bioem.cpp 42.3 KB
Newer Older
Pilar Cossio's avatar
License  
Pilar Cossio committed
1
/* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2 3 4
   < BioEM software for Bayesian inference of Electron Microscopy images>
   Copyright (C) 2014 Pilar Cossio, David Rohr and Gerhard Hummer.
   Max Planck Institute of Biophysics, Frankfurt, Germany.
5

6
   See license statement for terms of distribution.
Pilar Cossio's avatar
License  
Pilar Cossio committed
7 8 9

   ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

10 11
#include <mpi.h>

12 13 14 15 16
#define MPI_CHK(expr)							\
  if (expr != MPI_SUCCESS)						\
    {									\
      fprintf(stderr, "Error in MPI function %s: %d\n", __FILE__, __LINE__); \
    }
17

18 19 20 21 22 23 24 25 26
#include <fstream>
#include <boost/program_options.hpp>
#include <iostream>
#include <algorithm>
#include <iterator>
#include <stdio.h>
#include <stdlib.h>
#include <string>
#include <cmath>
27

28
#ifdef WITH_OPENMP
29
#include <omp.h>
30
#endif
31 32 33 34 35 36 37 38 39

#include <fftw3.h>
#include <math.h>
#include "cmodules/timer.h"

#include "param.h"
#include "bioem.h"
#include "model.h"
#include "map.h"
40
#include "MersenneTwister.h"
41

42 43 44 45 46 47
#ifdef BIOEM_USE_NVTX
#include "nvToolsExt.h"

const uint32_t colors[] = { 0x0000ff00, 0x000000ff, 0x00ffff00, 0x00ff00ff, 0x0000ffff, 0x00ff0000, 0x00ffffff };
const int num_colors = sizeof(colors)/sizeof(colors[0]);

48 49 50 51 52 53 54 55 56 57 58 59
#define cuda_custom_timeslot(name,cid) {		\
    int color_id = cid;					\
    color_id = color_id%num_colors;			\
    nvtxEventAttributes_t eventAttrib = {0};		\
    eventAttrib.version = NVTX_VERSION;			\
    eventAttrib.size = NVTX_EVENT_ATTRIB_STRUCT_SIZE;	\
    eventAttrib.colorType = NVTX_COLOR_ARGB;		\
    eventAttrib.color = colors[color_id];		\
    eventAttrib.messageType = NVTX_MESSAGE_TYPE_ASCII;	\
    eventAttrib.message.ascii = name;			\
    nvtxRangePushEx(&eventAttrib);			\
  }
60 61 62 63 64
#define cuda_custom_timeslot_end nvtxRangePop();
#else
#define cuda_custom_timeslot(name,cid)
#define cuda_custom_timeslot_end
#endif
65

66 67 68 69 70 71 72 73 74 75 76
#include "bioem_algorithm.h"

using namespace boost;
namespace po = boost::program_options;

using namespace std;

// A helper function of Boost
template<class T>
ostream& operator<<(ostream& os, const vector<T>& v)
{
77 78
  copy(v.begin(), v.end(), ostream_iterator<T>(os, " "));
  return os;
79 80 81 82
}

bioem::bioem()
{
83 84 85
  FFTAlgo = getenv("FFTALGO") == NULL ? 1 : atoi(getenv("FFTALGO"));
  DebugOutput = getenv("BIOEM_DEBUG_OUTPUT") == NULL ? 2 : atoi(getenv("BIOEM_DEBUG_OUTPUT"));
  nProjectionsAtOnce = getenv("BIOEM_PROJECTIONS_AT_ONCE") == NULL ? 1 : atoi(getenv("BIOEM_PROJECTIONS_AT_ONCE"));
86 87 88 89 90 91 92 93
}

bioem::~bioem()
{
}

int bioem::configure(int ac, char* av[])
{
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
  // **************************************************************************************
  // **** Configuration Routine using boost for extracting parameters, models and maps ****
  // **************************************************************************************
  // ****** And Precalculating necessary grids, map crosscorrelations and kernels  ********
  // *************************************************************************************

  HighResTimer timer;

  if (mpi_rank == 0)
    {
      // *** Inizialzing default variables ***
      std::string infile, modelfile, mapfile,Inputanglefile,Inputbestmap;
      Model.readPDB = false;
      param.param_device.writeAngles = false;
      param.dumpMap = false;
      param.loadMap = false;
      RefMap.readMRC = false;
      RefMap.readMultMRC = false;
      param.notuniformangles=false;

      // *************************************************************************************
      cout << " ++++++++++++ FROM COMMAND LINE +++++++++++\n\n";
      // *************************************************************************************

      // ********************* Command line reading input with BOOST ************************

      try {
	po::options_description desc("Command line inputs");
	desc.add_options()
	  ("Modelfile", po::value< std::string>() , "(Mandatory) Name of model file")
	  ("Particlesfile", po::value< std::string>(), "if BioEM (Mandatory) Name of paricles file")
	  ("Inputfile", po::value<std::string>(), "if BioEM (Mandatory) Name of input parameter file") 
	  ("PrintBestCalMap", po::value< std::string>(), "(Optional) Only print best calculated map (file nec.). NO BioEM (!)")
	  ("ReadEulerAngles", po::value< std::string>(), "(Optional) Read Euler angle list instead of uniform grid (file nec.)")
	  ("ReadPDB", "(Optional) If reading model file in PDB format")
	  ("ReadMRC", "(Optional) If reading particle file in MRC format")
	  ("ReadMultipleMRC", "(Optional) If reading Multiple MRCs")
	  ("DumpMaps", "(Optional) Dump maps after they were red from maps file")
	  ("LoadMapDump", "(Optional) Read Maps from dump instead of maps file")
	  ("help", "(Optional) Produce help message")
	  ;


	po::positional_options_description p;
	p.add("Inputfile", -1);
	p.add("Modelfile", -1);
	p.add("Particlesfile", -1);
	p.add("ReadPDB", -1);
	p.add("ReadMRC", -1);
	p.add("ReadMultipleMRC", -1);
	p.add("ReadEulerAngles",-1);
	p.add("PrintBestCalMap",-1);
	p.add("DumpMaps", -1);
	p.add("LoadMapDump", -1);

	po::variables_map vm;
	po::store(po::command_line_parser(ac, av).
		  options(desc).positional(p).run(), vm);
	po::notify(vm);

	if((ac < 4)) {
	  std::cout << desc << std::endl;
	  return 1;
	}
	if (vm.count("help")) {
	  cout << "Usage: options_description [options]\n";
	  cout << desc;
	  return 1;
	}
163

