param.cpp 11.3 KB
Newer Older
qon's avatar
qon committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <fstream>
#include <cstring>
#include <math.h>
#include <fftw3.h>

#include "param.h"
#include "map.h"

using namespace std;

bioem_param::bioem_param()
{
16
17
	//Number of Pixels
	param_device.NumberPixels=0;
18
	param_device.NumberFFTPixels1D = 0;
19
20
21
22
23
24
25
26
27
28
29
30
	// Euler angle grid spacing
	angleGridPointsAlpha = 0;
	angleGridPointsBeta = 0;
	//Envelop function paramters
	numberGridPointsEnvelop = 0;
	//Contrast transfer function paramters
	numberGridPointsCTF_amp = 0;
	numberGridPointsCTF_phase = 0;

	/****center displacement paramters Equal in both directions***/
	param_device.maxDisplaceCenter = 0;
	numberGridPointsDisplaceCenter = 0;
31
32

	fft_plans_created = 0;
33
34
35

	refCTF = NULL;
	CtfParam = NULL;
qon's avatar
qon committed
36
37
38
39
}

int bioem_param::readParameters()
{
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
	/**************************************************************************************/
	/***************************** Reading Input Parameters ******************************/
	/**************************************************************************************/

	ifstream input(fileinput);
	if (!input.good())
	{
		cout << "Failed to open file: " << fileinput << "\n";
		exit(0);
	}

	char line[512] = {0};
	char saveline[512];

	cout << "\n +++++++++++++++++++++++++++++++++++++++++ \n";
	cout << "\n		   READING PARAMETERS  \n\n";

	cout << " +++++++++++++++++++++++++++++++++++++++++ \n";
	while (!input.eof())
	{
		input.getline(line,512);
		strcpy(saveline,line);
		char *token = strtok(line," ");

		if (token==NULL || line[0] == '#' || strlen(token)==0)
		{
			// comment or blank line
		}
		else if (strcmp(token,"PIXEL_SIZE")==0)
		{
			token = strtok(NULL," ");
			pixelSize=atof(token);
			cout << "Pixel Sixe " << pixelSize << "\n";

		}
		else if (strcmp(token,"NUMBER_PIXELS")==0)
		{
			token = strtok(NULL," ");
			param_device.NumberPixels=int(atoi(token));
			cout << "Number of Pixels " << param_device.NumberPixels << "\n";

		}
		else if (strcmp(token,"GRIDPOINTS_ALPHA")==0)
		{
			token = strtok(NULL," ");
			angleGridPointsAlpha=int(atoi(token));
			cout << "Grid points alpha " << angleGridPointsAlpha << "\n";

		}
		else if (strcmp(token,"GRIDPOINTS_BETA")==0)
		{
			token = strtok(NULL," ");
			angleGridPointsBeta=int(atoi(token));
			cout << "Grid points beta " << angleGridPointsBeta << "\n";

		}

		else if (strcmp(token,"GRIDPOINTS_ENVELOPE")==0)
		{
			token = strtok(NULL," ");
			numberGridPointsEnvelop=int(atoi(token));
			cout << "Grid points envelope " << numberGridPointsEnvelop << "\n";

		}
		else if (strcmp(token,"START_ENVELOPE")==0)
		{
			token = strtok(NULL," ");
			startGridEnvelop=atof(token);
			cout << "Start Envelope " << startGridEnvelop << "\n";

		}
		else if (strcmp(token,"GRIDSPACE_ENVELOPE")==0)
		{
			token = strtok(NULL," ");
			gridEnvelop=atof(token);
			cout << "Grid spacing Envelope " << gridEnvelop << "\n";

		}
		else if (strcmp(token,"GRIDPOINTS_CTF_PHASE")==0)
		{
			token = strtok(NULL," ");
			numberGridPointsCTF_phase=int(atoi(token));
			cout << "Grid points CTF " << numberGridPointsCTF_phase << "\n";

		}
		else if (strcmp(token,"START_CTF_PHASE")==0)
		{
			token = strtok(NULL," ");
			startGridCTF_phase=atof(token);
			cout << "Start CTF " << startGridCTF_phase << "\n";

