bioem_cuda.cu 26 KB
Newer Older
Pilar Cossio's avatar
License  
Pilar Cossio committed
1
/* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2
3
4
5
   < BioEM software for Bayesian inference of Electron Microscopy images>
   Copyright (C) 2016 Pilar Cossio, David Rohr, Fabio Baruffa, Markus Rampp, 
        Volker Lindenstruth and Gerhard Hummer.
   Max Planck Institute of Biophysics, Frankfurt, Germany.
6

7
   See license statement for terms of distribution.
Pilar Cossio's avatar
License  
Pilar Cossio committed
8
9
10

   ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

11
12
13
14
15
16
17
18
19
20
21
#define BIOEM_GPUCODE

#if defined(_WIN32)
#include <windows.h>
#endif

#include <iostream>
using namespace std;

#include "bioem_cuda_internal.h"
#include "bioem_algorithm.h"
Pilar Cossio's avatar
Pilar Cossio committed
22
//#include "helper_cuda.h"
23

24
25
26
27
28
29
30
#define checkCudaErrors(error) \
{ \
	if ((error) != cudaSuccess) \
	{ \
		printf("CUDA Error %d / %s (%s: %d)\n", error, cudaGetErrorString(error), __FILE__, __LINE__); \
		exit(1); \
	} \
31
32
}

David Rohr's avatar
David Rohr committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
static const char *cufftGetErrorStrung(cufftResult error)
{
    switch (error)
    {
        case CUFFT_SUCCESS:
            return "CUFFT_SUCCESS";

        case CUFFT_INVALID_PLAN:
            return "CUFFT_INVALID_PLAN";

        case CUFFT_ALLOC_FAILED:
            return "CUFFT_ALLOC_FAILED";

        case CUFFT_INVALID_TYPE:
            return "CUFFT_INVALID_TYPE";

        case CUFFT_INVALID_VALUE:
            return "CUFFT_INVALID_VALUE";

        case CUFFT_INTERNAL_ERROR:
            return "CUFFT_INTERNAL_ERROR";

        case CUFFT_EXEC_FAILED:
            return "CUFFT_EXEC_FAILED";

        case CUFFT_SETUP_FAILED:
            return "CUFFT_SETUP_FAILED";

        case CUFFT_INVALID_SIZE:
            return "CUFFT_INVALID_SIZE";

        case CUFFT_UNALIGNED_DATA:
            return "CUFFT_UNALIGNED_DATA";
    }
    return "UNKNOWN";
}

Luka Stanisic's avatar
Luka Stanisic committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
/* Handing CUDA Driver errors */

#define cuErrorCheck(call) \
  do { \
    CUresult __error__; \
    if ((__error__ = (call)) != CUDA_SUCCESS) { \
      printf("CUDA Driver Error %d / %s (%s %d)\n", __error__, cuGetError(__error__),__FILE__, __LINE__); \
      return __error__; \
    } \
  } while (false)