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
	if (vm.count("Inputfile"))
	  {
	    cout << "Input file is: ";
	    cout << vm["Inputfile"].as< std::string >() << "\n";
	    infile = vm["Inputfile"].as< std::string >();
	  }
	if (vm.count("Modelfile"))
	  {
	    cout << "Model file is: "
		 << vm["Modelfile"].as<  std::string  >() << "\n";
	    modelfile = vm["Modelfile"].as<  std::string  >();
	  }
	if (vm.count("ReadPDB"))
	  {
	    cout << "Reading model file in PDB format.\n";
	    Model.readPDB = true;
	  }
	if (vm.count("ReadEulerAngles"))
	  {
	    cout << "Reading Euler Angles from file: "
		 << vm["ReadEulerAngles"].as<  std::string  >() << "\n";
	    cout << "Note: Format should be alpha (12.6f) beta (12.6f) gamma (12.6f)\n";
	    Inputanglefile = vm["ReadEulerAngles"].as<  std::string  >();
	    param.notuniformangles=true;
	  }
	if (vm.count("PrintBestCalMap"))
	  {
	    cout << "Reading Euler Angles from file: "
		 << vm["PrintBestCalMap"].as<  std::string  >() << "\n";
	    Inputbestmap = vm["PrintBestCalMap"].as<  std::string  >();
	    param.printModel=true;
	  }

	if (vm.count("ReadMRC"))
	  {
	    cout << "Reading particle file in MRC format.\n";
	    RefMap.readMRC=true;
	  }

	if (vm.count("ReadMultipleMRC"))
	  {
	    cout << "Reading Multiple MRCs.\n";
	    RefMap.readMultMRC=true;
	  }

	if (vm.count("DumpMaps"))
	  {
	    cout << "Dumping Maps after reading from file.\n";
	    param.dumpMap = true;
	  }

	if (vm.count("LoadMapDump"))
	  {
	    cout << "Loading Map dump.\n";
	    param.loadMap = true;
	  }

	if (vm.count("Particlesfile"))
	  {
	    cout << "Paricle file is: "
		 << vm["Particlesfile"].as< std::string >() << "\n";
	    mapfile = vm["Particlesfile"].as< std::string >();
	  }
      }
      catch(std::exception& e)
	{
	  cout << e.what() << "\n";
	  return 1;
	}
David Rohr's avatar
David Rohr committed
233

234 235
      //check for consitency in multiple MRCs
      if(RefMap.readMultMRC && not(RefMap.readMRC))
David Rohr's avatar
David Rohr committed
236
	{
237 238 239
	  cout << "For Multiple MRCs command --ReadMRC is necesary too";
	  exit(1);
	}
David Rohr's avatar
David Rohr committed
240

241 242 243 244
      if(!Model.readPDB){
	cout << "Note: Reading model in simple text format (not PDB)\n";
	cout << "----  x   y   z  radius  density ------- \n";
      } 
David Rohr's avatar
David Rohr committed
245

246 247 248 249 250
      if (DebugOutput >= 2 && mpi_rank == 0) timer.ResetStart();
      // ********************* Reading Parameter Input ***************************
      if(!param.printModel){
	// Standard definition for BioEM
	param.readParameters(infile.c_str(),Inputanglefile.c_str());
David Rohr's avatar
David Rohr committed
251

252 253
	// ********************* Reading Particle Maps Input **********************
	RefMap.readRefMaps(param, mapfile.c_str());
David Rohr's avatar
David Rohr committed
254

255

256 257
      } else{
	// Reading parameters for only writting down Best projection
258

259 260
	param.forprintBest(Inputbestmap.c_str());
      }	
261

262 263
      // ********************* Reading Model Input ******************************
      Model.readModel(modelfile.c_str());
David Rohr's avatar
David Rohr committed
264

265
      cout << "Remark: look at file COORDREAD to confirm that the Model coordinates are correct\n";
David Rohr's avatar
David Rohr committed
266

267 268
      if (DebugOutput >= 2 && mpi_rank == 0) printf("Reading Input Data %f\n", timer.GetCurrentElapsedTime());
    }
269

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
#ifdef WITH_MPI
  if (mpi_size > 1)
    {
      if (DebugOutput >= 2 && mpi_rank == 0) timer.ResetStart();
      MPI_Bcast(&param, sizeof(param), MPI_BYTE, 0, MPI_COMM_WORLD);
      //refCtf, CtfParam, angles automatically filled by precalculare function below

      MPI_Bcast(&Model, sizeof(Model), MPI_BYTE, 0, MPI_COMM_WORLD);
      if (mpi_rank != 0) Model.points = (bioem_model::bioem_model_point*) mallocchk(sizeof(bioem_model::bioem_model_point) * Model.nPointsModel);
      MPI_Bcast(Model.points, sizeof(bioem_model::bioem_model_point) * Model.nPointsModel, MPI_BYTE, 0, MPI_COMM_WORLD);

      MPI_Bcast(&RefMap, sizeof(RefMap), MPI_BYTE, 0, MPI_COMM_WORLD);
      if (mpi_rank != 0) RefMap.maps = (myfloat_t*) mallocchk(RefMap.refMapSize * sizeof(myfloat_t) * RefMap.ntotRefMap);
      MPI_Bcast(RefMap.maps, RefMap.refMapSize * sizeof(myfloat_t) * RefMap.ntotRefMap, MPI_BYTE, 0, MPI_COMM_WORLD);
      if (DebugOutput >= 2 && mpi_rank == 0) printf("MPI Broadcast of Input Data %f\n", timer.GetCurrentElapsedTime());
    }
#endif
287

288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
  // ****************** Precalculating Necessary Stuff *********************

  if (DebugOutput >= 2 && mpi_rank == 0) timer.ResetStart();
  param.PrepareFFTs();
  if (DebugOutput >= 2 && mpi_rank == 0)
    {
      printf("Time Prepare FFTs %f\n", timer.GetCurrentElapsedTime());
      timer.ResetStart();
    }
  precalculate();

  if (getenv("BIOEM_DEBUG_BREAK"))
    {
      const int cut = atoi(getenv("BIOEM_DEBUG_BREAK"));
      if (param.nTotGridAngles > cut) param.nTotGridAngles = cut;
      if (param.nTotCTFs > cut) param.nTotCTFs = cut;
    }

  if (DebugOutput >= 2 && mpi_rank == 0)
    {
      printf("Time Precalculate %f\n", timer.GetCurrentElapsedTime());
      timer.ResetStart();
    }
  if(!param.printModel)pProb.init(RefMap.ntotRefMap, param.nTotGridAngles, param.nTotCC, *this);

  if (DebugOutput >= 2 && mpi_rank == 0)
    {
      printf("Time Init Probabilities %f\n", timer.GetCurrentElapsedTime());
      timer.ResetStart();
    }
  deviceInit();
  if (DebugOutput >= 2 && mpi_rank == 0) printf("Time Device Init %f\n", timer.GetCurrentElapsedTime());

  return(0);
322 323
}

324 325
void bioem::cleanup()
{
326 327 328
  //Deleting allocated pointers
  free_device_host(pProb.ptr);
  RefMap.freePointers();
329 330
}

331 332
int bioem::precalculate()
{
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
  // **************************************************************************************
  // **Precalculating Routine of Orientation grids, Map crosscorrelations and CTF Kernels**
  // **************************************************************************************
  HighResTimer timer;