		}
		else if (strcmp(token,"GRIDSPACE_CTF_PHASE")==0)
		{
			token = strtok(NULL," ");
			gridCTF_phase=atof(token);
			cout << "Grid Space CTF " << gridCTF_phase << "\n";

		} else if (strcmp(token,"GRIDPOINTS_CTF_AMP")==0)
		{
			token = strtok(NULL," ");
			numberGridPointsCTF_amp=int(atoi(token));
			cout << "Grid points CTF " << numberGridPointsCTF_amp << "\n";

		}
		else if (strcmp(token,"START_CTF_AMP")==0)
		{
			token = strtok(NULL," ");
			startGridCTF_amp=atof(token);
			cout << "Start CTF " << startGridCTF_amp << "\n";

		}
		else if (strcmp(token,"GRIDSPACE_CTF_AMP")==0)
		{
			token = strtok(NULL," ");
			gridCTF_amp=atof(token);
			cout << "Grid Space CTF " << gridCTF_amp << "\n";

		}
		else if (strcmp(token,"MAX_D_CENTER")==0)
		{
			token = strtok(NULL," ");
			param_device.maxDisplaceCenter=int(atoi(token));
			cout << "Maximum displacement Center " <<  param_device.maxDisplaceCenter << "\n";

		}
		else if (strcmp(token,"PIXEL_GRID_CENTER")==0)
		{
			token = strtok(NULL," ");
			param_device.GridSpaceCenter=int(atoi(token));
			cout << "Grid space displacement center " <<   param_device.GridSpaceCenter << "\n";

		}
		else if (strcmp(token,"WRITE_PROB_ANGLES")==0)
		{
			writeAngles=true;
			cout << "Writing Probabilies of each angle \n";

		}

	}
	input.close();
182
	param_device.NumberFFTPixels1D = param_device.NumberPixels / 2 + 1;
183
	FFTMapSize = param_device.NumberPixels * param_device.NumberFFTPixels1D;
184
	cout << " +++++++++++++++++++++++++++++++++++++++++ \n";
185
186
187
188
189
190
191

	cout << "Preparing FFTs\n";
	releaseFFTPlans();
	mycomplex_t *tmp_map, *tmp_map2;
	tmp_map = (mycomplex_t *) myfftw_malloc(sizeof(mycomplex_t) * param_device.NumberPixels * param_device.NumberPixels);
	tmp_map2 = (mycomplex_t *) myfftw_malloc(sizeof(mycomplex_t) * param_device.NumberPixels * param_device.NumberPixels);

192
193
194
195
	fft_plan_c2c_forward = myfftw_plan_dft_2d(param_device.NumberPixels, param_device.NumberPixels, tmp_map, tmp_map2, FFTW_FORWARD, FFTW_MEASURE | FFTW_DESTROY_INPUT);
	fft_plan_c2c_backward = myfftw_plan_dft_2d(param_device.NumberPixels, param_device.NumberPixels, tmp_map, tmp_map2, FFTW_BACKWARD, FFTW_MEASURE | FFTW_DESTROY_INPUT);
	fft_plan_r2c_forward = myfftw_plan_dft_r2c_2d(param_device.NumberPixels, param_device.NumberPixels, (myfloat_t*) tmp_map, tmp_map2, FFTW_MEASURE | FFTW_DESTROY_INPUT);
	fft_plan_c2r_backward = myfftw_plan_dft_c2r_2d(param_device.NumberPixels, param_device.NumberPixels, tmp_map, (myfloat_t*) tmp_map2, FFTW_MEASURE | FFTW_DESTROY_INPUT);
196

197
	if (fft_plan_c2c_forward == 0 || fft_plan_c2c_backward == 0 || fft_plan_r2c_forward == 0 || fft_plan_c2r_backward == 0)
198
199
200
201
202
203
204
205
206
207
	{
		cout << "Error planing FFTs\n";
		exit(1);
	}

	myfftw_free(tmp_map);
	myfftw_free(tmp_map2);
	fft_plans_created = 1;
	cout << " +++++++++++++++++++++++++++++++++++++++++ \n";

