_t) *param.param_device.NumberPixels*param.param_device.NumberPixels);

		//setting crossCor value to zero for each projection
		for(int n=0; n < param.param_device.NtotDist ; n++)
		{
			crossCor[iRefMap].value[n]=0.0;
			crossCor[iRefMap].disx[n]=-99999;
			crossCor[iRefMap].disy[n]=-99999;
		}
404

405
		calculateCCFFT(iRefMap,iConv, localConvFFT, localCCT,lCC);
406

407 408 409
		myfftw_free(localCCT);
		myfftw_free(lCC);
	}
410 411


412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
//Not in openMP loop SUM OVER PROBABILITIES
	for (int iRefMap = 0; iRefMap < RefMap.ntotRefMap; iRefMap ++)
	{
		calProb(iRefMap,iOrient,iConv,sumC,sumsquareC);
	}

	return(0);
}

/////////////NEW ROUTINE ////////////////
int bioem::calculateCCFFT(int iRefMap, int iConv, mycomplex_t* localConvFFT,mycomplex_t* localCCT,mycomplex_t* lCC)
{
	for(int i=0; i < param.param_device.NumberPixels ; i++ )
	{
		for(int j=0; j < param.param_device.NumberPixels ; j++ )
		{
			localCCT[i*param.param_device.NumberPixels+j][0]=localConvFFT[i*param.param_device.NumberPixels+j][0]*RefMap.RefMapFFT[iRefMap].cpoints[i*param.param_device.NumberPixels+j][0]+localConvFFT[i*param.param_device.NumberPixels+j][1]*RefMap.RefMapFFT[iRefMap].cpoints[i*param.param_device.NumberPixels+j][1];
			localCCT[i*param.param_device.NumberPixels+j][1]=localConvFFT[i*param.param_device.NumberPixels+j][1]*RefMap.RefMapFFT[iRefMap].cpoints[i*param.param_device.NumberPixels+j][0]-localConvFFT[i*param.param_device.NumberPixels+j][0]*RefMap.RefMapFFT[iRefMap].cpoints[i*param.param_device.NumberPixels+j][1];
		}
	}

433
	myfftw_execute_dft(param.fft_plan_c2c_backward,localCCT,lCC);
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470

// Storing CORRELATIONS FOR CORRESPONDING DISPLACEMENTS & Normalizing after Backward FFT
	int n=0;
	for (int cent_x = 0; cent_x <= param.param_device.maxDisplaceCenter; cent_x=cent_x+param.param_device.GridSpaceCenter)
	{
		for (int cent_y = 0; cent_y <= param.param_device.maxDisplaceCenter; cent_y=cent_y+param.param_device.GridSpaceCenter)
		{
			crossCor[iRefMap].value[n]=float(lCC[cent_x*param.param_device.NumberPixels+cent_y][0])/float(param.param_device.NumberPixels*param.param_device.NumberPixels);
			crossCor[iRefMap].disx[n]=cent_x;
			crossCor[iRefMap].disy[n]=cent_y;
			n++;
		}
		for (int cent_y = param.param_device.NumberPixels-param.param_device.maxDisplaceCenter; cent_y < param.param_device.NumberPixels; cent_y=cent_y+param.param_device.GridSpaceCenter)
		{
			crossCor[iRefMap].value[n]=float(lCC[cent_x*param.param_device.NumberPixels+cent_y][0])/float(param.param_device.NumberPixels*param.param_device.NumberPixels);
			crossCor[iRefMap].disx[n]=cent_x;
			crossCor[iRefMap].disy[n]=param.param_device.NumberPixels-cent_y;
			n++;
		}
	}
	for (int cent_x = param.param_device.NumberPixels-param.param_device.maxDisplaceCenter; cent_x < param.param_device.NumberPixels; cent_x=cent_x+param.param_device.GridSpaceCenter)
	{
		for (int cent_y = 0; cent_y < param.param_device.maxDisplaceCenter; cent_y=cent_y+param.param_device.GridSpaceCenter)
		{
			crossCor[iRefMap].value[n]=float(lCC[cent_x*param.param_device.NumberPixels+cent_y][0])/float(param.param_device.NumberPixels*param.param_device.NumberPixels);
			crossCor[iRefMap].disx[n]=param.param_device.NumberPixels-cent_x;
			crossCor[iRefMap].disy[n]=cent_y;
			n++;
		}
		for (int cent_y = param.param_device.NumberPixels-param.param_device.maxDisplaceCenter; cent_y <= param.param_device.NumberPixels; cent_y=cent_y+param.param_device.GridSpaceCenter)
		{
			crossCor[iRefMap].value[n]=float(lCC[cent_x*param.param_device.NumberPixels+cent_y][0])/float(param.param_device.NumberPixels*param.param_device.NumberPixels);
			crossCor[iRefMap].disx[n]=param.param_device.NumberPixels-cent_x;
			crossCor[iRefMap].disy[n]=param.param_device.NumberPixels-cent_y;
			n++;
		}
	}
471