  // Generating Grids of orientations 
  param.CalculateGridsParam();                

  if (DebugOutput >= 3)
    {
      printf("\tTime Precalculate Grids Param: %f\n", timer.GetCurrentElapsedTime());
      timer.ResetStart();
    }
  // Precalculating CTF Kernels stored in class Param
  param.CalculateRefCTF();

  if (DebugOutput >= 3)
    {
      printf("\tTime Precalculate CTFs: %f\n", timer.GetCurrentElapsedTime());
      timer.ResetStart();
    }
  //Precalculate Maps
  if(!param.printModel) RefMap.precalculate(param, *this);
  if (DebugOutput >= 3) printf("\tTime Precalculate Maps: %f\n", timer.GetCurrentElapsedTime());

  return(0);
359 360 361 362
}

int bioem::run()
{
David Rohr's avatar
David Rohr committed
363

364 365 366
  // **************************************************************************************
  // ********** Secondary routine for printing out the only best projection ***************
  // **************************************************************************************
David Rohr's avatar
David Rohr committed
367

368
  if(mpi_rank == 0 && param.printModel){ //Only works for 1 MPI process (not parallelized)
369

370 371 372 373 374
    cout << "\nAnalysis for printing best projection::: \n \n" ; 
    mycomplex_t* proj_mapsFFT;
    myfloat_t* conv_map = NULL;
    mycomplex_t* conv_mapFFT;
    myfloat_t sumCONV, sumsquareCONV;
375

376 377 378
    proj_mapsFFT = (mycomplex_t *) myfftw_malloc(sizeof(mycomplex_t) * param.param_device.NumberPixels * param.param_device.NumberFFTPixels1D);
    conv_mapFFT = (mycomplex_t *) myfftw_malloc(sizeof(mycomplex_t) * param.param_device.NumberPixels * param.param_device.NumberFFTPixels1D);
    conv_map = (myfloat_t*) myfftw_malloc(sizeof(myfloat_t) * param.param_device.NumberPixels * param.param_device.NumberPixels);
379

380
    cout << "...... Calculating Projection .......................\n " ;
381

382
    createProjection(0, proj_mapsFFT);
383

384
    cout << "...... Calculating Convolution .......................\n " ;
David Rohr's avatar
David Rohr committed
385

386
    createConvolutedProjectionMap(0, 0, proj_mapsFFT, conv_map, conv_mapFFT, sumCONV, sumsquareCONV);
387

388
  }
389

390 391 392
  // **************************************************************************************
  // **** Main BioEM routine, projects, convolutes and compares with Map using OpenMP ****
  // **************************************************************************************
393

394 395
  // **** If we want to control the number of threads -> omp_set_num_threads(XX); ******
  // ****************** Declarying class of Probability Pointer  *************************
David Rohr's avatar
David Rohr committed
396

397 398 399 400 401
  if (mpi_rank == 0) printf("\tInitializing Probabilities\n");
  // Inizialzing Probabilites to zero and constant to -Infinity
  for (int iRefMap = 0; iRefMap < RefMap.ntotRefMap; iRefMap ++)
    {
      bioem_Probability_map& pProbMap = pProb.getProbMap(iRefMap);
David Rohr's avatar
David Rohr committed
402

403 404 405
      pProbMap.Total = 0.0;
      pProbMap.Constoadd = -9999999;
      if (param.param_device.writeAngles)
406
	{
407 408 409 410 411 412 413 414 415 416 417 418 419
	  for (int iOrient = 0; iOrient < param.nTotGridAngles; iOrient ++)
	    {
	      bioem_Probability_angle& pProbAngle = pProb.getProbAngle(iRefMap, iOrient);

	      pProbAngle.forAngles = 0.0;
	      pProbAngle.ConstAngle = -99999999;
	    }
	}
      if (param.param_device.writeCC)
	{      int  cc=0;
	  for (int cent_x = 0; cent_x < param.param_device.NumberPixels -param.param_device.CCdisplace ; cent_x = cent_x + param.param_device.CCdisplace)
	    {
	      for (int cent_y = 0; cent_y < param.param_device.NumberPixels - param.param_device.CCdisplace ; cent_y = cent_y + param.param_device.CCdisplace)
420
		{
421 422 423 424
		  bioem_Probability_cc& pProbCC = pProb.getProbCC(iRefMap, cc);
		  pProbCC.forCC = 0.0;
 
		  cc++;
425
		}
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
	    }
	}                 
    }
  // **************************************************************************************
  deviceStartRun();

  // ******************************** MAIN CYCLE ******************************************

  mycomplex_t* proj_mapsFFT;
  myfloat_t* conv_map = NULL;
  mycomplex_t* conv_mapFFT;
  myfloat_t sumCONV, sumsquareCONV;

  //allocating fftw_complex vector
  const int ProjMapSize = (param.FFTMapSize + 64) & ~63;	//Make sure this is properly aligned for fftw..., Actually this should be ensureb by using FFTMapSize, but it is not due to a bug in CUFFT which cannot handle padding properly
  proj_mapsFFT = (mycomplex_t *) myfftw_malloc(sizeof(mycomplex_t) * ProjMapSize * nProjectionsAtOnce);
  conv_mapFFT = (mycomplex_t *) myfftw_malloc(sizeof(mycomplex_t) * param.param_device.NumberPixels * param.param_device.NumberFFTPixels1D);
  if (!FFTAlgo) conv_map = (myfloat_t*) myfftw_malloc(sizeof(myfloat_t) * param.param_device.NumberPixels * param.param_device.NumberPixels);
             

  HighResTimer timer, timer2;

  if (DebugOutput >= 1 && mpi_rank == 0) printf("\tMain Loop GridAngles %d, CTFs %d, RefMaps %d, Shifts (%d/%d)², Pixels %d², OMP Threads %d, MPI Ranks %d\n", param.nTotGridAngles, param.nTotCTFs, RefMap.ntotRefMap, 2 * param.param_device.maxDisplaceCenter + param.param_device.GridSpaceCenter, param.param_device.GridSpaceCenter, param.param_device.NumberPixels, omp_get_max_threads(), mpi_size);

  const int iOrientStart = (int) ((long long int) mpi_rank * param.nTotGridAngles / mpi_size);
  int iOrientEnd = (int) ((long long int) (mpi_rank + 1) * param.nTotGridAngles / mpi_size);
  if (iOrientEnd > param.nTotGridAngles) iOrientEnd = param.nTotGridAngles;

  for (int iOrientAtOnce = iOrientStart; iOrientAtOnce < iOrientEnd; iOrientAtOnce += nProjectionsAtOnce)
    {
      // ***************************************************************************************
      // ***** Creating Projection for given orientation and transforming to Fourier space *****
      if (DebugOutput >= 1) timer2.ResetStart();
      if (DebugOutput >= 2) timer.ResetStart();
      int iTmpEnd = std::min(iOrientEnd, iOrientAtOnce + nProjectionsAtOnce);
#pragma omp parallel for
      for (int iOrient = iOrientAtOnce; iOrient < iTmpEnd;iOrient++)
	{
	  createProjection(iOrient, &proj_mapsFFT[(iOrient - iOrientAtOnce) * ProjMapSize]);
	}
      if (DebugOutput >= 2) printf("\tTime Projection %d: %f (rank %d)\n", iOrientAtOnce, timer.GetCurrentElapsedTime(), mpi_rank);
467