208
	return(0);
qon's avatar
qon committed
209
210
}

211
212
213
214
215
216
217
218
219
220
void bioem_param::releaseFFTPlans()
{
	if (fft_plans_created)
	{
		myfftw_destroy_plan(fft_plan_c2c_forward);
		myfftw_destroy_plan(fft_plan_c2c_backward);
	}
	fft_plans_created = 0;
}

qon's avatar
qon committed
221
222
int bioem_param::CalculateGridsParam() //TO DO FOR QUATERNIONS
{
223
224
225
226
227
228
229
	/**************************************************************************************/
	/**************** Routine that pre-calculates Euler angle grids **********************/
	/************************************************************************************/
	myfloat_t grid_alpha,cos_grid_beta;
	int n=0;

	//alpha and gamma are uniform in -PI,PI
230
	grid_alpha=2.f * M_PI / (myfloat_t) angleGridPointsAlpha;
231
232

	//cosine beta is uniform in -1,1
233
	cos_grid_beta=2.f / (myfloat_t) angleGridPointsBeta;
234
235
236
237
238
239
240
241

	// Euler Angle Array
	for (int ialpha = 0; ialpha < angleGridPointsAlpha; ialpha ++)
	{
		for (int ibeta = 0; ibeta < angleGridPointsBeta; ibeta ++)
		{
			for (int igamma = 0; igamma < angleGridPointsAlpha; igamma ++)
			{
242
243
244
				angles[n].pos[0]= (myfloat_t) ialpha * grid_alpha - M_PI + grid_alpha * 0.5f; //ALPHA centered in the middle
				angles[n].pos[1]= acos((myfloat_t) ibeta * cos_grid_beta - 1 + cos_grid_beta * 0.5f); //BETA centered in the middle
				angles[n].pos[2]= (myfloat_t) igamma * grid_alpha - M_PI + grid_alpha * 0.5f; //GAMMA centered in the middle
245
246
247
248
249
250
251
252
				n++;
			}
		}
	}
	nTotGridAngles=n;

	/********** Calculating normalized volumen element *********/

253
254
255
	param_device.volu = grid_alpha * grid_alpha * cos_grid_beta * (myfloat_t) param_device.GridSpaceCenter * pixelSize * (myfloat_t) param_device.GridSpaceCenter * pixelSize
					  * gridCTF_phase * gridCTF_amp * gridEnvelop / (2.f * M_PI) / (2.f * M_PI) / 2.f / (2.f * (myfloat_t) param_device.maxDisplaceCenter) / (2.f * (myfloat_t) param_device.maxDisplaceCenter) / ((myfloat_t) numberGridPointsCTF_amp * gridCTF_amp + startGridCTF_amp)
					  / ((myfloat_t) numberGridPointsCTF_phase * gridCTF_phase + startGridCTF_phase) / ((myfloat_t) numberGridPointsEnvelop * gridEnvelop + startGridEnvelop);
256
257
258

	/*** Number of total pixels***/

259
260
	param_device.Ntotpi= (myfloat_t) (param_device.NumberPixels * param_device.NumberPixels);
	param_device.NtotDist=(2 * (int) (param_device.maxDisplaceCenter/param_device.GridSpaceCenter) + 1 ) * (2 * (int) (param_device.maxDisplaceCenter/param_device.GridSpaceCenter) + 1);
261
262

	return(0);
qon's avatar
qon committed
263
264
265
266
267

}

int bioem_param::CalculateRefCTF()
{
268
269
270
271
272
	/**************************************************************************************/
	/********** Routine that pre-calculates Kernels for Convolution **********************/
	/************************************************************************************/

	myfloat_t amp,env,phase,ctf,radsq;
273
	myfloat_t* localCTF;
274
	int nctfmax= param_device.NumberPixels / 2;
275
276
	int n=0;