static const char * cuGetError(CUresult result) {
  switch (result) {
    case CUDA_SUCCESS:                              return "No errors";
    case CUDA_ERROR_INVALID_VALUE:                  return "Invalid value";
    case CUDA_ERROR_OUT_OF_MEMORY:                  return "Out of memory";
    case CUDA_ERROR_NOT_INITIALIZED:                return "Driver not initialized";
    case CUDA_ERROR_DEINITIALIZED:                  return "Driver deinitialized";
    case CUDA_ERROR_PROFILER_DISABLED:              return "Profiler disabled";
    case CUDA_ERROR_PROFILER_NOT_INITIALIZED:       return "Profiler not initialized";
    case CUDA_ERROR_PROFILER_ALREADY_STARTED:       return "Profiler already started";
    case CUDA_ERROR_PROFILER_ALREADY_STOPPED:       return "Profiler already stopped";
    case CUDA_ERROR_NO_DEVICE:                      return "No CUDA-capable device available";
    case CUDA_ERROR_INVALID_DEVICE:                 return "Invalid device";
    case CUDA_ERROR_INVALID_IMAGE:                  return "Invalid kernel image";
    case CUDA_ERROR_INVALID_CONTEXT:                return "Invalid context";
    case CUDA_ERROR_CONTEXT_ALREADY_CURRENT:        return "Context already current";
    case CUDA_ERROR_MAP_FAILED:                     return "Map failed";
    case CUDA_ERROR_UNMAP_FAILED:                   return "Unmap failed";
    case CUDA_ERROR_ARRAY_IS_MAPPED:                return "Array is mapped";
    case CUDA_ERROR_ALREADY_MAPPED:                 return "Already mapped";
    case CUDA_ERROR_NO_BINARY_FOR_GPU:              return "No binary for GPU";
    case CUDA_ERROR_ALREADY_ACQUIRED:               return "Already acquired";
    case CUDA_ERROR_NOT_MAPPED:                     return "Not mapped";
    case CUDA_ERROR_NOT_MAPPED_AS_ARRAY:            return "Not mapped as array";
    case CUDA_ERROR_NOT_MAPPED_AS_POINTER:          return "Not mapped as pointer";
    case CUDA_ERROR_ECC_UNCORRECTABLE:              return "Uncorrectable ECC error";
    case CUDA_ERROR_UNSUPPORTED_LIMIT:              return "Unsupported CUlimit";
    case CUDA_ERROR_CONTEXT_ALREADY_IN_USE:         return "Context already in use";
    case CUDA_ERROR_INVALID_SOURCE:                 return "Invalid source";
    case CUDA_ERROR_FILE_NOT_FOUND:                 return "File not found";
    case CUDA_ERROR_SHARED_OBJECT_SYMBOL_NOT_FOUND: return "Shared object symbol not found";
    case CUDA_ERROR_SHARED_OBJECT_INIT_FAILED:      return "Shared object initialization failed";
    case CUDA_ERROR_OPERATING_SYSTEM:               return "Operating System call failed";
    case CUDA_ERROR_INVALID_HANDLE:                 return "Invalid handle";
    case CUDA_ERROR_NOT_FOUND:                      return "Not found";
    case CUDA_ERROR_NOT_READY:                      return "CUDA not ready";
    case CUDA_ERROR_LAUNCH_FAILED:                  return "Launch failed";
    case CUDA_ERROR_LAUNCH_OUT_OF_RESOURCES:        return "Launch exceeded resources";
    case CUDA_ERROR_LAUNCH_TIMEOUT:                 return "Launch exceeded timeout";
    case CUDA_ERROR_LAUNCH_INCOMPATIBLE_TEXTURING:  return "Launch with incompatible texturing";
    case CUDA_ERROR_PEER_ACCESS_ALREADY_ENABLED:    return "Peer access already enabled";
    case CUDA_ERROR_PEER_ACCESS_NOT_ENABLED:        return "Peer access not enabled";
    case CUDA_ERROR_PRIMARY_CONTEXT_ACTIVE:         return "Primary context active";
    case CUDA_ERROR_CONTEXT_IS_DESTROYED:           return "Context is destroyed";
    case CUDA_ERROR_ASSERT:                         return "Device assert failed";
    case CUDA_ERROR_TOO_MANY_PEERS:                 return "Too many peers";
    case CUDA_ERROR_HOST_MEMORY_ALREADY_REGISTERED: return "Host memory already registered";
    case CUDA_ERROR_HOST_MEMORY_NOT_REGISTERED:     return "Host memory not registered";
    case CUDA_ERROR_UNKNOWN:                        return "Unknown error";
    default:                                        return "Unknown error code";
  }
}

134
135
136
137
bioem_cuda::bioem_cuda()
{
	deviceInitialized = 0;
	GPUAlgo = getenv("GPUALGO") == NULL ? 2 : atoi(getenv("GPUALGO"));
138
139
	GPUAsync = getenv("GPUASYNC") == NULL ? 1 : atoi(getenv("GPUASYNC"));
	GPUWorkload = getenv("GPUWORKLOAD") == NULL ? 100 : atoi(getenv("GPUWORKLOAD"));
140
	GPUDualStream = getenv("GPUDUALSTREAM") == NULL ? 1 : atoi(getenv("GPUDUALSTREAM"));
141
142
143
144
145
146
147
}

bioem_cuda::~bioem_cuda()
{
	deviceExit();
}

148
149
150
__global__ void compareRefMap_kernel(const int iOrient, const int iConv,  const myfloat_t amp, const myfloat_t pha, const myfloat_t env, const myfloat_t sumC,
                                                const myfloat_t sumsquareC, const myfloat_t* pMap, bioem_Probability pProb, 
						const bioem_param_device param, const bioem_RefMap_Mod RefMap, const int cent_x, const int cent_y, const int maxRef)
151
152
{
	const int iRefMap = myBlockIdxX * myBlockDimX + myThreadIdxX;
153
	if (iRefMap < maxRef)
154
	{
155
		compareRefMap<0>(iRefMap, iOrient, iConv, amp, pha, env, sumC, sumsquareC, pMap, pProb, param, RefMap, cent_x, cent_y);
156
157
158
	}
}

