bioem.cpp 21.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
#include <fstream>
#include <boost/program_options.hpp>
#include <iostream>
#include <algorithm>
#include <iterator>
#include <stdio.h>
#include <stdlib.h>
#include <string>
#include <cmath>
#include <omp.h>

#include <fftw3.h>
#include <math.h>
#include "cmodules/timer.h"

#include "param.h"
#include "bioem.h"
#include "model.h"
#include "map.h"


#include "bioem_algorithm.h"


using namespace boost;
namespace po = boost::program_options;

using namespace std;

// A helper function of Boost
template<class T>
ostream& operator<<(ostream& os, const vector<T>& v)
{
34
35
	copy(v.begin(), v.end(), ostream_iterator<T>(os, " "));
	return os;
36
37
38
39
}

bioem::bioem()
{
40
	FFTAlgo = getenv("FFTALGO") == NULL ? 0 : atoi(getenv("FFTALGO"));
41
42
43
44
}

bioem::~bioem()
{
David Rohr's avatar
David Rohr committed
45

46
47
48
49
}

int bioem::configure(int ac, char* av[])
{
50
51
52
53
54
55
56
57
58
59
	/**************************************************************************************/
	/**** Configuration Routine using boost for extracting parameters, models and maps ****/
	/**************************************************************************************/
	/****** And Precalculating necessary grids, map crosscorrelations and kernels  ********/
	/*************************************************************************************/

	/*** Inizialzing default variables ***/
	std::string infile,modelfile,mapfile;
	Model.readPDB=false;
	param.writeAngles=false;
60
61
	param.dumpMap = false;
	param.loadMap = false;
62

63
64
65
	/*************************************************************************************/
	cout << " ++++++++++++ FROM COMMAND LINE +++++++++++\n\n";
	/*************************************************************************************/
66

67
	/********************* Command line reading input with BOOST ************************/
68

69
70
71
72
73
74
75
	try {
		po::options_description desc("Command line inputs");
		desc.add_options()
		("Inputfile", po::value<std::string>(), "Name of input parameter file")
		("Modelfile", po::value< std::string>() , "Name of model file")
		("Particlesfile", po::value< std::string>(), "Name of paricles file")
		("ReadPDB", "(Optional) If reading model file in PDB format")
76
77
		("DumpMaps", "(Optional) Dump maps after they were red from maps file")
		("LoadMapDump", "(Optional) Read Maps from dump instead of maps file")
78
79
80
81
82
83
84
85
		("help", "(Optional) Produce help message")
		;

		po::positional_options_description p;
		p.add("Inputfile", -1);
		p.add("Modelfile", -1);
		p.add("Particlesfile", -1);
		p.add("ReadPDB", -1);
86
87
88
		p.add("DumpMaps", -1);
		p.add("LoadMapDump", -1);

89
90
91
92
93
94
95
		po::variables_map vm;
		po::store(po::command_line_parser(ac, av).
				  options(desc).positional(p).run(), vm);
		po::notify(vm);

		if((ac < 6)) {
			std::cout << desc << std::endl;
96
			return 1;
97
98
99
100
		}
		if (vm.count("help")) {
			cout << "Usage: options_description [options]\n";
			cout << desc;
101
			return 1;
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
		}

		if (vm.count("Inputfile"))
		{
			cout << "Input file is: ";
			cout << vm["Inputfile"].as< std::string >()<< "\n";
			infile=vm["Inputfile"].as< std::string >();
		}
		if (vm.count("Modelfile"))
		{
			cout << "Model file is: "
				 << vm["Modelfile"].as<  std::string  >() << "\n";
			modelfile=vm["Modelfile"].as<  std::string  >();
		}

		if (vm.count("ReadPDB"))
		{
			cout << "Reading model file in PDB format.\n";
			Model.readPDB=true;
		}

		if (vm.count("DumpMaps"))
		{
			cout << "Dumping Maps after reading from file.\n";
126
			param.dumpMap = true;
127
128
129
130
131
		}

		if (vm.count("LoadMapDump"))
		{
			cout << "Loading Map dump.\n";
132
			param.loadMap = true;
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
		}

		if (vm.count("Particlesfile"))
		{
			cout << "Paricle file is: "
				 << vm["Particlesfile"].as< std::string >() << "\n";
			mapfile=vm["Particlesfile"].as< std::string >();
		}
	}
	catch(std::exception& e)
	{
		cout << e.what() << "\n";
		return 1;
	}