468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
      for (int iOrient = iOrientAtOnce; iOrient < iTmpEnd;iOrient++)
	{
	  mycomplex_t* proj_mapFFT = &proj_mapsFFT[(iOrient - iOrientAtOnce) * ProjMapSize];
	  // ***************************************************************************************
	  // ***** **** Internal Loop over convolutions **** *****
	  for (int iConv = 0; iConv < param.nTotCTFs; iConv++)
	    {
	      // *** Calculating convolutions of projection map and crosscorrelations ***

	      if (DebugOutput >= 2) timer.ResetStart();
	      createConvolutedProjectionMap(iOrient, iConv, proj_mapFFT, conv_map, conv_mapFFT, sumCONV, sumsquareCONV);
	      if (DebugOutput >= 2) printf("\t\tTime Convolution %d %d: %f (rank %d)\n", iOrient, iConv, timer.GetCurrentElapsedTime(), mpi_rank);

	      // ***************************************************************************************
	      // *** Comparing each calculated convoluted map with all experimental maps ***
	      if (DebugOutput >= 2) timer.ResetStart();
	      compareRefMaps(iOrient, iConv, conv_map, conv_mapFFT, sumCONV, sumsquareCONV);

	      if (DebugOutput >= 2)
487
		{
488 489 490 491 492 493 494 495 496
		  const double compTime = timer.GetCurrentElapsedTime();
		  const int nShifts = 2 * param.param_device.maxDisplaceCenter / param.param_device.GridSpaceCenter + 1;
		  const double nFlops = (double) RefMap.ntotRefMap * (double) nShifts * (double) nShifts *
		    (((double) param.param_device.NumberPixels - (double) param.param_device.maxDisplaceCenter / 2.) * ((double) param.param_device.NumberPixels - (double) param.param_device.maxDisplaceCenter / 2.) * 5. + 25.) / compTime;
		  const double nGBs = (double) RefMap.ntotRefMap * (double) nShifts * (double) nShifts *
		    (((double) param.param_device.NumberPixels - (double) param.param_device.maxDisplaceCenter / 2.) * ((double) param.param_device.NumberPixels - (double) param.param_device.maxDisplaceCenter / 2.) * 2. + 8.) * (double) sizeof(myfloat_t) / compTime;
		  const double nGBs2 = (double) RefMap.ntotRefMap * ((double) param.param_device.NumberPixels * (double) param.param_device.NumberPixels + 8.) * (double) sizeof(myfloat_t) / compTime;

		  printf("\t\tTime Comparison %d %d: %f sec (%f GFlops, %f GB/s (cached), %f GB/s) (rank %d)\n", iOrient, iConv, compTime, nFlops / 1000000000., nGBs / 1000000000., nGBs2 / 1000000000., mpi_rank);
497
		}
498 499 500 501 502 503
	    }
	  if (DebugOutput >= 1)
	    {
	      printf("\tTotal time for projection %d: %f (rank %d)\n", iOrient, timer2.GetCurrentElapsedTime(), mpi_rank);
	      timer2.ResetStart();
	    }
504
	}
505 506 507 508 509
    }
  //deallocating fftw_complex vector
  myfftw_free(proj_mapsFFT);
  myfftw_free(conv_mapFFT);
  if (!FFTAlgo) myfftw_free(conv_map);
David Rohr's avatar
David Rohr committed
510

511
  deviceFinishRun();
512

513
  // ************* Writing Out Probabilities ***************
514

515
  // *** Angular Probability ***
David Rohr's avatar
David Rohr committed
516

David Rohr's avatar
David Rohr committed
517
#ifdef WITH_MPI
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
  if (mpi_size > 1)
    {
      if (DebugOutput >= 1 && mpi_rank == 0) timer.ResetStart();
      //Reduce Constant and summarize probabilities
      {
	myfloat_t* tmp1 = new myfloat_t[RefMap.ntotRefMap];
	myfloat_t* tmp2 = new myfloat_t[RefMap.ntotRefMap];
	myfloat_t* tmp3 = new myfloat_t[RefMap.ntotRefMap];
	for (int i = 0;i < RefMap.ntotRefMap;i++)
	  {
	    tmp1[i] = pProb.getProbMap(i).Constoadd;
	  }
	MPI_Allreduce(tmp1, tmp2, RefMap.ntotRefMap, MY_MPI_FLOAT, MPI_MAX, MPI_COMM_WORLD);
	for (int i = 0;i < RefMap.ntotRefMap;i++)
	  {
	    bioem_Probability_map& pProbMap = pProb.getProbMap(i);
	    tmp1[i] = pProbMap.Total * exp(pProbMap.Constoadd - tmp2[i]);
	  }
	MPI_Reduce(tmp1, tmp3, RefMap.ntotRefMap, MY_MPI_FLOAT, MPI_SUM, 0, MPI_COMM_WORLD);

	//Find MaxProb
	MPI_Status mpistatus;
David Rohr's avatar
David Rohr committed
540
	{
541 542 543 544 545 546 547 548 549 550 551
	  int* tmpi1 = new int[RefMap.ntotRefMap];
	  int* tmpi2 = new int[RefMap.ntotRefMap];
	  for (int i = 0;i < RefMap.ntotRefMap;i++)
	    {
	      bioem_Probability_map& pProbMap = pProb.getProbMap(i);
	      tmpi1[i] = tmp2[i] <= pProbMap.Constoadd ? mpi_rank : -1;
	    }
	  MPI_Allreduce(tmpi1, tmpi2, RefMap.ntotRefMap, MPI_INT, MPI_MAX, MPI_COMM_WORLD);
	  for (int i = 0;i < RefMap.ntotRefMap;i++)
	    {
	      if (tmpi2[i] == -1)
David Rohr's avatar
David Rohr committed
552
		{
553
		  if (mpi_rank == 0) printf("Error: Could not find highest probability\n");
David Rohr's avatar
David Rohr committed
554
		}
555
	      else if (tmpi2[i] != 0) //Skip if rank 0 already has highest probability
David Rohr's avatar
David Rohr committed
556
		{
557 558 559 560 561 562 563 564
		  if (mpi_rank == 0)
		    {
		      MPI_Recv(&pProb.getProbMap(i).max, sizeof(pProb.getProbMap(i).max), MPI_BYTE, tmpi2[i], i, MPI_COMM_WORLD, &mpistatus);
		    }
		  else if (mpi_rank == tmpi2[i])
		    {
		      MPI_Send(&pProb.getProbMap(i).max, sizeof(pProb.getProbMap(i).max), MPI_BYTE, 0, i, MPI_COMM_WORLD);
		    }
David Rohr's avatar
David Rohr committed
565
		}
566 567 568
	    }
	  delete[] tmpi1;
	  delete[] tmpi2;
569
	}
570

David Rohr's avatar
David Rohr committed
571
	if (mpi_rank == 0)
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
	  {
	    for (int i = 0;i < RefMap.ntotRefMap;i++)
	      {
		bioem_Probability_map& pProbMap = pProb.getProbMap(i);
		pProbMap.Total = tmp3[i];
		pProbMap.Constoadd = tmp2[i];
	      }
	  }

	delete[] tmp1;
	delete[] tmp2;
	delete[] tmp3;
	if (DebugOutput >= 1 && mpi_rank == 0 && mpi_size > 1) printf("Time MPI Reduction: %f\n", timer.GetCurrentElapsedTime());
      }

