bioem_cuda.cu 19.4 KB
Newer Older
Pilar Cossio's avatar
License  
Pilar Cossio committed
1 2 3 4
/* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
        < BioEM software for Bayesian inference of Electron Microscopy images>
            Copyright (C) 2014 Pilar Cossio, David Rohr and Gerhard Hummer.
            Max Planck Institute of Biophysics, Frankfurt, Germany.
5

Pilar Cossio's avatar
License  
Pilar Cossio committed
6 7 8 9
                See license statement for terms of distribution.

   ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

10 11 12 13 14 15 16 17 18 19 20 21
#define BIOEM_GPUCODE

#if defined(_WIN32)
#include <windows.h>
#endif

#include <iostream>
using namespace std;

#include "bioem_cuda_internal.h"
#include "bioem_algorithm.h"

22 23 24 25 26 27 28
#define checkCudaErrors(error) \
{ \
	if ((error) != cudaSuccess) \
	{ \
		printf("CUDA Error %d / %s (%s: %d)\n", error, cudaGetErrorString(error), __FILE__, __LINE__); \
		exit(1); \
	} \
29 30
}

David Rohr's avatar
David Rohr committed
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
static const char *cufftGetErrorStrung(cufftResult error)
{
    switch (error)
    {
        case CUFFT_SUCCESS:
            return "CUFFT_SUCCESS";

        case CUFFT_INVALID_PLAN:
            return "CUFFT_INVALID_PLAN";

        case CUFFT_ALLOC_FAILED:
            return "CUFFT_ALLOC_FAILED";

        case CUFFT_INVALID_TYPE:
            return "CUFFT_INVALID_TYPE";

        case CUFFT_INVALID_VALUE:
            return "CUFFT_INVALID_VALUE";

        case CUFFT_INTERNAL_ERROR:
            return "CUFFT_INTERNAL_ERROR";

        case CUFFT_EXEC_FAILED:
            return "CUFFT_EXEC_FAILED";

        case CUFFT_SETUP_FAILED:
            return "CUFFT_SETUP_FAILED";

        case CUFFT_INVALID_SIZE:
            return "CUFFT_INVALID_SIZE";

        case CUFFT_UNALIGNED_DATA:
            return "CUFFT_UNALIGNED_DATA";
    }
    return "UNKNOWN";
}

68 69 70 71
bioem_cuda::bioem_cuda()
{
	deviceInitialized = 0;
	GPUAlgo = getenv("GPUALGO") == NULL ? 2 : atoi(getenv("GPUALGO"));
72 73
	GPUAsync = getenv("GPUASYNC") == NULL ? 1 : atoi(getenv("GPUASYNC"));
	GPUWorkload = getenv("GPUWORKLOAD") == NULL ? 100 : atoi(getenv("GPUWORKLOAD"));
74
	GPUDualStream = getenv("GPUDUALSTREAM") == NULL ? 1 : atoi(getenv("GPUDUALSTREAM"));
75 76 77 78 79 80 81
}

bioem_cuda::~bioem_cuda()
{
	deviceExit();
}

82
__global__ void compareRefMap_kernel(const int iOrient, const int iConv, const myfloat_t* pMap, bioem_Probability pProb, const bioem_param_device param, const bioem_RefMap_Mod RefMap, const int cent_x, const int cent_y, const int maxRef)
83 84
{
	const int iRefMap = myBlockIdxX * myBlockDimX + myThreadIdxX;
85
	if (iRefMap < maxRef)
86
	{
87
		compareRefMap<0>(iRefMap, iOrient, iConv, pMap, pProb, param, RefMap, cent_x, cent_y);
88 89 90
	}
}