Pilar Cossio's avatar
Pilar Cossio committed
159
__global__ void compareRefMapShifted_kernel(const int iOrient, const int iConv, const myfloat_t amp, const myfloat_t pha, const myfloat_t env, const myfloat_t sumC, const myfloat_t sumsquareC, const myfloat_t* pMap, bioem_Probability pProb, const bioem_param_device param, const bioem_RefMap_Mod RefMap, const int maxRef)
160
161
{
	const int iRefMap = myBlockIdxX * myBlockDimX + myThreadIdxX;
162
	if (iRefMap < maxRef)
163
	{
164
		compareRefMapShifted<1>(iRefMap, iOrient, iConv, amp, pha, env, sumC, sumsquareC, pMap, pProb, param, RefMap);
165
166
167
	}
}

168
169
170
171
172
173
__global__ void cudaZeroMem(void* ptr, size_t size)
{
	int* myptr = (int*) ptr;
	int mysize = size / sizeof(int);
	int myid = myBlockDimX * myBlockIdxX + myThreadIdxX;
	int mygrid = myBlockDimX * myGridDimX;
174
	for (int i = myid; i < mysize; i += mygrid) myptr[i] = 0;
175
176
}

Pilar Cossio's avatar
Pilar Cossio committed
177
__global__ void compareRefMapLoopShifts_kernel(const int iOrient, const int iConv, const myfloat_t amp, const myfloat_t pha, const myfloat_t env, const myfloat_t sumC, const myfloat_t sumsquareC, const myfloat_t* pMap, bioem_Probability pProb, const bioem_param_device param, const bioem_RefMap RefMap, const int blockoffset, const int nShifts, const int nShiftBits, const int maxRef)
178
179
180
181
182
183
184
185
186
{
	const size_t myid = (myBlockIdxX + blockoffset) * myBlockDimX + myThreadIdxX;
	const int iRefMap = myid >> (nShiftBits << 1);
	const int myRef = myThreadIdxX >> (nShiftBits << 1);
	const int myShiftIdx = (myid >> nShiftBits) & (nShifts - 1);
	const int myShiftIdy = myid & (nShifts - 1);
	const int myShift = myid & (nShifts * nShifts - 1);
	const int cent_x = myShiftIdx * param.GridSpaceCenter - param.maxDisplaceCenter;
	const int cent_y = myShiftIdy * param.GridSpaceCenter - param.maxDisplaceCenter;
187

188
	const bool threadActive = myShiftIdx < nShifts && myShiftIdy < nShifts && iRefMap < maxRef;
189

Pilar Cossio's avatar
Pilar Cossio committed
190
	compareRefMap<2>(iRefMap, iOrient, iConv, amp, pha, env, sumC, sumsquareC, pMap, pProb, param, RefMap, cent_x, cent_y, myShift, nShifts * nShifts, myRef, threadActive);
191
192
}

193
__global__ void multComplexMap(const mycomplex_t* convmap, const mycomplex_t* refmap, mycuComplex_t* out, const int NumberPixelsTotal, const int MapSize, const int NumberMaps, const int Offset)
194
195
{
	if (myBlockIdxX >= NumberMaps) return;
196
	const mycuComplex_t* myin = (mycuComplex_t*) &refmap[(myBlockIdxX + Offset) * MapSize];
197
	const mycuComplex_t* myconv = (mycuComplex_t*) convmap;
198
	mycuComplex_t* myout = &out[myBlockIdxX * MapSize];
199
	for(int i = myThreadIdxX; i < NumberPixelsTotal; i += myBlockDimX)
200
	{
201
202
203
204
205
206
207
		mycuComplex_t val;
		const mycuComplex_t conv = myconv[i];
		const mycuComplex_t in = myin[i];

		val.x = conv.x * in.x + conv.y * in.y;
		val.y = conv.y * in.x - conv.x * in.y;
		myout[i] = val;
208
209
210
	}
}