	/********************* Reading Parameter Input ***************************/
	// copying inputfile to param class
	param.fileinput = infile.c_str();
	param.readParameters();

	/********************* Reading Model Input ******************************/
	// copying modelfile to model class
	Model.filemodel = modelfile.c_str();
	Model.readModel();

	/********************* Reading Particle Maps Input **********************/
	/********* HERE: PROBLEM if maps dont fit on the memory!! ***************/
	// copying mapfile to ref map class
161
	param.filemap = mapfile.c_str();
162
163
164
165
	RefMap.readRefMaps(param);

	/****************** Precalculating Necessary Stuff *********************/
	precalculate();
David Rohr's avatar
David Rohr committed
166

167
168
169
170
171
	if (getenv("BIOEM_DEBUG_BREAK"))
	{
		param.nTotGridAngles = atoi(getenv("BIOEM_DEBUG_BREAK"));
		param.nTotCTFs = atoi(getenv("BIOEM_DEBUG_BREAK"));
	}
David Rohr's avatar
David Rohr committed
172

173
174
	deviceInit();

175
	return(0);
176
177
178
179
}

int bioem::precalculate()
{
180
181
182
	/**************************************************************************************/
	/* Precalculating Routine of Orientation grids, Map crosscorrelations and CTF Kernels */
	/**************************************************************************************/
183

184
185
	// Generating Grids of orientations
	param.CalculateGridsParam();
186

187
188
189
190
191
	myfloat_t sum,sumsquare;

	//Precalculating cross-correlations of maps
	for (int iRefMap = 0; iRefMap < RefMap.ntotRefMap ; iRefMap++)
	{
192
		calcross_cor(RefMap.getmap(iRefMap),sum,sumsquare);
193
194
195
196
		//Storing Crosscorrelations in Map class
		RefMap.sum_RefMap[iRefMap]=sum;
		RefMap.sumsquare_RefMap[iRefMap]=sumsquare;
	}
197

198
199
	// Precalculating CTF Kernels stored in class Param
	param.CalculateRefCTF();
200

201
202
	// Precalculating Maps in Fourier space
	RefMap.PreCalculateMapsFFT(param);
203

204
	return(0);
205
206
207
208
209
}


int bioem::run()
{
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
	/**************************************************************************************/
	/**** Main BioEM routine, projects, convolutes and compares with Map using OpenMP ****/
	/**************************************************************************************/

	/**** If we want to control the number of threads -> omp_set_num_threads(XX); ******/
	/****************** Declarying class of Probability Pointer  *************************/
	pProb = new bioem_Probability[RefMap.ntotRefMap];

	printf("\tInitializing\n");
	// Inizialzing Probabilites to zero and constant to -Infinity
	for (int iRefMap = 0; iRefMap < RefMap.ntotRefMap; iRefMap ++)
	{
		pProb[iRefMap].Total=0.0;
		pProb[iRefMap].Constoadd=-9999999;
		pProb[iRefMap].max_prob=-9999999;
		for (int iOrient = 0; iOrient < param.nTotGridAngles; iOrient ++)
226
		{
227
228
229
230
231
			pProb[iRefMap].forAngles[iOrient]=0.0;
			pProb[iRefMap].ConstAngle[iOrient]=-99999999;
		}
	}
	/**************************************************************************************/
232
233
	deviceStartRun();

234
	/******************************** MAIN CYCLE ******************************************/
David Rohr's avatar
David Rohr committed
235

236
237
	/*** Declaring Private variables for each thread *****/
	mycomplex_t* proj_mapFFT;
238
	myfloat_t* conv_map = new myfloat_t[param.param_device.NumberPixels * param.param_device.NumberPixels];
239
240
	mycomplex_t* conv_mapFFT;
	myfloat_t sumCONV,sumsquareCONV;
241
242