      //Angle Reduction and Probability summation for individual angles
      if (param.param_device.writeAngles)
589
	{
590 591 592 593 594 595 596 597 598 599 600 601
	  const int count = RefMap.ntotRefMap * param.nTotGridAngles;
	  myfloat_t* tmp1 = new myfloat_t[count];
	  myfloat_t* tmp2 = new myfloat_t[count];
	  myfloat_t* tmp3 = new myfloat_t[count];
	  for (int i = 0;i < RefMap.ntotRefMap;i++)
	    {
	      tmp1[i] = pProb.getProbMap(i).Constoadd;
	    }
	  MPI_Allreduce(tmp1, tmp2, count, MY_MPI_FLOAT, MPI_MAX, MPI_COMM_WORLD);
	  for (int i = 0;i < RefMap.ntotRefMap;i++)
	    {
	      for (int j = 0;j < param.nTotGridAngles;j++)
David Rohr's avatar
David Rohr committed
602
		{
603 604
		  bioem_Probability_angle& pProbAngle = pProb.getProbAngle(i, j);
		  tmp1[i * param.nTotGridAngles + j] = pProbAngle.forAngles * exp(pProbAngle.ConstAngle - tmp2[i * param.nTotGridAngles + j]);
David Rohr's avatar
David Rohr committed
605
		}
606 607 608 609 610
	    }
	  MPI_Reduce(tmp1, tmp3, count, MY_MPI_FLOAT, MPI_SUM, 0, MPI_COMM_WORLD);
	  if (mpi_rank == 0)
	    {
	      for (int i = 0;i < RefMap.ntotRefMap;i++)
611
		{
612 613 614 615 616 617
		  for (int j = 0;j < param.nTotGridAngles;j++)
		    {
		      bioem_Probability_angle& pProbAngle = pProb.getProbAngle(i, j);
		      pProbAngle.forAngles = tmp3[i * param.nTotGridAngles + j];
		      pProbAngle.ConstAngle = tmp2[i * param.nTotGridAngles + j];
		    }
618
		}
619 620 621 622 623 624 625
	    }
	  delete[] tmp1;
	  delete[] tmp2;
	  delete[] tmp3;
	}
    }
#endif
David Rohr's avatar
David Rohr committed
626

627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
  if (mpi_rank == 0)
    {
      ofstream angProbfile;
      if(param.param_device.writeAngles)
	{
	  angProbfile.open ("ANG_PROB");
	}
      ofstream ccProbfile;
      if(param.param_device.writeCC)
	{
	  ccProbfile.open ("CROSS_CORRELATION");
	}

      ofstream outputProbFile;
      outputProbFile.open ("Output_Probabilities");
642 643 644 645 646 647
        outputProbFile <<"************************* HEADER:: NOTATION *******************************************\n";   
 	outputProbFile << " RefMap:  MapNumber ; LogProb: natural logarithm of posterior Probability ; Constant: Numerical Const. for adding Probabilities \n";
        outputProbFile << " RefMap:  MapNumber ; Maximizing Param: MaxLogProb - alpha - beta - gamma - PSF amp - PSF phase - PSF envelope - center x - center y - normalization - offsett \n";
        if(param.writeCTF) outputProbFile << " RefMap:  MapNumber ; CTFMaxParm: defocus - b-factor (ref. Penzeck 2010)\n";
        outputProbFile <<"************************* HEADER:: NOTATION *******************************************\n\n";

648 649 650 651 652
      for (int iRefMap = 0; iRefMap < RefMap.ntotRefMap; iRefMap ++)
	{
	  // **** Total Probability ***
	  bioem_Probability_map& pProbMap = pProb.getProbMap(iRefMap);

653
	  outputProbFile << "RefMap: " << iRefMap << " LogProb:  "  << log(pProbMap.Total) + pProbMap.Constoadd + 0.5 * log(M_PI) + (1 - param.param_device.Ntotpi * 0.5)*(log(2 * M_PI) + 1) + log(param.param_device.volu) << " Constant: " << pProbMap.Constoadd  << "\n";
654

655
	  outputProbFile << "RefMap: " << iRefMap << " Maximizing Param: ";
656 657 658

	  // *** Param that maximize probability****
	  outputProbFile << (pProbMap.Constoadd + 0.5 * log(M_PI) + (1 - param.param_device.Ntotpi * 0.5) * (log(2 * M_PI) + 1) + log(param.param_device.volu)) << " ";
659 660 661 662 663 664 665 666 667 668
	  outputProbFile << param.angles[pProbMap.max.max_prob_orient].pos[0] << " [rad] ";
	  outputProbFile << param.angles[pProbMap.max.max_prob_orient].pos[1] << " [rad] ";
	  outputProbFile << param.angles[pProbMap.max.max_prob_orient].pos[2] << " [rad] ";
	  outputProbFile << param.CtfParam[pProbMap.max.max_prob_conv].pos[0] << " [ ] ";
	  outputProbFile << param.CtfParam[pProbMap.max.max_prob_conv].pos[1] << " [1./A²] ";
	  outputProbFile << param.CtfParam[pProbMap.max.max_prob_conv].pos[2] << " [1./A²] ";
	  outputProbFile << pProbMap.max.max_prob_cent_x << " [pix] ";
	  outputProbFile << pProbMap.max.max_prob_cent_y << " [pix] " ;
	  outputProbFile << pProbMap.max.max_prob_norm << " [ ] " ; 
	  outputProbFile << pProbMap.max.max_prob_mu << " [ ] ";
669 670
	  outputProbFile << "\n";

671 672 673 674 675 676 677 678

	  if(param.writeCTF){
          myfloat_t denomi;
          denomi = param.CtfParam[pProbMap.max.max_prob_conv].pos[1] * param.CtfParam[pProbMap.max.max_prob_conv].pos[1] + param.CtfParam[pProbMap.max.max_prob_conv].pos[2] * param.CtfParam[pProbMap.max.max_prob_conv].pos[2];
	  outputProbFile << "RefMap: " << iRefMap << " CTFMaxParam: ";
	  outputProbFile <<  2*M_PI*param.CtfParam[pProbMap.max.max_prob_conv].pos[1]/denomi/param.elecwavel << " [micro-m]; ";
          outputProbFile << "2*(" << sqrt(4*M_PI*param.CtfParam[pProbMap.max.max_prob_conv].pos[2]/denomi) << ")² [1./A²] \n";
	}
679 680 681 682 683
	  // *** For individual files*** //angProbfile.open ("ANG_PROB_"iRefMap);

	  if(param.param_device.writeAngles)
	    {
	      for (int iOrient = 0; iOrient < param.nTotGridAngles; iOrient++)
David Rohr's avatar
David Rohr committed
684
		{
685
		  bioem_Probability_angle& pProbAngle = pProb.getProbAngle(iRefMap, iOrient);
686