91
__global__ void compareRefMapShifted_kernel(const int iOrient, const int iConv, const myfloat_t* pMap, bioem_Probability pProb, const bioem_param_device param, const bioem_RefMap_Mod RefMap, const int maxRef)
92 93
{
	const int iRefMap = myBlockIdxX * myBlockDimX + myThreadIdxX;
94
	if (iRefMap < maxRef)
95
	{
96
		compareRefMapShifted<1>(iRefMap, iOrient, iConv, pMap, pProb, param, RefMap);
97 98 99
	}
}

100 101 102 103 104 105
__global__ void cudaZeroMem(void* ptr, size_t size)
{
	int* myptr = (int*) ptr;
	int mysize = size / sizeof(int);
	int myid = myBlockDimX * myBlockIdxX + myThreadIdxX;
	int mygrid = myBlockDimX * myGridDimX;
106
	for (int i = myid; i < mysize; i += mygrid) myptr[i] = 0;
107 108
}

109
__global__ void compareRefMapLoopShifts_kernel(const int iOrient, const int iConv, const myfloat_t* pMap, bioem_Probability pProb, const bioem_param_device param, const bioem_RefMap RefMap, const int blockoffset, const int nShifts, const int nShiftBits, const int maxRef)
110 111 112 113 114 115 116 117 118
{
	const size_t myid = (myBlockIdxX + blockoffset) * myBlockDimX + myThreadIdxX;
	const int iRefMap = myid >> (nShiftBits << 1);
	const int myRef = myThreadIdxX >> (nShiftBits << 1);
	const int myShiftIdx = (myid >> nShiftBits) & (nShifts - 1);
	const int myShiftIdy = myid & (nShifts - 1);
	const int myShift = myid & (nShifts * nShifts - 1);
	const int cent_x = myShiftIdx * param.GridSpaceCenter - param.maxDisplaceCenter;
	const int cent_y = myShiftIdy * param.GridSpaceCenter - param.maxDisplaceCenter;
119

120
	const bool threadActive = myShiftIdx < nShifts && myShiftIdy < nShifts && iRefMap < maxRef;
121

122
	compareRefMap<2>(iRefMap, iOrient, iConv, pMap, pProb, param, RefMap, cent_x, cent_y, myShift, nShifts * nShifts, myRef, threadActive);
123 124
}

125
__global__ void multComplexMap(const mycomplex_t* convmap, const mycomplex_t* refmap, mycuComplex_t* out, const int NumberPixelsTotal, const int MapSize, const int NumberMaps, const int Offset)
126 127
{
	if (myBlockIdxX >= NumberMaps) return;
128
	const mycuComplex_t* myin = (mycuComplex_t*) &refmap[(myBlockIdxX + Offset) * MapSize];
129
	const mycuComplex_t* myconv = (mycuComplex_t*) convmap;
130
	mycuComplex_t* myout = &out[myBlockIdxX * MapSize];
131
	for(int i = myThreadIdxX; i < NumberPixelsTotal; i += myBlockDimX)
132
	{
133 134 135 136 137 138 139
		mycuComplex_t val;
		const mycuComplex_t conv = myconv[i];
		const mycuComplex_t in = myin[i];

		val.x = conv.x * in.x + conv.y * in.y;
		val.y = conv.y * in.x - conv.x * in.y;
		myout[i] = val;
140 141 142
	}
}

143
__global__ void cuDoRefMapsFFT(const int iOrient, const int iConv, const myfloat_t* lCC, const myfloat_t sumC, const myfloat_t sumsquareC, bioem_Probability pProb, const bioem_param_device param, const bioem_RefMap RefMap, const int maxRef, const int Offset)
144
{
145
	if (myBlockIdxX * myBlockDimX + myThreadIdxX >= maxRef) return;
146 147
	const int iRefMap = myBlockIdxX * myBlockDimX + myThreadIdxX + Offset;
	const myfloat_t* mylCC = &lCC[(myBlockIdxX * myBlockDimX + myThreadIdxX) * param.NumberPixels * param.NumberPixels];
148
	doRefMapFFT(iRefMap, iOrient, iConv, mylCC, sumC, sumsquareC, pProb, param, RefMap);
149 150
}