	//allocating fftw_complex vector
243
244
	proj_mapFFT= (mycomplex_t *) myfftw_malloc(sizeof(mycomplex_t) * param.param_device.NumberPixels*param.param_device.NumberFFTPixels1D);
	conv_mapFFT= (mycomplex_t *) myfftw_malloc(sizeof(mycomplex_t) * param.param_device.NumberPixels*param.param_device.NumberFFTPixels1D);
245
246
247
248
249

	HighResTimer timer;

	printf("\tMain Loop (GridAngles %d, CTFs %d, RefMaps %d, Shifts (%d/%d)²), Pixels %d²\n", param.nTotGridAngles, param.nTotCTFs, RefMap.ntotRefMap, 2 * param.param_device.maxDisplaceCenter + param.param_device.GridSpaceCenter, param.param_device.GridSpaceCenter, param.param_device.NumberPixels);
	printf("\tInner Loop Count (%d %d %d) %lld\n", param.param_device.maxDisplaceCenter, param.param_device.GridSpaceCenter, param.param_device.NumberPixels, (long long int) (param.param_device.NumberPixels * param.param_device.NumberPixels * (2 * param.param_device.maxDisplaceCenter / param.param_device.GridSpaceCenter + 1) * (2 * param.param_device.maxDisplaceCenter / param.param_device.GridSpaceCenter + 1)));
250
251
252
253
	for (int iProjectionOut = 0; iProjectionOut < param.nTotGridAngles; iProjectionOut++)
	{
		/***************************************************************************************/
		/***** Creating Projection for given orientation and transforming to Fourier space *****/
254
		timer.ResetStart();
255
		createProjection(iProjectionOut, proj_mapFFT);
256
257
		printf("Time Projection %d: %f\n", iProjectionOut, timer.GetCurrentElapsedTime());

258
259
260
261
		/***************************************************************************************/
		/***** **** Internal Loop over convolutions **** *****/
		for (int iConv = 0; iConv < param.nTotCTFs; iConv++)
		{
262
			printf("\t\tConvolution %d %d\n", iProjectionOut, iConv);
263
264
			/*** Calculating convolutions of projection map and crosscorrelations ***/

265
			timer.ResetStart();
266
			createConvolutedProjectionMap(iProjectionOut, iConv, proj_mapFFT, conv_map, conv_mapFFT, sumCONV, sumsquareCONV);
267
268
			printf("Time Convolution %d %d: %f\n", iProjectionOut, iConv, timer.GetCurrentElapsedTime());

269
270
			/***************************************************************************************/
			/*** Comparing each calculated convoluted map with all experimental maps ***/
271
			timer.ResetStart();
272
			compareRefMaps(iProjectionOut, iConv, conv_map, conv_mapFFT, sumCONV, sumsquareCONV);
273

274
275
276
			const double compTime = timer.GetCurrentElapsedTime();
			const int nShifts = 2 * param.param_device.maxDisplaceCenter / param.param_device.GridSpaceCenter + 1;
			const double nFlops = (double) RefMap.ntotRefMap * (double) nShifts * (double) nShifts *
277
								  (((double) param.param_device.NumberPixels - (double) param.param_device.maxDisplaceCenter / 2.) * ((double) param.param_device.NumberPixels - (double) param.param_device.maxDisplaceCenter / 2.) * 5. + 25.) / compTime;
278
			const double nGBs = (double) RefMap.ntotRefMap * (double) nShifts * (double) nShifts *
279
								(((double) param.param_device.NumberPixels - (double) param.param_device.maxDisplaceCenter / 2.) * ((double) param.param_device.NumberPixels - (double) param.param_device.maxDisplaceCenter / 2.) * 2. + 8.) * (double) sizeof(myfloat_t) / compTime;
280
281
282
			const double nGBs2 = (double) RefMap.ntotRefMap * ((double) param.param_device.NumberPixels * (double) param.param_device.NumberPixels + 8.) * (double) sizeof(myfloat_t) / compTime;

			printf("Time Comparison %d %d: %f sec (%f GFlops, %f GB/s (cached), %f GB/s)\n", iProjectionOut, iConv, compTime, nFlops / 1000000000., nGBs / 1000000000., nGBs2 / 1000000000.);
283
284
285
286
287
		}
	}
	//deallocating fftw_complex vector
	myfftw_free(proj_mapFFT);
	myfftw_free(conv_mapFFT);
288
	delete[] conv_map;
David Rohr's avatar
David Rohr committed
289