687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
		  angProbfile << " " << iRefMap << " " << param.angles[iOrient].pos[0] << " " << param.angles[iOrient].pos[1] << " " << param.angles[iOrient].pos[2] << " " << log(pProbAngle.forAngles) + pProbAngle.ConstAngle + 0.5 * log(M_PI) + (1 - param.param_device.Ntotpi * 0.5)*(log(2 * M_PI) + 1) + log(param.param_device.volu) << " " << log(param.param_device.volu) << "\n";
		}
	    }
	  if(param.param_device.writeCC)
	    {
	      int  cc=0;
	      int halfPix;
	      int rx=0;
	      int ry=0;
	      myfloat_t localcc[ (param.param_device.NumberPixels+1) * (param.param_device.NumberPixels+1) ];

	      halfPix = param.param_device.NumberPixels / 2 ;
	      // Ordering the centers of the Cross Correlation

	      for (int rx = param.param_device.CCdisplace; rx < param.param_device.NumberPixels -param.param_device.CCdisplace ; rx = rx + param.param_device.CCdisplace)
David Rohr's avatar
David Rohr committed
702
		{
703 704 705 706
		  for (int ry = param.param_device.CCdisplace; ry < param.param_device.NumberPixels - param.param_device.CCdisplace ; ry = ry + param.param_device.CCdisplace)
		    {
		      localcc[ rx * param.param_device.NumberPixels + ry ] = 0.0;
		    }
David Rohr's avatar
David Rohr committed
707
		}
708

709
	      for (int cent_x = 0; cent_x < param.param_device.NumberPixels -param.param_device.CCdisplace ; cent_x = cent_x + param.param_device.CCdisplace)
710
		{
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
		  for (int cent_y = 0; cent_y < param.param_device.NumberPixels - param.param_device.CCdisplace ; cent_y = cent_y + param.param_device.CCdisplace)
		    {
		      //localcc[ rx * param.param_device.NumberPixels + ry ] = 0.0;
		      bioem_Probability_cc& pProbCC = pProb.getProbCC(iRefMap, cc);
		      if(cent_x < halfPix && cent_y < halfPix){
			//	ccProbfile << " " << iRefMap << " " << (myfloat_t) halfPix  - cent_x << " " << halfPix - cent_y << " " << pProbCC.forCC <<"\n";
			rx = halfPix  - cent_x;
			ry = halfPix  - cent_y;}
		      if(cent_x >= halfPix && cent_y < halfPix){
			//      ccProbfile << " " << iRefMap << " " << (myfloat_t) 3 * halfPix  - cent_x << " " << halfPix - cent_y << " " << pProbCC.forCC <<"\n"; 
			rx = 3 * halfPix  - cent_x;
			ry = halfPix  - cent_y;}
		      if(cent_x < halfPix && cent_y >= halfPix){
			//      ccProbfile << " " << iRefMap << " " << (myfloat_t) halfPix  - cent_x << " " << 3 * halfPix - cent_y << " " << pProbCC.forCC <<"\n";
			rx = halfPix  - cent_x;
			ry = 3 * halfPix  - cent_y;}
		      if(cent_x >= halfPix && cent_y >= halfPix){
			//        ccProbfile << " " << iRefMap << " " << 3* halfPix  - cent_x << " " << 3 * halfPix - cent_y << " " << pProbCC.forCC <<"\n";
			rx = 3 * halfPix  - cent_x;
			ry = 3 * halfPix  - cent_y;}
		      //						cout << " TT " << cent_x << " " << rx << " " << cent_y << " " << ry << " " <<  pProbCC.forCC << "\n";
		      localcc[ rx * param.param_device.NumberPixels + ry ] = pProbCC.forCC;
		      cc++;
		    }
		  //              ccProbfile << "\n";
736
		}
737 738 739 740 741 742 743 744 745 746 747
	      for (int rx = param.param_device.CCdisplace; rx < param.param_device.NumberPixels -param.param_device.CCdisplace ; rx = rx + param.param_device.CCdisplace)
		{
		  for (int ry = param.param_device.CCdisplace; ry < param.param_device.NumberPixels - param.param_device.CCdisplace ; ry = ry + param.param_device.CCdisplace)
		    {
		      ccProbfile << rx << " " << ry << " " << localcc[ rx * param.param_device.NumberPixels + ry ] << "\n" ; 
		    }
		  ccProbfile << "\n";
		}			
  
	    }
	}
748

749 750 751 752 753 754 755 756
      if(param.param_device.writeAngles)
	{
	  angProbfile.close();
	}

      if(param.param_device.writeCC)
	{
	  ccProbfile.close();
757
	}
758

759 760 761 762
      outputProbFile.close();
    }

  return(0);
763 764
}

765
int bioem::compareRefMaps(int iOrient, int iConv, const myfloat_t* conv_map, mycomplex_t* localmultFFT, myfloat_t sumC, myfloat_t sumsquareC, const int startMap)
766
{
767 768 769 770 771 772 773
  //***************************************************************************************
  //***** BioEM routine for comparing reference maps to convoluted maps *****
  if (FFTAlgo)
    {
      //With FFT Algorithm
#pragma omp parallel for schedule(dynamic, 1)
      for (int iRefMap = startMap; iRefMap < RefMap.ntotRefMap; iRefMap ++)
774
	{
775 776
	  const int num = omp_get_thread_num();
	  calculateCCFFT(iRefMap, iOrient, iConv, sumC, sumsquareC, localmultFFT, param.fft_scratch_complex[num], param.fft_scratch_real[num]);
777
	}
778 779 780 781 782 783
    }
  else
    {
      //Without FFT Algorithm
#pragma omp parallel for schedule(dynamic, 1)
      for (int iRefMap = startMap; iRefMap < RefMap.ntotRefMap; iRefMap ++)
784
	{
785
	  compareRefMapShifted < -1 > (iRefMap, iOrient, iConv, conv_map, pProb, param.param_device, RefMap);
786
	}
787 788
    }
  return(0);
789 790
}

791
inline void bioem::calculateCCFFT(int iRefMap, int iOrient, int iConv, myfloat_t sumC, myfloat_t sumsquareC, mycomplex_t* localConvFFT, mycomplex_t* localCCT, myfloat_t* lCC)
792
{
793 794
  //***************************************************************************************
  //***** Calculating cross correlation in FFTALGOrithm *****
Pilar Cossio's avatar
Pilar Cossio committed
795

796 797 798 799 800 801
  const mycomplex_t* RefMapFFT = &RefMap.RefMapsFFT[iRefMap * param.FFTMapSize];
  for(int i = 0; i < param.param_device.NumberPixels * param.param_device.NumberFFTPixels1D; i++)
    {
      localCCT[i][0] = localConvFFT[i][0] * RefMapFFT[i][0] + localConvFFT[i][1] * RefMapFFT[i][1];
      localCCT[i][1] = localConvFFT[i][1] * RefMapFFT[i][0] - localConvFFT[i][0] * RefMapFFT[i][1];
    }
802

803
  myfftw_execute_dft_c2r(param.fft_plan_c2r_backward, localCCT, lCC);
804

805
  doRefMapFFT(iRefMap, iOrient, iConv, lCC, sumC, sumsquareC, pProb, param.param_device, RefMap);
Pilar Cossio's avatar
Pilar Cossio committed
806 807

#ifdef PILAR_DEBUG
808 809 810 811 812 813 814 815 816 817 818
  if (param.param_device.writeCC)
    {      int  cc=0;
      for (int cent_x = 0; cent_x < param.param_device.NumberPixels -param.param_device.CCdisplace ; cent_x = cent_x + param.param_device.CCdisplace)
	{
	  for (int cent_y = 0; cent_y < param.param_device.NumberPixels - param.param_device.CCdisplace ; cent_y = cent_y + param.param_device.CCdisplace)
	    {
	      cout << "CHECKCC " << " " << cent_x << " " << cent_y <<" " << lCC[cent_x * param.param_device.NumberPixels + cent_y] / (myfloat_t) (param.param_device.NumberPixels * param.param_device.NumberPixels ) << "\n";
	      cc++;
	    }
	}
    }
Pilar Cossio's avatar
Pilar Cossio committed
819 820
#endif