211
__global__ void cuDoRefMapsFFT(const int iOrient, const int iConv, const myfloat_t amp, const myfloat_t pha, const myfloat_t env, const myfloat_t* lCC, const myfloat_t sumC, const myfloat_t sumsquareC, bioem_Probability pProb, const bioem_param_device param, const bioem_RefMap RefMap, const int maxRef, const int Offset)
212
{
213
	if (myBlockIdxX * myBlockDimX + myThreadIdxX >= maxRef) return;
214
215
	const int iRefMap = myBlockIdxX * myBlockDimX + myThreadIdxX + Offset;
	const myfloat_t* mylCC = &lCC[(myBlockIdxX * myBlockDimX + myThreadIdxX) * param.NumberPixels * param.NumberPixels];
216
	doRefMapFFT(iRefMap, iOrient, iConv, amp, pha, env, mylCC, sumC, sumsquareC, pProb, param, RefMap);
217
218
}

219
220
221
222
223
224
225
226
227
228
229
230
231
template <class T> static inline T divup(T num, T divider) {return((num + divider - 1) / divider);}
static inline bool IsPowerOf2(int x) {return ((x > 0) && ((x & (x - 1)) == 0));}
#if defined(_WIN32)
static inline int ilog2 (int value)
{
	DWORD index;
	_BitScanReverse (&index, value);
	return(value);
}
#else
static inline int ilog2(int value) {return 31 - __builtin_clz(value);}
#endif