290
291
	deviceFinishRun();

292
	/************* Writing Out Probabilities ***************/
293

294
	/*** Angular Probability ***/
295

296
297
298
299
	// if(param.writeAngles){
	ofstream angProbfile;
	angProbfile.open ("ANG_PROB_iRefMap");
	// }
300

301
302
	ofstream outputProbFile;
	outputProbFile.open ("Output_Probabilities");
303

304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
	for (int iRefMap = 0; iRefMap < RefMap.ntotRefMap; iRefMap ++)
	{
		/**** Total Probability ***/
		outputProbFile << "RefMap " << iRefMap << " Probability  "  << log(pProb[iRefMap].Total)+pProb[iRefMap].Constoadd+0.5*log(M_PI)+(1-param.param_device.Ntotpi*0.5)*(log(2*M_PI)+1)+log(param.param_device.volu) << " Constant " << pProb[iRefMap].Constoadd  << "\n";

		outputProbFile << "RefMap " << iRefMap << " Maximizing Param: ";

		/*** Param that maximize probability****/
		outputProbFile << (pProb[iRefMap].max_prob + 0.5 * log(M_PI) + (1 - param.param_device.Ntotpi * 0.5) * (log(2 * M_PI) + 1) + log(param.param_device.volu)) << " ";
		outputProbFile << param.angles[pProb[iRefMap].max_prob_orient].pos[0] << " ";
		outputProbFile << param.angles[pProb[iRefMap].max_prob_orient].pos[1] << " ";
		outputProbFile << param.angles[pProb[iRefMap].max_prob_orient].pos[2] << " ";
		outputProbFile << param.CtfParam[pProb[iRefMap].max_prob_conv].pos[0] << " ";
		outputProbFile << param.CtfParam[pProb[iRefMap].max_prob_conv].pos[1] << " ";
		outputProbFile << param.CtfParam[pProb[iRefMap].max_prob_conv].pos[2] << " ";
319
320
		outputProbFile << pProb[iRefMap].max_prob_cent_x << " ";
		outputProbFile << pProb[iRefMap].max_prob_cent_y;
321
		outputProbFile << "\n";
322

323
		/*** For individual files***/ //angProbfile.open ("ANG_PROB_"iRefMap);
324

325
		if(param.writeAngles)
326
		{
327
328
329
			for (int iProjectionOut = 0; iProjectionOut < param.nTotGridAngles; iProjectionOut++)
			{
				angProbfile << " " << iRefMap << " " << param.angles[iProjectionOut].pos[0] << " " << param.angles[iProjectionOut].pos[1] << " " << param.angles[iProjectionOut].pos[2] << " " << log(pProb[iRefMap].forAngles[iProjectionOut])+pProb[iRefMap].ConstAngle[iProjectionOut]+0.5*log(M_PI)+(1-param.param_device.Ntotpi*0.5)*(log(2*M_PI)+1)+log(param.param_device.volu) << " " << log(param.param_device.volu) << "\n";
330