151 152 153 154 155 156 157 158 159 160 161 162 163
template <class T> static inline T divup(T num, T divider) {return((num + divider - 1) / divider);}
static inline bool IsPowerOf2(int x) {return ((x > 0) && ((x & (x - 1)) == 0));}
#if defined(_WIN32)
static inline int ilog2 (int value)
{
	DWORD index;
	_BitScanReverse (&index, value);
	return(value);
}
#else
static inline int ilog2(int value) {return 31 - __builtin_clz(value);}
#endif

164
int bioem_cuda::compareRefMaps(int iOrient, int iConv, const myfloat_t* conv_map, mycomplex_t* localmultFFT, myfloat_t sumC, myfloat_t sumsquareC, const int startMap)
165
{
166 167 168 169 170
	if (startMap)
	{
		cout << "Error startMap not implemented for GPU Code\n";
		exit(1);
	}
171 172 173 174
	if (GPUAsync)
	{
		checkCudaErrors(cudaEventSynchronize(cudaEvent[iConv & 1]));
	}
175

176
	if (FFTAlgo)
177
	{
178
		memcpy(&pConvMapFFT_Host[(iConv & 1) * param.FFTMapSize], localmultFFT, param.FFTMapSize * sizeof(mycomplex_t));
179 180 181 182 183 184
		checkCudaErrors(cudaMemcpyAsync(&pConvMapFFT[(iConv & 1) * param.FFTMapSize], &pConvMapFFT_Host[(iConv & 1) * param.FFTMapSize], param.FFTMapSize * sizeof(mycomplex_t), cudaMemcpyHostToDevice, cudaStream[GPUAsync ? 2 : 0]));
		if (GPUAsync)
		{
			checkCudaErrors(cudaEventRecord(cudaEvent[2], cudaStream[2]));
			checkCudaErrors(cudaStreamWaitEvent(cudaStream[0], cudaEvent[2], 0));
		}
185
		if (GPUDualStream)
186
		{
187 188 189 190 191 192
			checkCudaErrors(cudaEventRecord(cudaFFTEvent[0], cudaStream[0]));
			checkCudaErrors(cudaStreamWaitEvent(cudaStream[1], cudaFFTEvent[0], 0));
		}
		for (int i = 0, j = 0; i < maxRef; i += CUDA_FFTS_AT_ONCE, j++)
		{
			if (!GPUDualStream) j = 0;
193
			const int num = min(CUDA_FFTS_AT_ONCE, maxRef - i);
194 195
			multComplexMap<<<num, CUDA_THREAD_COUNT, 0, cudaStream[j & 1]>>>(&pConvMapFFT[(iConv & 1) * param.FFTMapSize], pRefMapsFFT, pFFTtmp2[j & 1], param.param_device.NumberPixels * param.param_device.NumberFFTPixels1D, param.FFTMapSize, num, i);
			cufftResult err = mycufftExecC2R(i + CUDA_FFTS_AT_ONCE > maxRef ? plan[1][j & 1] : plan[0][j & 1], pFFTtmp2[j & 1], pFFTtmp[j & 1]);
David Rohr's avatar
David Rohr committed
196
			if (err != CUFFT_SUCCESS)
197
			{
David Rohr's avatar
David Rohr committed
198
				cout << "Error running CUFFT " << cufftGetErrorStrung(err) << "\n";
199 200
				exit(1);
			}
201
			cuDoRefMapsFFT<<<divup(num, CUDA_THREAD_COUNT), CUDA_THREAD_COUNT, 0, cudaStream[j & 1]>>>(iOrient, iConv, pFFTtmp[j & 1], sumC, sumsquareC, pProb_device, param.param_device, *gpumap, num, i);
202
		}
203
		checkCudaErrors(cudaGetLastError());
204 205 206 207 208
		if (GPUDualStream)
		{
			checkCudaErrors(cudaEventRecord(cudaFFTEvent[1], cudaStream[1]));
			checkCudaErrors(cudaStreamWaitEvent(cudaStream[0], cudaFFTEvent[1], 0));
		}
209 210 211
	}
	else
	{
212
		checkCudaErrors(cudaMemcpyAsync(pConvMap_device[iConv & 1], conv_map, sizeof(myfloat_t) * RefMap.refMapSize, cudaMemcpyHostToDevice, cudaStream[0]));
213 214