472 473 474 475 476 477 478 479 480
	/* Controll but slows down the parallelisim
	  if(n> MAX_DISPLACE && n> param.param_device.NtotDist)
	 {
		cout << "Problem with displace center and Max allowed" ;
		exit(1);
		}*/
//
	return (0);
}
481

482 483
int bioem::calProb(int iRefMap,int iOrient, int iConv,myfloat_t sumC,myfloat_t sumsquareC)
{
484

485 486 487
	/********************************************************/
	/*********** Calculates the BioEM probability ***********/
	/********************************************************/
488

489
	const myfloat_t ForLogProb = (sumsquareC * param.param_device.Ntotpi - sumC * sumC);
490

491 492
// Loop again over displacements
	for(int n=0; n < param.param_device.NtotDist ; n++)
493
	{
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
		// Products of different cross-correlations (first element in formula)
		const myfloat_t firstele = param.param_device.Ntotpi * (RefMap.sumsquare_RefMap[iRefMap] * sumsquareC -   crossCor[iRefMap].value[n]*  crossCor[iRefMap].value[n]) +
								   2 * RefMap.sum_RefMap[iRefMap] * sumC *   crossCor[iRefMap].value[n] - RefMap.sumsquare_RefMap[iRefMap] * sumC * sumC - RefMap.sum_RefMap[iRefMap] * RefMap.sum_RefMap[iRefMap] * sumsquareC;

		//******* Calculating log of Prob*********/
		// As in fortran code: logpro=(3-Ntotpi)*0.5*log(firstele/pConvMap[iOrient].ForLogProbfromConv[iConv])+(Ntotpi*0.5-2)*log(Ntotpi-2)-0.5*log(pConvMap[iOrient].ForLogProbfromConv[iConv])+0.5*log(PI)+(1-Ntotpi*0.5)*(log(2*PI)+1);
		const myfloat_t logpro = (3 - param.param_device.Ntotpi) * 0.5 * log(firstele) + (param.param_device.Ntotpi * 0.5 - 2) * log((param.param_device.Ntotpi - 2) * ForLogProb);
//   cout << n <<" " << firstele << " "<< logpro << "\n";
		{
			/*******  Summing total Probabilities *************/
			/******* Need a constant because of numerical divergence*****/
			if(pProb[iRefMap].Constoadd < logpro)
			{
				pProb[iRefMap].Total = pProb[iRefMap].Total * exp(-logpro + pProb[iRefMap].Constoadd);
				pProb[iRefMap].Constoadd = logpro;
			}
			pProb[iRefMap].Total += exp(logpro - pProb[iRefMap].Constoadd);

			//Summing probabilities for each orientation
			if(pProb[iRefMap].ConstAngle[iOrient] < logpro)
			{
				pProb[iRefMap].forAngles[iOrient] = pProb[iRefMap].forAngles[iOrient] * exp(-logpro + pProb[iRefMap].ConstAngle[iOrient]);
				pProb[iRefMap].ConstAngle[iOrient] = logpro;
			}
			pProb[iRefMap].forAngles[iOrient] += exp(logpro - pProb[iRefMap].ConstAngle[iOrient]);

			/********** Getting parameters that maximize the probability ***********/
			if(pProb[iRefMap].max_prob < logpro)
			{
				pProb[iRefMap].max_prob = logpro;
				pProb[iRefMap].max_prob_cent_x = crossCor[iRefMap].disx[n];
				pProb[iRefMap].max_prob_cent_y = crossCor[iRefMap].disy[n];
				pProb[iRefMap].max_prob_orient = iOrient;
				pProb[iRefMap].max_prob_conv = iConv;
			}
		}
	}
	return (0);
532 533 534
}


535
int bioem::createProjection(int iMap,mycomplex_t* mapFFT)
536
{
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620