331
332
333
			}
		}
	}
334

335
336
	angProbfile.close();
	outputProbFile.close();
337

338
	//Deleting allocated pointers
339

340
341
342
343
344
345
346
347
348
349
350
	if (pProb)
	{
		delete[] pProb;
		pProb = NULL;
	}

	if (param.refCTF)
	{
		delete[] param.refCTF;
		param.refCTF =NULL;
	}
351

352
	RefMap.freePointers();
353
	return(0);
354
355
}

356
int bioem::compareRefMaps(int iProjectionOut, int iConv, const myfloat_t* conv_map, mycomplex_t* localmultFFT, myfloat_t sumC, myfloat_t sumsquareC, const int startMap)
357
{
358
	if (FFTAlgo)
359
	{
360
#pragma omp parallel
361
362
363
364
365
366
367
368
369
370
371
372
373
374
		{
			mycomplex_t *localCCT;
			myfloat_t *lCC;
			localCCT= (mycomplex_t *) myfftw_malloc(sizeof(mycomplex_t) *param.param_device.NumberPixels*param.param_device.NumberFFTPixels1D);
			lCC= (myfloat_t *) myfftw_malloc(sizeof(myfloat_t) *param.param_device.NumberPixels*param.param_device.NumberPixels);

			const int num_threads = omp_get_num_threads();
			const int thread_id = omp_get_thread_num();
			const int mapsPerThread = (RefMap.ntotRefMap - startMap + num_threads - 1) / num_threads;
			const int iStart = startMap + thread_id * mapsPerThread;
			const int iEnd = min(RefMap.ntotRefMap, startMap + (thread_id + 1) * mapsPerThread);

			for (int iRefMap = iStart; iRefMap < iEnd; iRefMap ++)
			{
375
				calculateCCFFT(iRefMap,iProjectionOut, iConv, sumC, sumsquareC, localmultFFT, localCCT,lCC);
376
377
378
379
380
381
			}
			myfftw_free(localCCT);
			myfftw_free(lCC);
		}
	}
	else
382
	{
383
384
#pragma omp parallel for
		for (int iRefMap = startMap; iRefMap < RefMap.ntotRefMap; iRefMap ++)
385
		{
386
			compareRefMapShifted<-1>(iRefMap,iProjectionOut,iConv,conv_map, pProb, param.param_device, RefMap);
387
388
389
390
391
		}
	}
	return(0);
}

392
inline void bioem::calculateCCFFT(int iRefMap, int iOrient, int iConv, myfloat_t sumC,myfloat_t sumsquareC, mycomplex_t* localConvFFT,mycomplex_t* localCCT,myfloat_t* lCC)
393
{
394
	const mycomplex_t* RefMapFFT = &RefMap.RefMapsFFT[iRefMap * param.FFTMapSize];
395
	for(int i = 0;i < param.param_device.NumberPixels * param.param_device.NumberFFTPixels1D;i++)
396
	{
397
398
		localCCT[i][0] = localConvFFT[i][0] * RefMapFFT[i][0] + localConvFFT[i][1] * RefMapFFT[i][1];
		localCCT[i][1] = localConvFFT[i][1] * RefMapFFT[i][0] - localConvFFT[i][0] * RefMapFFT[i][1];
399
400
	}

401
	myfftw_execute_dft_c2r(param.fft_plan_c2r_backward,localCCT,lCC);
402

403
	doRefMapFFT(iRefMap, iOrient, iConv, lCC, sumC, sumsquareC, pProb, param.param_device, RefMap);
404
}
405

406
int bioem::createProjection(int iMap,mycomplex_t* mapFFT)
407
{
408
409
410
411
412
413
414
415
	/**************************************************************************************/
	/****  BioEM Create Projection routine in Euler angle predefined grid****************
	********************* and turns projection into Fourier space **********************/
	/**************************************************************************************/

	myfloat3_t RotatedPointsModel[Model.nPointsModel];
	myfloat_t rotmat[3][3];
	myfloat_t alpha, gam,beta;
416
	myfloat_t* localproj;
417

418
	localproj= (myfloat_t *) myfftw_malloc(sizeof(myfloat_t) *param.param_device.NumberPixels*param.param_device.NumberPixels);
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
	memset(localproj,0,param.param_device.NumberPixels*param.param_device.NumberPixels*sizeof(*localproj));

	alpha=param.angles[iMap].pos[0];
	beta=param.angles[iMap].pos[1];
	gam=param.angles[iMap].pos[2];

	/**** To see how things are going: cout << "Id " << omp_get_thread_num() <<  " Angs: " << alpha << " " << beta << " " << gam << "\n"; ***/