		if (GPUAlgo == 2) //Loop over shifts
215
		{
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
			const int nShifts = 2 * param.param_device.maxDisplaceCenter / param.param_device.GridSpaceCenter + 1;
			if (!IsPowerOf2(nShifts))
			{
				cout << "Invalid number of displacements, no power of two\n";
				exit(1);
			}
			if (CUDA_THREAD_COUNT % (nShifts * nShifts))
			{
				cout << "CUDA Thread count (" << CUDA_THREAD_COUNT << ") is no multiple of number of shifts (" << (nShifts * nShifts) << ")\n";
				exit(1);
			}
			if (nShifts > CUDA_MAX_SHIFT_REDUCE)
			{
				cout << "Too many displacements for CUDA reduction\n";
				exit(1);
			}
			const int nShiftBits = ilog2(nShifts);
			size_t totalBlocks = divup((size_t) maxRef * (size_t) nShifts * (size_t) nShifts, (size_t) CUDA_THREAD_COUNT);
			size_t nBlocks = CUDA_BLOCK_COUNT;
235
			for (size_t i = 0; i < totalBlocks; i += nBlocks)
236
			{
237
				compareRefMapLoopShifts_kernel<<<min(nBlocks, totalBlocks - i), CUDA_THREAD_COUNT, (CUDA_THREAD_COUNT * 2 + CUDA_THREAD_COUNT / (nShifts * nShifts) * 4) * sizeof(myfloat_t), cudaStream[0] >>> (iOrient, iConv, pConvMap_device[iConv & 1], pProb_device, param.param_device, *gpumap, i, nShifts, nShiftBits, maxRef);
238
			}
239
		}
240
		else if (GPUAlgo == 1) //Split shifts in multiple kernels
241
		{
242
			for (int cent_x = -param.param_device.maxDisplaceCenter; cent_x <= param.param_device.maxDisplaceCenter; cent_x = cent_x + param.param_device.GridSpaceCenter)
243
			{
244
				for (int cent_y = -param.param_device.maxDisplaceCenter; cent_y <= param.param_device.maxDisplaceCenter; cent_y = cent_y + param.param_device.GridSpaceCenter)
245
				{
246
					compareRefMap_kernel<<<divup(maxRef, CUDA_THREAD_COUNT), CUDA_THREAD_COUNT, 0, cudaStream[0]>>> (iOrient, iConv, pConvMap_device[iConv & 1], pProb_device, param.param_device, *pRefMap_device_Mod, cent_x, cent_y, maxRef);
247 248
				}
			}
249
		}
250
		else if (GPUAlgo == 0) //All shifts in one kernel
251
		{
252
			compareRefMapShifted_kernel<<<divup(maxRef, CUDA_THREAD_COUNT), CUDA_THREAD_COUNT, 0, cudaStream[0]>>> (iOrient, iConv, pConvMap_device[iConv & 1], pProb_device, param.param_device, *pRefMap_device_Mod, maxRef);
253
		}
254
		else
255
		{
256 257
			cout << "Invalid GPU Algorithm selected\n";
			exit(1);
258
		}
259
	}
260 261
	if (GPUWorkload < 100)
	{
262
		bioem::compareRefMaps(iOrient, iConv, conv_map, localmultFFT, sumC, sumsquareC, maxRef);
263
	}
264 265
	if (GPUAsync)
	{
266
		checkCudaErrors(cudaEventRecord(cudaEvent[iConv & 1], cudaStream[0]));
267
	}
268 269
	else
	{
270
		checkCudaErrors(cudaStreamSynchronize(cudaStream[0]));
271 272 273 274
	}
	return(0);
}