232
int bioem_cuda::compareRefMaps(int iOrient, int iConv, myfloat_t amp, myfloat_t pha, myfloat_t env, const myfloat_t* conv_map, mycomplex_t* localmultFFT, myfloat_t sumC, myfloat_t sumsquareC, const int startMap)
233
{
234
235
236
237
238
	if (startMap)
	{
		cout << "Error startMap not implemented for GPU Code\n";
		exit(1);
	}
Luka Stanisic's avatar
Luka Stanisic committed
239
240
241
242
243
244
245
#ifdef DEBUG_GPU
	float time;
	cudaEvent_t start, stop;
	checkCudaErrors(cudaEventCreate(&start));
	checkCudaErrors(cudaEventCreate(&stop));
	checkCudaErrors(cudaEventRecord(start, 0));
#endif
246
247
248
249
	if (GPUAsync)
	{
		checkCudaErrors(cudaEventSynchronize(cudaEvent[iConv & 1]));
	}
Luka Stanisic's avatar
Luka Stanisic committed
250
251
252
253
254
255
256
#ifdef DEBUG_GPU
	checkCudaErrors(cudaEventRecord(stop, 0));
	checkCudaErrors(cudaEventSynchronize(stop));
	checkCudaErrors(cudaEventElapsedTime(&time, start, stop));
	printf("\t\t\tGPU: time to synch projections %1.6f sec\n", time/1000);
	checkCudaErrors(cudaEventRecord(start, 0));
#endif
257
	if (FFTAlgo)
258
	{
259
		memcpy(&pConvMapFFT_Host[(iConv & 1) * param.FFTMapSize], localmultFFT, param.FFTMapSize * sizeof(mycomplex_t));
260
		checkCudaErrors(cudaMemcpyAsync(&pConvMapFFT[(iConv & 1) * param.FFTMapSize], &pConvMapFFT_Host[(iConv & 1) * param.FFTMapSize], param.FFTMapSize * sizeof(mycomplex_t), cudaMemcpyHostToDevice, cudaStream[GPUAsync ? 2 : 0]));
Luka Stanisic's avatar
Luka Stanisic committed
261
262
263
264
265
266
267
#ifdef DEBUG_GPU
		checkCudaErrors(cudaEventRecord(stop, 0));
		checkCudaErrors(cudaEventSynchronize(stop));
		checkCudaErrors(cudaEventElapsedTime(&time, start, stop));
		printf("\t\t\tGPU: time for memcpy %1.6f sec\n", time/1000);
		checkCudaErrors(cudaEventRecord(start, 0));
#endif
268
269
270
271
272
		if (GPUAsync)
		{
			checkCudaErrors(cudaEventRecord(cudaEvent[2], cudaStream[2]));
			checkCudaErrors(cudaStreamWaitEvent(cudaStream[0], cudaEvent[2], 0));
		}
273
		if (GPUDualStream)
274
		{
275
276
277
278
279
280
			checkCudaErrors(cudaEventRecord(cudaFFTEvent[0], cudaStream[0]));
			checkCudaErrors(cudaStreamWaitEvent(cudaStream[1], cudaFFTEvent[0], 0));
		}
		for (int i = 0, j = 0; i < maxRef; i += CUDA_FFTS_AT_ONCE, j++)
		{
			if (!GPUDualStream) j = 0;
281
			const int num = min(CUDA_FFTS_AT_ONCE, maxRef - i);
282
283
			multComplexMap<<<num, CUDA_THREAD_COUNT, 0, cudaStream[j & 1]>>>(&pConvMapFFT[(iConv & 1) * param.FFTMapSize], pRefMapsFFT, pFFTtmp2[j & 1], param.param_device.NumberPixels * param.param_device.NumberFFTPixels1D, param.FFTMapSize, num, i);
			cufftResult err = mycufftExecC2R(i + CUDA_FFTS_AT_ONCE > maxRef ? plan[1][j & 1] : plan[0][j & 1], pFFTtmp2[j & 1], pFFTtmp[j & 1]);
David Rohr's avatar
David Rohr committed
284
			if (err != CUFFT_SUCCESS)
285
			{
David Rohr's avatar
David Rohr committed
286
				cout << "Error running CUFFT " << cufftGetErrorStrung(err) << "\n";
287
288
				exit(1);
			}
289
			cuDoRefMapsFFT<<<divup(num, CUDA_THREAD_COUNT), CUDA_THREAD_COUNT, 0, cudaStream[j & 1]>>>(iOrient, iConv,  amp, pha, env, pFFTtmp[j & 1], sumC, sumsquareC, pProb_device, param.param_device, *gpumap, num, i);
290
		}
Luka Stanisic's avatar
Luka Stanisic committed
291
		checkCudaErrors(cudaPeekAtLastError());
292
293
294
295
296
		if (GPUDualStream)
		{
			checkCudaErrors(cudaEventRecord(cudaFFTEvent[1], cudaStream[1]));
			checkCudaErrors(cudaStreamWaitEvent(cudaStream[0], cudaFFTEvent[1], 0));
		}
297
298
299
	}
	else
	{
300
		checkCudaErrors(cudaMemcpyAsync(pConvMap_device[iConv & 1], conv_map, sizeof(myfloat_t) * RefMap.refMapSize, cudaMemcpyHostToDevice, cudaStream[0]));
Luka Stanisic's avatar
Luka Stanisic committed
301
302
303
304
305
306
307
#ifdef DEBUG_GPU
		checkCudaErrors(cudaEventRecord(stop, 0));
		checkCudaErrors(cudaEventSynchronize(stop));
		checkCudaErrors(cudaEventElapsedTime(&time, start, stop));
		printf("\t\t\tGPU: time for memcpy %1.6f sec\n", time/1000);
		checkCudaErrors(cudaEventRecord(start, 0) );
#endif
308
		if (GPUAlgo == 2) //Loop over shifts
309
		{
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