	/********** Creat Rotation with pre-defiend grid of orientations**********/

	rotmat[0][0]=cos(gam)*cos(alpha)-cos(beta)*sin(alpha)*sin(gam);
	rotmat[0][1]=cos(gam)*sin(alpha)+cos(beta)*cos(alpha)*sin(gam);
	rotmat[0][2]=sin(gam)*sin(beta);
	rotmat[1][0]=-sin(gam)*cos(alpha)-cos(beta)*sin(alpha)*cos(gam);
	rotmat[1][1]=-sin(gam)*sin(alpha)+cos(beta)*cos(alpha)*cos(gam);
	rotmat[1][2]=cos(gam)*sin(beta);
	rotmat[2][0]=sin(beta)*sin(alpha);
	rotmat[2][1]=-sin(beta)*cos(alpha);
	rotmat[2][2]=cos(beta);

	for(int n=0; n< Model.nPointsModel; n++)
	{
		RotatedPointsModel[n].pos[0]=0.0;
		RotatedPointsModel[n].pos[1]=0.0;
		RotatedPointsModel[n].pos[2]=0.0;
	}
	for(int n=0; n< Model.nPointsModel; n++)
	{
		for(int k=0; k< 3; k++)
		{
			for(int j=0; j< 3; j++)
			{
				RotatedPointsModel[n].pos[k]+=rotmat[k][j]*Model.PointsModel[n].pos[j];
			}
		}
	}

	int i, j;

	/************ Projection over the Z axis********************/
	for(int n=0; n< Model.nPointsModel; n++)
	{
		//Getting pixel that represents coordinates & shifting the start at to Numpix/2,Numpix/2 )
462
463
		i=floor(RotatedPointsModel[n].pos[0]/param.pixelSize+ (myfloat_t) param.param_device.NumberPixels / 2.0f + 0.5f);
		j=floor(RotatedPointsModel[n].pos[1]/param.pixelSize+ (myfloat_t) param.param_device.NumberPixels / 2.0f + 0.5f);
464

465
		localproj[i*param.param_device.NumberPixels+j]+=Model.densityPointsModel[n]/Model.NormDen;
466
467
468
469
470
471
472
473
474
475
476
477
	}

	/**** Output Just to check****/
	if(iMap==10)
	{
		ofstream myexamplemap;
		ofstream myexampleRot;
		myexamplemap.open ("MAP_i10");
		myexampleRot.open ("Rot_i10");
		myexamplemap << "ANGLES " << alpha << " " << beta << " " << gam << "\n";
		for(int k=0; k<param.param_device.NumberPixels; k++)
		{
478
			for(int j=0; j<param.param_device.NumberPixels; j++) myexamplemap << "\nMAP " << k << " " << j<< " " <<localproj[k*param.param_device.NumberPixels+j];
479
480
481
482
483
484
485
486
487
		}
		myexamplemap << " \n";
		for(int n=0; n< Model.nPointsModel; n++)myexampleRot << "\nCOOR " << RotatedPointsModel[n].pos[0] << " " << RotatedPointsModel[n].pos[1] << " " << RotatedPointsModel[n].pos[2];
		myexamplemap.close();
		myexampleRot.close();
	}

	/***** Converting projection to Fourier Space for Convolution later with kernel****/
	/********** Omp Critical is necessary with FFTW*******/
488
	myfftw_execute_dft_r2c(param.fft_plan_r2c_forward,localproj,mapFFT);
489
490
491
492

	return(0);
}

493
int bioem::createConvolutedProjectionMap(int iMap,int iConv,mycomplex_t* lproj,myfloat_t* Mapconv, mycomplex_t* localmultFFT, myfloat_t& sumC, myfloat_t& sumsquareC)
494
495
496
497
498
499
500
{
	/**************************************************************************************/
	/****  BioEM Create Convoluted Projection Map routine, multiplies in Fourier **********
	**************** calculated Projection with convoluted precalculated Kernel**********
	*************** and Backtransforming it to real Space ******************************/
	/**************************************************************************************/