David Rohr's avatar
David Rohr committed
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
int bioem_cuda::selectCudaDevice()
{
	int count;
	
	long long int bestDeviceSpeed = -1;
	int bestDevice;
	cudaDeviceProp deviceProp;
	
	checkCudaErrors(cudaGetDeviceCount(&count));
	if (count == 0)
	{
		printf("No CUDA device detected\n");
		return(1);
	}
	for (int i = 0;i < count;i++)
	{
#if CUDA_VERSION > 3010
		size_t free, total;
#else
		unsigned int free, total;
#endif
		cuInit(0);
		CUdevice tmpDevice;
		cuDeviceGet(&tmpDevice, i);
		CUcontext tmpContext;
		cuCtxCreate(&tmpContext, 0, tmpDevice);
		if(cuMemGetInfo(&free, &total)) exit(1);
		cuCtxDestroy(tmpContext);
		checkCudaErrors(cudaGetDeviceProperties(&deviceProp, i));

David Rohr's avatar
David Rohr committed
305
		if (DebugOutput >= 2 && mpi_rank == 0) printf("CUDA Device %2d: %s (Rev: %d.%d - Mem Avail %lld / %lld)\n", i, deviceProp.name, deviceProp.major, deviceProp.minor, (long long int) free, (long long int) deviceProp.totalGlobalMem);
David Rohr's avatar
David Rohr committed
306 307 308 309 310 311 312
		long long int deviceSpeed = (long long int) deviceProp.multiProcessorCount * (long long int) deviceProp.clockRate * (long long int) deviceProp.warpSize;
		if (deviceSpeed > bestDeviceSpeed)
		{
			bestDevice = i;
			bestDeviceSpeed = deviceSpeed;
		}
	}
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
	if (getenv("GPUDEVICE"))
	{
		int device = atoi(getenv("GPUDEVICE"));
		if (device > count)
		{
			printf("Invalid CUDA device specified, max device number is %d\n", count);
			exit(1);
		}
#ifdef WITH_MPI
		if (device == -1)
		{
			device = mpi_rank % count;
		}
#endif
		if (device < 0)
		{
			printf("Negative CUDA device specified: %d, invalid!\n", device);
		}
		bestDevice = device;
	}
	checkCudaErrors(cudaSetDevice(bestDevice));
David Rohr's avatar
David Rohr committed
334 335 336

	cudaGetDeviceProperties(&deviceProp ,bestDevice); 

David Rohr's avatar
David Rohr committed
337
	if (DebugOutput >= 3)
David Rohr's avatar
David Rohr committed
338
	{
David Rohr's avatar
David Rohr committed
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
		printf("Using CUDA Device %s with Properties:\n", deviceProp.name);
		printf("totalGlobalMem = %lld\n", (unsigned long long int) deviceProp.totalGlobalMem);
		printf("sharedMemPerBlock = %lld\n", (unsigned long long int) deviceProp.sharedMemPerBlock);
		printf("regsPerBlock = %d\n", deviceProp.regsPerBlock);
		printf("warpSize = %d\n", deviceProp.warpSize);
		printf("memPitch = %lld\n", (unsigned long long int) deviceProp.memPitch);
		printf("maxThreadsPerBlock = %d\n", deviceProp.maxThreadsPerBlock);
		printf("maxThreadsDim = %d %d %d\n", deviceProp.maxThreadsDim[0], deviceProp.maxThreadsDim[1], deviceProp.maxThreadsDim[2]);
		printf("maxGridSize = %d %d %d\n", deviceProp.maxGridSize[0], deviceProp.maxGridSize[1], deviceProp.maxGridSize[2]);
		printf("totalConstMem = %lld\n", (unsigned long long int) deviceProp.totalConstMem);
		printf("major = %d\n", deviceProp.major);
		printf("minor = %d\n", deviceProp.minor);
		printf("clockRate = %d\n", deviceProp.clockRate);
		printf("memoryClockRate = %d\n", deviceProp.memoryClockRate);
		printf("multiProcessorCount = %d\n", deviceProp.multiProcessorCount);
		printf("textureAlignment = %lld\n", (unsigned long long int) deviceProp.textureAlignment);
David Rohr's avatar
David Rohr committed
355 356
	}
	