821
}
822

823
int bioem::createProjection(int iMap, mycomplex_t* mapFFT)
824
{
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
  // **************************************************************************************
  // ****  BioEM Create Projection routine in Euler angle predefined grid******************
  // ********************* and turns projection into Fourier space ************************
  // **************************************************************************************

  cuda_custom_timeslot("Projection", 0);

  myfloat3_t RotatedPointsModel[Model.nPointsModel];
  myfloat_t rotmat[3][3];
  myfloat_t alpha, gam, beta;
  myfloat_t* localproj;

  localproj = param.fft_scratch_real[omp_get_thread_num()];
  memset(localproj, 0, param.param_device.NumberPixels * param.param_device.NumberPixels * sizeof(*localproj));

  alpha = param.angles[iMap].pos[0];
  beta = param.angles[iMap].pos[1];
  gam = param.angles[iMap].pos[2];

  // **** To see how things are going: cout << "Id " << omp_get_thread_num() <<  " Angs: " << alpha << " " << beta << " " << gam << "\n"; ***

  // ********** Creat Rotation with pre-defiend grid of orientations**********
  rotmat[0][0] = cos(gam) * cos(alpha) - cos(beta) * sin(alpha) * sin(gam);
  rotmat[0][1] = cos(gam) * sin(alpha) + cos(beta) * cos(alpha) * sin(gam);
  rotmat[0][2] = sin(gam) * sin(beta);
  rotmat[1][0] = -sin(gam) * cos(alpha) - cos(beta) * sin(alpha) * cos(gam);
  rotmat[1][1] = -sin(gam) * sin(alpha) + cos(beta) * cos(alpha) * cos(gam);
  rotmat[1][2] = cos(gam) * sin(beta);
  rotmat[2][0] = sin(beta) * sin(alpha);
  rotmat[2][1] = -sin(beta) * cos(alpha);
  rotmat[2][2] = cos(beta);

  for(int n = 0; n < Model.nPointsModel; n++)
    {
      RotatedPointsModel[n].pos[0] = 0.0;
      RotatedPointsModel[n].pos[1] = 0.0;
      RotatedPointsModel[n].pos[2] = 0.0;
    }
  for(int n = 0; n < Model.nPointsModel; n++)
    {
      for(int k = 0; k < 3; k++)
866
	{
867 868 869 870
	  for(int j = 0; j < 3; j++)
	    {
	      RotatedPointsModel[n].pos[k] += rotmat[k][j] * Model.points[n].point.pos[j];
	    }
871
	}
872
    }
873

874
  int i, j;
875

876 877 878 879 880
  //********** Projection with radius ***************
  if(param.doaaradius)
    {
      int irad;
      myfloat_t dist, rad2;
Pilar Cossio's avatar
Pilar Cossio committed
881

882 883 884 885 886 887 888 889 890 891 892 893 894
      for(int n = 0; n < Model.nPointsModel; n++)
	{
	  //Getting Centers of Sphere
	  i = floor(RotatedPointsModel[n].pos[0] / param.pixelSize + (myfloat_t) param.param_device.NumberPixels / 2.0f + 0.5f);
	  j = floor(RotatedPointsModel[n].pos[1] / param.pixelSize + (myfloat_t) param.param_device.NumberPixels / 2.0f + 0.5f);
	  //Getting the radius
	  irad=int( Model.points[n].radius / param.pixelSize );
	  rad2= Model.points[n].radius * Model.points[n].radius;

	  //Projecting over the radius
	  for(int ii= i - irad; ii < i + irad; ii++)
	    {	
	      for(int jj = j - irad; jj < j + irad; jj++)
895
		{
896 897 898 899 900 901 902
		  dist= ( (myfloat_t) (ii-i)*(ii-i)+(jj-j)*(jj-j) ) *  param.pixelSize ;
		  if( dist < rad2 )
		    {
		      localproj[ii * param.param_device.NumberPixels + jj] += param.pixelSize * 2 * sqrt( rad2 - dist ) * Model.points[n].density
			//							/ Model.NormDen * 3 / (4 * M_PI * rad2 *  Model.points[n].radius); 	
			* 3 / (4 * M_PI * rad2 *  Model.points[n].radius); 
		    }
Pilar Cossio's avatar
Pilar Cossio committed
903
		}
904
	    }
Pilar Cossio's avatar
Pilar Cossio committed
905
	}
906 907 908 909 910
    }
  else 
    {
      // ************ Simple Projection over the Z axis********************
      for(int n = 0; n < Model.nPointsModel; n++)
911
	{
912 913 914
	  //Getting pixel that represents coordinates & shifting the start at to Numpix/2,Numpix/2 )
	  i = floor(RotatedPointsModel[n].pos[0] / param.pixelSize + (myfloat_t) param.param_device.NumberPixels / 2.0f + 0.5f);
	  j = floor(RotatedPointsModel[n].pos[1] / param.pixelSize + (myfloat_t) param.param_device.NumberPixels / 2.0f + 0.5f);
915

916 917 918 919 920
	  if (i < 0 || j < 0 || i >= param.param_device.NumberPixels || j >= param.param_device.NumberPixels)
	    {
	      if (DebugOutput >= 3) cout << "Model Point out of map: " << i << ", " << j << "\n";
	      continue;
	    }
921

922
	  localproj[i * param.param_device.NumberPixels + j] += Model.points[n].density;//Model.NormDen;
923
	}
924
    }
925

926
  // **** Output Just to check****
927
#ifdef PILAR_DEBUG
928 929 930 931 932 933 934 935
  if(iMap == 10)
    {
      ofstream myexamplemap;
      ofstream myexampleRot;
      myexamplemap.open ("MAP_i10");
      myexampleRot.open ("Rot_i10");
      myexamplemap << "ANGLES " << alpha << " " << beta << " " << gam << "\n";
      for(int k = 0; k < param.param_device.NumberPixels; k++)
936
	{
937
	  for(int j = 0; j < param.param_device.NumberPixels; j++) myexamplemap << "\nMAP " << k << " " << j << " " << localproj[k * param.param_device.NumberPixels + j];
938
	}
939 940 941 942 943
      myexamplemap << " \n";
      for(int n = 0; n < Model.nPointsModel; n++)myexampleRot << "\nCOOR " << RotatedPointsModel[n].pos[0] << " " << RotatedPointsModel[n].pos[1] << " " << RotatedPointsModel[n].pos[2];
      myexamplemap.close();
      myexampleRot.close();
    }
944
#endif
945

946 947 948
  // ***** Converting projection to Fourier Space for Convolution later with kernel****
  // ********** Omp Critical is necessary with FFTW*******
  myfftw_execute_dft_r2c(param.fft_plan_r2c_forward, localproj, mapFFT);
949