501
502
503
504
	myfloat_t* localconvFFT;
	localconvFFT= (myfloat_t *) myfftw_malloc(sizeof(myfloat_t)*param.param_device.NumberPixels*param.param_device.NumberPixels);
	mycomplex_t* tmp;
	tmp = (mycomplex_t*) myfftw_malloc(sizeof(mycomplex_t) * param.param_device.NumberPixels * param.param_device.NumberFFTPixels1D);
505
506
507

	/**** Multiplying FFTmap with corresponding kernel ****/

508
	const mycomplex_t* refCTF = &param.refCTF[iConv * param.FFTMapSize];
509
	for(int i=0;i < param.param_device.NumberPixels * param.param_device.NumberFFTPixels1D;i++)
510
	{
511
512
513
		localmultFFT[i][0] = lproj[i][0] * refCTF[i][0] + lproj[i][1] * refCTF[i][1];
		localmultFFT[i][1] = lproj[i][1] * refCTF[i][0] - lproj[i][0] * refCTF[i][1];
		// cout << "GG " << i << " " << j << " " << refCTF[i][0] << " " << refCTF[i][1] <<" " <<lproj[i][0] <<" " <<lproj[i][1] << "\n";
514
515
	}

516
517
518
	//FFTW_C2R will destroy the input array, so we have to work on a copy here
	memcpy(tmp, localmultFFT, sizeof(mycomplex_t) * param.param_device.NumberPixels * param.param_device.NumberFFTPixels1D);

519
	/**** Bringing convoluted Map to real Space ****/
520
	myfftw_execute_dft_c2r(param.fft_plan_c2r_backward,tmp,localconvFFT);
521
522
523
524
525
526

	/****Asigning convolution fftw_complex to bioem_map ****/
	for(int i=0; i < param.param_device.NumberPixels ; i++ )
	{
		for(int j=0; j < param.param_device.NumberPixels ; j++ )
		{
527
			Mapconv[i*param.param_device.NumberPixels+j] = localconvFFT[i*param.param_device.NumberPixels+j];
528
529
530
531
532
533
		}
	}

	/*** Calculating Cross-correlations of cal-convoluted map with its self *****/
	sumC=0;
	sumsquareC=0;
534
	for(int i = 0; i < param.param_device.NumberPixels * param.param_device.NumberPixels; i++)
535
	{
536
537
		sumC += localconvFFT[i];
		sumsquareC += localconvFFT[i] * localconvFFT[i];
538
539
540
	}
	/*** The DTF gives an unnormalized value so have to divded by the total number of pixels in Fourier ***/
	// Normalizing
541
542
543
544
	myfloat_t norm2 = (myfloat_t) (param.param_device.NumberPixels * param.param_device.NumberPixels);
	myfloat_t norm4 = norm2 * norm2;
	sumC = sumC / norm2;
	sumsquareC = sumsquareC / norm4;
545
546

	/**** Freeing fftw_complex created (dont know if omp critical is necessary) ****/
547
	myfftw_free(localconvFFT);
548
	myfftw_free(tmp);
549
550

	return(0);
551
552
}

553
int bioem::calcross_cor(myfloat_t* localmap,myfloat_t& sum,myfloat_t& sumsquare)
554
{
555
556
557
558
559
560
561
562
563
	/*********************** Routine to calculate Cross correlations***********************/

	sum=0.0;
	sumsquare=0.0;
	for (int i = 0; i < param.param_device.NumberPixels; i++)
	{
		for (int j = 0; j < param.param_device.NumberPixels; j++)
		{
			// Calculate Sum of pixels
564
			sum += localmap[i*param.param_device.NumberPixels+j];
565
			// Calculate Sum of pixels squared
566
			sumsquare += localmap[i*param.param_device.NumberPixels+j] * localmap[i*param.param_device.NumberPixels+j];
567
568
569
		}
	}
	return(0);
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
}

int bioem::deviceInit()
{
	return(0);
}

int bioem::deviceStartRun()
{
	return(0);
}

int bioem::deviceFinishRun()
{
	return(0);
}