David Rohr's avatar
David Rohr committed
357 358
	if (DebugOutput >= 1)
	{
David Rohr's avatar
David Rohr committed
359
		printf("BioEM for CUDA initialized (MPI Rank %d), %d GPUs found, using GPU %d\n", mpi_rank, count, bestDevice);
David Rohr's avatar
David Rohr committed
360 361
	}
	
David Rohr's avatar
David Rohr committed
362 363 364
	return(0);
}

365 366 367
int bioem_cuda::deviceInit()
{
	deviceExit();
David Rohr's avatar
David Rohr committed
368
	
369
	selectCudaDevice();
370

371 372
	if (FFTAlgo) GPUAlgo = 2;

373 374 375 376 377
	gpumap = new bioem_RefMap;
	memcpy(gpumap, &RefMap, sizeof(bioem_RefMap));
	if (FFTAlgo == 0)
	{
		checkCudaErrors(cudaMalloc(&maps, sizeof(myfloat_t) * RefMap.ntotRefMap * RefMap.refMapSize));
378 379 380 381 382 383 384 385 386 387 388 389 390

		if (GPUAlgo == 0 || GPUAlgo == 1)
		{
			pRefMap_device_Mod = (bioem_RefMap_Mod*) gpumap;
			bioem_RefMap_Mod* RefMapGPU = new bioem_RefMap_Mod;
			RefMapGPU->init(RefMap);
			checkCudaErrors(cudaMemcpy(maps, RefMapGPU->maps, sizeof(myfloat_t) * RefMap.ntotRefMap * RefMap.refMapSize, cudaMemcpyHostToDevice));
			delete RefMapGPU;
		}
		else
		{
			checkCudaErrors(cudaMemcpy(maps, RefMap.maps, sizeof(myfloat_t) * RefMap.ntotRefMap * RefMap.refMapSize, cudaMemcpyHostToDevice));
		}
391 392 393 394 395 396 397 398 399
	}
	checkCudaErrors(cudaMalloc(&sum, sizeof(myfloat_t) * RefMap.ntotRefMap));
	checkCudaErrors(cudaMemcpy(sum, RefMap.sum_RefMap, sizeof(myfloat_t) * RefMap.ntotRefMap, cudaMemcpyHostToDevice));
	checkCudaErrors(cudaMalloc(&sumsquare, sizeof(myfloat_t) * RefMap.ntotRefMap));
	checkCudaErrors(cudaMemcpy(sumsquare, RefMap.sumsquare_RefMap, sizeof(myfloat_t) * RefMap.ntotRefMap, cudaMemcpyHostToDevice));
	gpumap->maps = maps;
	gpumap->sum_RefMap = sum;
	gpumap->sumsquare_RefMap = sumsquare;

400
	checkCudaErrors(cudaMalloc(&pProb_memory, pProb_device.get_size(RefMap.ntotRefMap, param.nTotGridAngles, param.nTotCC, param.param_device.writeAngles, param.param_device.writeCC)));
401

402
	for (int i = 0; i < 2; i++)
403
	{
404
		checkCudaErrors(cudaStreamCreate(&cudaStream[i]));
405
		checkCudaErrors(cudaEventCreate(&cudaEvent[i]));
406
		checkCudaErrors(cudaEventCreate(&cudaFFTEvent[i]));
407
		checkCudaErrors(cudaMalloc(&pConvMap_device[i], sizeof(myfloat_t) * RefMap.refMapSize));
408
	}
409 410 411 412 413
	if (GPUAsync)
	{
		checkCudaErrors(cudaStreamCreate(&cudaStream[2]));
		checkCudaErrors(cudaEventCreate(&cudaEvent[2]));
	}
414