	/**************************************************************************************/
	/****  BioEM Create Projection routine in Euler angle predefined grid****************
	********************* and turns projection into Fourier space **********************/
	/**************************************************************************************/

	myfloat3_t RotatedPointsModel[Model.nPointsModel];
	myfloat_t rotmat[3][3];
	myfloat_t alpha, gam,beta;
	mycomplex_t* localproj;

	localproj= (mycomplex_t *) myfftw_malloc(sizeof(mycomplex_t) *param.param_device.NumberPixels*param.param_device.NumberPixels);
	memset(localproj,0,param.param_device.NumberPixels*param.param_device.NumberPixels*sizeof(*localproj));

	alpha=param.angles[iMap].pos[0];
	beta=param.angles[iMap].pos[1];
	gam=param.angles[iMap].pos[2];

	/**** To see how things are going: cout << "Id " << omp_get_thread_num() <<  " Angs: " << alpha << " " << beta << " " << gam << "\n"; ***/

	/********** Creat Rotation with pre-defiend grid of orientations**********/

	rotmat[0][0]=cos(gam)*cos(alpha)-cos(beta)*sin(alpha)*sin(gam);
	rotmat[0][1]=cos(gam)*sin(alpha)+cos(beta)*cos(alpha)*sin(gam);
	rotmat[0][2]=sin(gam)*sin(beta);
	rotmat[1][0]=-sin(gam)*cos(alpha)-cos(beta)*sin(alpha)*cos(gam);
	rotmat[1][1]=-sin(gam)*sin(alpha)+cos(beta)*cos(alpha)*cos(gam);
	rotmat[1][2]=cos(gam)*sin(beta);
	rotmat[2][0]=sin(beta)*sin(alpha);
	rotmat[2][1]=-sin(beta)*cos(alpha);
	rotmat[2][2]=cos(beta);


	for(int n=0; n< Model.nPointsModel; n++)
	{
		RotatedPointsModel[n].pos[0]=0.0;
		RotatedPointsModel[n].pos[1]=0.0;
		RotatedPointsModel[n].pos[2]=0.0;
	}
	for(int n=0; n< Model.nPointsModel; n++)
	{
		for(int k=0; k< 3; k++)
		{
			for(int j=0; j< 3; j++)
			{
				RotatedPointsModel[n].pos[k]+=rotmat[k][j]*Model.PointsModel[n].pos[j];
			}
		}
	}

	int i, j;

	/************ Projection over the Z axis********************/
	for(int n=0; n< Model.nPointsModel; n++)
	{
		//Getting pixel that represents coordinates & shifting the start at to Numpix/2,Numpix/2 )
		i=floor(RotatedPointsModel[n].pos[0]/param.pixelSize+float(param.param_device.NumberPixels)/2.0+0.5);
		j=floor(RotatedPointsModel[n].pos[1]/param.pixelSize+float(param.param_device.NumberPixels)/2.0+0.5);

		localproj[i*param.param_device.NumberPixels+j][0]+=Model.densityPointsModel[n]/Model.NormDen;


	}

	/**** Output Just to check****/
	if(iMap==10)
	{
		ofstream myexamplemap;
		ofstream myexampleRot;
		myexamplemap.open ("MAP_i10");
		myexampleRot.open ("Rot_i10");
		myexamplemap << "ANGLES " << alpha << " " << beta << " " << gam << "\n";
		for(int k=0; k<param.param_device.NumberPixels; k++)
		{
			for(int j=0; j<param.param_device.NumberPixels; j++) myexamplemap << "\nMAP " << k << " " << j<< " " <<localproj[k*param.param_device.NumberPixels+j][0];
		}
		myexamplemap << " \n";
		for(int n=0; n< Model.nPointsModel; n++)myexampleRot << "\nCOOR " << RotatedPointsModel[n].pos[0] << " " << RotatedPointsModel[n].pos[1] << " " << RotatedPointsModel[n].pos[2];
		myexamplemap.close();
		myexampleRot.close();
	}