950
  cuda_custom_timeslot_end;
951

952
  return(0);
953 954
}

955
int bioem::createConvolutedProjectionMap(int iMap, int iConv, mycomplex_t* lproj, myfloat_t* Mapconv, mycomplex_t* localmultFFT, myfloat_t& sumC, myfloat_t& sumsquareC)
956
{
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
  // **************************************************************************************
  // ****  BioEM Create Convoluted Projection Map routine, multiplies in Fourier **********
  // **************** calculated Projection with convoluted precalculated Kernel***********
  // *************** and Backtransforming it to real Space ********************************
  // **************************************************************************************


  cuda_custom_timeslot("Convolution", 1);

  mycomplex_t* tmp = param.fft_scratch_complex[omp_get_thread_num()];

  // **** Multiplying FFTmap with corresponding kernel ****
  const mycomplex_t* refCTF = &param.refCTF[iConv * param.FFTMapSize];
  for(int i = 0; i < param.param_device.NumberPixels * param.param_device.NumberFFTPixels1D; i++)
    {
      localmultFFT[i][0] = ( lproj[i][0] * refCTF[i][0] + lproj[i][1] * refCTF[i][1] ) ;
      localmultFFT[i][1] = ( lproj[i][1] * refCTF[i][0] - lproj[i][0] * refCTF[i][1] ) ;
      // cout << "GG " << i << " " << j << " " << refCTF[i][0] << " " << refCTF[i][1] <<" " <<lproj[i][0] <<" " <<lproj[i][1] << "\n";
    }

  // *** Calculating Cross-correlations of cal-convoluted map with its self *****
  sumC = localmultFFT[0][0];

  sumsquareC = 0;
  if (FFTAlgo)
    {
      int jloopend = param.param_device.NumberFFTPixels1D;
      if ((param.param_device.NumberPixels & 1) == 0) jloopend--;
      for(int i = 0; i < param.param_device.NumberPixels; i++)
	{
	  for (int j = 1;j < jloopend;j++)
	    {
	      int k = i * param.param_device.NumberFFTPixels1D + j;
	      sumsquareC += (localmultFFT[k][0] * localmultFFT[k][0] + localmultFFT[k][1] * localmultFFT[k][1]) * 2;
	    }
	  int k = i * param.param_device.NumberFFTPixels1D;
	  sumsquareC += localmultFFT[k][0] * localmultFFT[k][0] + localmultFFT[k][1] * localmultFFT[k][1];
	  if ((param.param_device.NumberPixels & 1) == 0)
	    {
	      k += param.param_device.NumberFFTPixels1D - 1;
	      sumsquareC += localmultFFT[k][0] * localmultFFT[k][0] + localmultFFT[k][1] * localmultFFT[k][1];
	    }
	}
1000

1001 1002 1003 1004 1005 1006 1007
      myfloat_t norm2 = (myfloat_t) (param.param_device.NumberPixels * param.param_device.NumberPixels);
      sumsquareC = sumsquareC / norm2;
    }
  else
    {
      //FFTW_C2R will destroy the input array, so we have to work on a copy here
      memcpy(tmp, localmultFFT, sizeof(mycomplex_t) * param.param_device.NumberPixels * param.param_device.NumberFFTPixels1D);
1008

1009 1010
      // **** Bringing convoluted Map to real Space ****
      myfftw_execute_dft_c2r(param.fft_plan_c2r_backward, tmp, Mapconv);
Pilar Cossio's avatar
Pilar Cossio committed
1011

1012
      for(int i = 0; i < param.param_device.NumberPixels * param.param_device.NumberPixels; i++)
1013
	{
1014
	  sumsquareC += Mapconv[i] * Mapconv[i];
1015 1016
	}

1017 1018 1019 1020
      myfloat_t norm2 = (myfloat_t) (param.param_device.NumberPixels * param.param_device.NumberPixels);
      myfloat_t norm4 = norm2 * norm2;
      sumsquareC = sumsquareC / norm4;
    }
David Rohr's avatar
David Rohr committed
1021

1022 1023 1024
  // **************************************************************************************
  // *********** Routine for printing out the best projetion ******************************
  // **************************************************************************************
David Rohr's avatar
David Rohr committed
1025

1026 1027 1028
  if (mpi_rank == 0 && param.printModel)
    {
      MTRand mtr;
1029

1030
      memcpy(tmp, localmultFFT, sizeof(mycomplex_t) * param.param_device.NumberPixels * param.param_device.NumberFFTPixels1D);
1031

1032 1033
      // **** Bringing convoluted Map to real Space ****
      myfftw_execute_dft_c2r(param.fft_plan_c2r_backward, tmp, Mapconv);
1034

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
      myfloat_t norm2 = (myfloat_t) (param.param_device.NumberPixels * param.param_device.NumberPixels);

      ofstream myexamplemap;
      myexamplemap.open ("BESTMAP");
      for(int k = 0; k < param.param_device.NumberPixels; k++)
	{
	  for(int j = 0; j < param.param_device.NumberPixels; j++) {
	    if(!param.withnoise){
	      myexamplemap << "\nMAP " << k+param.ddx << " " << j+param.ddy << " " <<  Mapconv[k * param.param_device.NumberPixels + j] / norm2 *param.bestnorm +param.bestoff ; 
	    } else {
	      myexamplemap << "\nMAP " << k+param.ddx << " " << j+param.ddy << " " <<  Mapconv[k * param.param_device.NumberPixels + j] / norm2 *param.bestnorm +param.bestoff+ mtr.randNorm(0.0,param.stnoise);
	    }
	  }
	  myexamplemap << " \n";
1049
	}
1050 1051 1052 1053
      myexamplemap.close();

      cout << "\n\nBest map printed in file: BESTMAP with gnuplot format in columns 2, 3 and 4. \n\n\n";
      exit(1);
David Rohr's avatar
David Rohr committed
1054

1055
    }
1056

1057 1058 1059
  cuda_custom_timeslot_end;

  return(0);
1060 1061
}

1062
int bioem::calcross_cor(myfloat_t* localmap, myfloat_t& sum, myfloat_t& sumsquare)
1063
{
1064
  // *********************** Routine to calculate Cross correlations***********************
1065

1066 1067 1068 1069 1070
  sum = 0.0;
  sumsquare = 0.0;
  for (int i = 0; i < param.param_device.NumberPixels; i++)
    {
      for (int j = 0; j < param.param_device.NumberPixels; j++)
1071
	{
1072 1073 1074 1075
	  // Calculate Sum of pixels
	  sum += localmap[i * param.param_device.NumberPixels + j];
	  // Calculate Sum of pixels squared
	  sumsquare += localmap[i * param.param_device.NumberPixels + j] * localmap[i * param.param_device.NumberPixels + j];
1076
	}
1077 1078
    }
  return(0);
1079 1080 1081 1082
}

int bioem::deviceInit()
{
1083
  return(0);
1084 1085 1086 1087
}

int bioem::deviceStartRun()
{
1088
  return(0);
1089 1090 1091 1092
}

int bioem::deviceFinishRun()
{
1093
  return(0);
1094
}
1095 1096 1097

void* bioem::malloc_device_host(size_t size)
{
1098
  return(mallocchk(size));
1099 1100 1101 1102
}

void bioem::free_device_host(void* ptr)
{
1103
  free(ptr);
1104
}