415 416
	if (FFTAlgo)
	{
417
		checkCudaErrors(cudaMalloc(&pRefMapsFFT, RefMap.ntotRefMap * param.FFTMapSize * sizeof(mycomplex_t)));
418 419 420 421
		checkCudaErrors(cudaMalloc(&pFFTtmp2[0], CUDA_FFTS_AT_ONCE * param.FFTMapSize * 2 * sizeof(mycomplex_t)));
		checkCudaErrors(cudaMalloc(&pFFTtmp[0], CUDA_FFTS_AT_ONCE * param.param_device.NumberPixels * param.param_device.NumberPixels * 2 * sizeof(myfloat_t)));
		pFFTtmp2[1] = pFFTtmp2[0] + CUDA_FFTS_AT_ONCE * param.FFTMapSize;
		pFFTtmp[1] = pFFTtmp[0] + CUDA_FFTS_AT_ONCE * param.param_device.NumberPixels * param.param_device.NumberPixels;
422
		checkCudaErrors(cudaMalloc(&pConvMapFFT, param.FFTMapSize * sizeof(mycomplex_t) * 2));
423
		checkCudaErrors(cudaHostAlloc(&pConvMapFFT_Host, param.FFTMapSize * sizeof(mycomplex_t) * 2, 0));
424
		checkCudaErrors(cudaMemcpy(pRefMapsFFT, RefMap.RefMapsFFT, RefMap.ntotRefMap * param.FFTMapSize * sizeof(mycomplex_t), cudaMemcpyHostToDevice));
425 426
	}

427 428 429 430 431 432 433
	deviceInitialized = 1;
	return(0);
}

int bioem_cuda::deviceExit()
{
	if (deviceInitialized == 0) return(0);
434

435

David Rohr's avatar
David Rohr committed
436
	cudaFree(pProb_memory);
437 438
	cudaFree(sum);
	cudaFree(sumsquare);
439
	for (int i = 0; i < 2; i++)
440
	{
441
		cudaStreamDestroy(cudaStream[i]);
442
		cudaEventDestroy(cudaEvent[i]);
443
		cudaEventDestroy(cudaFFTEvent[i]);
444
		cudaFree(pConvMap_device[i]);
445
	}
446 447 448 449
	if (FFTAlgo)
	{
		cudaFree(pRefMapsFFT);
		cudaFree(pConvMapFFT);
450
		cudaFreeHost(pConvMapFFT_Host);
451 452
		cudaFree(pFFTtmp[0]);
		cudaFree(pFFTtmp2[0]);
453
	}
454 455 456 457 458 459 460 461
	else
	{
		cudaFree(maps);
	}
	if (GPUAlgo == 0 || GPUAlgo == 1)
	{
		cudaFree(pRefMap_device_Mod);
	}
462 463 464 465 466 467
	if (GPUAsync)
	{
		cudaStreamDestroy(cudaStream[2]);
		cudaEventDestroy(cudaEvent[2]);
	}

468
	delete gpumap;
469
	cudaThreadExit();
470

471 472 473 474 475 476
	deviceInitialized = 0;
	return(0);
}

int bioem_cuda::deviceStartRun()
{
David Rohr's avatar
David Rohr committed
477 478 479 480 481 482 483 484 485
	if (GPUWorkload >= 100)
	{
		maxRef = RefMap.ntotRefMap;
		pProb_host = &pProb;
	}
	else
	{
		maxRef = (size_t) RefMap.ntotRefMap * (size_t) GPUWorkload / 100;
		pProb_host = new bioem_Probability;
486
		pProb_host->init(maxRef, param.nTotGridAngles, param.nTotCC, *this);
David Rohr's avatar
David Rohr committed
487 488
		pProb_host->copyFrom(&pProb, *this);
	}
489