277
	localCTF= (myfloat_t *) myfftw_malloc(sizeof(myfloat_t) * param_device.NumberPixels*param_device.NumberPixels);
278
279
280

	nTotCTFs = numberGridPointsCTF_amp * numberGridPointsCTF_phase * numberGridPointsEnvelop;
	delete[] refCTF;
281
	refCTF = new mycomplex_t[nTotCTFs * FFTMapSize];
282
283
	delete[] CtfParam;
	CtfParam = new myfloat3_t[nTotCTFs];
284
285
286

	for (int iamp = 0; iamp <  numberGridPointsCTF_amp ; iamp++) //Loop over amplitud
	{
287
		amp = (myfloat_t) iamp * gridCTF_amp + startGridCTF_amp;
288
289
290

		for (int iphase = 0; iphase <  numberGridPointsCTF_phase ; iphase++)//Loop over phase
		{
291
			phase = (myfloat_t) iphase * gridCTF_phase + startGridCTF_phase;
292

293
			for (int ienv = 0; ienv <  numberGridPointsEnvelop ; ienv++)//Loop over envelope
294
			{
295
				env= (myfloat_t) ienv * gridEnvelop + startGridEnvelop;
296

297
				memset(localCTF,0,param_device.NumberPixels*param_device.NumberPixels*sizeof(myfloat_t));
298
299
300
301
302
303

				//Assigning CTF values
				for(int i=0; i< nctfmax; i++)
				{
					for(int j=0; j< nctfmax; j++)
					{
304
						radsq=(myfloat_t) (i*i+j*j) * pixelSize * pixelSize;
305
306
						ctf=exp(-radsq*env/2.0)*(amp*cos(radsq*phase/2.0)-sqrt((1-amp*amp))*sin(radsq*phase/2.0));

307
308
309
310
						localCTF[i*param_device.NumberPixels+j]=(myfloat_t) ctf;
						localCTF[i*param_device.NumberPixels+param_device.NumberPixels-j-1]=(myfloat_t) ctf;
						localCTF[(param_device.NumberPixels-i-1)*param_device.NumberPixels+j]=(myfloat_t) ctf;
						localCTF[(param_device.NumberPixels-i-1)*param_device.NumberPixels+param_device.NumberPixels-j-1]=(myfloat_t) ctf;
311
312
313
314
					}
				}
				//Creatting FFT_Forward of Kernel to store
				mycomplex_t* localout;
315
				localout= (mycomplex_t *) myfftw_malloc(sizeof(mycomplex_t) *param_device.NumberPixels*param_device.NumberFFTPixels1D);
316
				//Calling FFT_Forward
317
				myfftw_execute_dft_r2c(fft_plan_r2c_forward,localCTF,localout);
318
319

				// Normalizing and saving the Reference CTFs
320
				mycomplex_t* curRef = &refCTF[n * FFTMapSize];
321
				for(int i=0; i < param_device.NumberPixels * param_device.NumberFFTPixels1D; i++ )
322
				{
323
324
					curRef[i][0] = localout[i][0];
					curRef[i][1] = localout[i][1];
325
326
327
328
329
330
331
332
333
334
335
				}
				CtfParam[n].pos[0]=amp;
				CtfParam[n].pos[1]=phase;
				CtfParam[n].pos[2]=env;
				n++;
				myfftw_free(localout);
			}
		}
	}

	myfftw_free(localCTF);
336
337
338
339
340
	if (nTotCTFs != n)
	{
		cout << "Internal error during CTF preparation\n";
		exit(1);
	}
341
342

	return(0);
qon's avatar
qon committed
343
344
345
346
347
}


bioem_param::~bioem_param()
{
348
	releaseFFTPlans();
349
350
351
352
353
354
355
356
	param_device.NumberPixels=0;
	angleGridPointsAlpha = 0;
	angleGridPointsBeta = 0;
	numberGridPointsEnvelop = 0;
	numberGridPointsCTF_amp = 0;
	numberGridPointsCTF_phase = 0;
	param_device.maxDisplaceCenter = 0;
	numberGridPointsDisplaceCenter = 0;
357
358
	delete[] refCTF;
	delete[] CtfParam;
qon's avatar
qon committed
359
}