	/***** Converting projection to Fourier Space for Convolution later with kernel****/
	/********** Omp Critical is necessary with FFTW*******/
621
	myfftw_execute_dft(param.fft_plan_c2c_forward,localproj,mapFFT);
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652

	return(0);
}

int bioem::createConvolutedProjectionMap(int iMap,int iConv,mycomplex_t* lproj,bioem_map& Mapconv,mycomplex_t* localmultFFT,myfloat_t& sumC,myfloat_t& sumsquareC)
{
	/**************************************************************************************/
	/****  BioEM Create Convoluted Projection Map routine, multiplies in Fourier **********
	**************** calculated Projection with convoluted precalculated Kernel**********
	*************** and Backtransforming it to real Space ******************************/
	/**************************************************************************************/

	mycomplex_t* localconvFFT;
	localconvFFT= (mycomplex_t *) myfftw_malloc(sizeof(mycomplex_t)*param.param_device.NumberPixels*param.param_device.NumberPixels);


	/**** Multiplying FFTmap with corresponding kernel ****/

	for(int i=0; i < param.param_device.NumberPixels ; i++ )
	{
		for(int j=0; j < param.param_device.NumberPixels ; j++ )
		{   //Projection*CONJ(KERNEL)
			localmultFFT[i*param.param_device.NumberPixels+j][0]=lproj[i*param.param_device.NumberPixels+j][0]*param.refCTF[iConv].cpoints[i*param.param_device.NumberPixels+j][0]+lproj[i*param.param_device.NumberPixels+j][1]*param.refCTF[iConv].cpoints[i*param.param_device.NumberPixels+j][1];
			localmultFFT[i*param.param_device.NumberPixels+j][1]=lproj[i*param.param_device.NumberPixels+j][1]*param.refCTF[iConv].cpoints[i*param.param_device.NumberPixels+j][0]-lproj[i*param.param_device.NumberPixels+j][0]*param.refCTF[iConv].cpoints[i*param.param_device.NumberPixels+j][1];
			// cout << "GG " << i << " " << j << " " << param.refCTF[iConv].cpoints[i*param.param_device.NumberPixels+j][0] << " " <<param.refCTF[iConv].cpoints[i*param.param_device.NumberPixels+j][1] <<" " <<lproj[i*param.param_device.NumberPixels+j][0] <<" " <<lproj[i*param.param_device.NumberPixels+j][1] << "\n";
		}
	}

	/**** Bringing convoluted Map to real Space ****/
	//#pragma omp critical
	{
653
		myfftw_execute_dft(param.fft_plan_c2c_backward,localmultFFT,localconvFFT);
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
	}


	/****Asigning convolution fftw_complex to bioem_map ****/
	for(int i=0; i < param.param_device.NumberPixels ; i++ )
	{
		for(int j=0; j < param.param_device.NumberPixels ; j++ )
		{
			Mapconv.points[i][j]=localconvFFT[i*param.param_device.NumberPixels+j][0];
		}
	}

	/*** Calculating Cross-correlations of cal-convoluted map with its self *****/
	sumC=0;
	sumsquareC=0;
	for(int i=0; i < param.param_device.NumberPixels ; i++ )
	{
		for(int j=0; j < param.param_device.NumberPixels ; j++ )
		{
			sumC+=localconvFFT[i*param.param_device.NumberPixels+j][0];
			sumsquareC+=localconvFFT[i*param.param_device.NumberPixels+j][0]*localconvFFT[i*param.param_device.NumberPixels+j][0];
		}
	}
	/*** The DTF gives an unnormalized value so have to divded by the total number of pixels in Fourier ***/
	// Normalizing
	sumC=sumC/float(param.param_device.NumberPixels*param.param_device.NumberPixels);
	sumsquareC=sumsquareC/pow(float(param.param_device.NumberPixels),4);

	/**** Freeing fftw_complex created (dont know if omp critical is necessary) ****/
683
	myfftw_free(localconvFFT);
684 685

	return(0);
686 687 688 689
}

int bioem::calcross_cor(bioem_map& localmap,myfloat_t& sum,myfloat_t& sumsquare)
{
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
	/*********************** Routine to calculate Cross correlations***********************/

	sum=0.0;
	sumsquare=0.0;
	for (int i = 0; i < param.param_device.NumberPixels; i++)
	{
		for (int j = 0; j < param.param_device.NumberPixels; j++)
		{
			// Calculate Sum of pixels
			sum += localmap.points[i][j];
			// Calculate Sum of pixels squared
			sumsquare += localmap.points[i][j]*localmap.points[i][j];
		}
	}
	return(0);
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
}

int bioem::deviceInit()
{
	return(0);
}

int bioem::deviceStartRun()
{
	return(0);
}

int bioem::deviceFinishRun()
{
	return(0);
}