David Rohr's avatar
David Rohr committed
490 491 492
	pProb_device = *pProb_host;
	pProb_device.ptr = pProb_memory;
	pProb_device.set_pointers();
493
	checkCudaErrors(cudaMemcpyAsync(pProb_device.ptr, pProb_host->ptr, pProb_host->get_size(maxRef, param.nTotGridAngles, param.nTotCC, param.param_device.writeAngles, param.param_device.writeCC), cudaMemcpyHostToDevice, cudaStream[0]));
494 495 496

	if (FFTAlgo)
	{
497
		for (int j = 0;j < 2;j++)
498
		{
499
			for (int i = 0; i < 2; i++)
500
			{
501
				if (i && maxRef % CUDA_FFTS_AT_ONCE == 0) continue;
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
				int n[2] = {param.param_device.NumberPixels, param.param_device.NumberPixels};
				if (cufftPlanMany(&plan[i][j], 2, n, NULL, 1, param.FFTMapSize, NULL, 1, 0, MY_CUFFT_C2R, i ? (maxRef % CUDA_FFTS_AT_ONCE) : CUDA_FFTS_AT_ONCE) != CUFFT_SUCCESS)
				{
					cout << "Error planning CUFFT\n";
					exit(1);
				}
				if (cufftSetCompatibilityMode(plan[i][j], CUFFT_COMPATIBILITY_NATIVE) != CUFFT_SUCCESS)
				{
					cout << "Error planning CUFFT compatibility\n";
					exit(1);
				}
				if (cufftSetStream(plan[i][j], cudaStream[j]) != CUFFT_SUCCESS)
				{
					cout << "Error setting CUFFT stream\n";
					exit(1);
				}
518
			}
519
			if (!GPUDualStream) break;
520 521
		}
	}
522 523 524 525 526
	return(0);
}

int bioem_cuda::deviceFinishRun()
{
527
	if (GPUAsync) cudaStreamSynchronize(cudaStream[0]);
528
	checkCudaErrors(cudaMemcpyAsync(pProb_host->ptr, pProb_device.ptr, pProb_host->get_size(maxRef, param.nTotGridAngles, param.nTotCC, param.param_device.writeAngles, param.param_device.writeCC), cudaMemcpyDeviceToHost, cudaStream[0]));
529

530 531
	if (FFTAlgo)
	{
532 533
		for (int j = 0;j < 2;j++)
		{
534 535 536 537 538
			for (int i = 0; i < 2; i++)
			{
				if (i && maxRef % CUDA_FFTS_AT_ONCE == 0) continue;
				cufftDestroy(plan[i][j]);
			}
539 540
			if (!GPUDualStream) break;
		}
541
	}
David Rohr's avatar
David Rohr committed
542 543 544 545
	cudaThreadSynchronize();
	if (GPUWorkload < 100)
	{
		pProb.copyFrom(pProb_host, *this);
546
		free_device_host(pProb_host->ptr);
David Rohr's avatar
David Rohr committed
547 548
		delete[] pProb_host;
	}
549

550 551 552
	return(0);
}

553 554 555 556 557 558 559 560 561 562 563 564
void* bioem_cuda::malloc_device_host(size_t size)
{
	void* ptr;
	checkCudaErrors(cudaHostAlloc(&ptr, size, 0));
	return(ptr);
}

void bioem_cuda::free_device_host(void* ptr)
{
	cudaFreeHost(ptr);
}

565 566
bioem* bioem_cuda_create()
{
David Rohr's avatar
David Rohr committed
567 568 569 570 571 572 573 574 575
	int count;
	
	if (cudaGetDeviceCount(&count) != cudaSuccess) count = 0;
	if (count == 0)
	{
		printf("No CUDA device available, using fallback to CPU version\n");
		return new bioem;
	}

576 577
	return new bioem_cuda;
}