			const int nShifts = 2 * param.param_device.maxDisplaceCenter / param.param_device.GridSpaceCenter + 1;
			if (!IsPowerOf2(nShifts))
			{
				cout << "Invalid number of displacements, no power of two\n";
				exit(1);
			}
			if (CUDA_THREAD_COUNT % (nShifts * nShifts))
			{
				cout << "CUDA Thread count (" << CUDA_THREAD_COUNT << ") is no multiple of number of shifts (" << (nShifts * nShifts) << ")\n";
				exit(1);
			}
			if (nShifts > CUDA_MAX_SHIFT_REDUCE)
			{
				cout << "Too many displacements for CUDA reduction\n";
				exit(1);
			}
			const int nShiftBits = ilog2(nShifts);
			size_t totalBlocks = divup((size_t) maxRef * (size_t) nShifts * (size_t) nShifts, (size_t) CUDA_THREAD_COUNT);
			size_t nBlocks = CUDA_BLOCK_COUNT;
329
			for (size_t i = 0; i < totalBlocks; i += nBlocks)
330
			{
Pilar Cossio's avatar
Pilar Cossio committed
331
				compareRefMapLoopShifts_kernel<<<min(nBlocks, totalBlocks - i), CUDA_THREAD_COUNT, (CUDA_THREAD_COUNT * 2 + CUDA_THREAD_COUNT / (nShifts * nShifts) * 4) * sizeof(myfloat_t), cudaStream[0] >>> (iOrient, iConv, amp, pha, env, sumC, sumsquareC, pConvMap_device[iConv & 1], pProb_device, param.param_device, *gpumap, i, nShifts, nShiftBits, maxRef);
332
			}
333
		}
334
		else if (GPUAlgo == 1) //Split shifts in multiple kernels
335
		{
336
			for (int cent_x = -param.param_device.maxDisplaceCenter; cent_x <= param.param_device.maxDisplaceCenter; cent_x = cent_x + param.param_device.GridSpaceCenter)
337
			{
338
				for (int cent_y = -param.param_device.maxDisplaceCenter; cent_y <= param.param_device.maxDisplaceCenter; cent_y = cent_y + param.param_device.GridSpaceCenter)
339
				{
Pilar Cossio's avatar
Pilar Cossio committed
340
					compareRefMap_kernel<<<divup(maxRef, CUDA_THREAD_COUNT), CUDA_THREAD_COUNT, 0, cudaStream[0]>>> (iOrient, iConv, amp, pha, env, sumC, sumsquareC, pConvMap_device[iConv & 1], pProb_device, param.param_device, *pRefMap_device_Mod, cent_x, cent_y, maxRef);
341
342
				}
			}
343
		}
344
		else if (GPUAlgo == 0) //All shifts in one kernel
345
		{
346
			compareRefMapShifted_kernel<<<divup(maxRef, CUDA_THREAD_COUNT), CUDA_THREAD_COUNT, 0, cudaStream[0]>>> (iOrient, iConv, amp, pha, env, sumC, sumsquareC, pConvMap_device[iConv & 1], pProb_device, param.param_device, *pRefMap_device_Mod, maxRef);
347
		}
348
		else
349
		{
350
351
			cout << "Invalid GPU Algorithm selected\n";
			exit(1);
352
		}
353
	}
Luka Stanisic's avatar
Luka Stanisic committed
354
355
356
357
358
359
360
#ifdef DEBUG_GPU
	checkCudaErrors(cudaEventRecord(stop, 0));
	checkCudaErrors(cudaEventSynchronize(stop));
	checkCudaErrors(cudaEventElapsedTime(&time, start, stop));
	printf("\t\t\tGPU: time to run CUDA %1.6f sec\n", time/1000);
	checkCudaErrors(cudaEventRecord(start, 0));
#endif
361
362
	if (GPUWorkload < 100)
	{
363
		bioem::compareRefMaps(iOrient, iConv, amp, pha, env, conv_map, localmultFFT, sumC, sumsquareC, maxRef);
364
	}
Luka Stanisic's avatar
Luka Stanisic committed
365
366
367
368
369
370
#ifdef DEBUG_GPU
	checkCudaErrors(cudaEventRecord(stop, 0));
	checkCudaErrors(cudaEventSynchronize(stop));
	checkCudaErrors(cudaEventElapsedTime(&time, start, stop));
	printf("\t\t\tGPU: time to run OMP %1.6f sec\n", time/1000);
#endif
371
372
	if (GPUAsync)
	{
373
		checkCudaErrors(cudaEventRecord(cudaEvent[iConv & 1], cudaStream[0]));
374
	}
375
376
	else
	{
377
		checkCudaErrors(cudaStreamSynchronize(cudaStream[0]));
378
379
380
381
	}
	return(0);
}

David Rohr's avatar
David Rohr committed
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
int bioem_cuda::selectCudaDevice()
{
	int count;
	
	long long int bestDeviceSpeed = -1;
	int bestDevice;
	cudaDeviceProp deviceProp;
	
	checkCudaErrors(cudaGetDeviceCount(&count));
	if (count == 0)
	{
		printf("No CUDA device detected\n");
		return(1);
	}
	for (int i = 0;i < count;i++)
	{
#if CUDA_VERSION > 3010
		size_t free, total;
#else
		unsigned int free, total;
#endif
		cuInit(0);
		CUdevice tmpDevice;
		cuDeviceGet(&tmpDevice, i);
		CUcontext tmpContext;
		cuCtxCreate(&tmpContext, 0, tmpDevice);
		if(cuMemGetInfo(&free, &total)) exit(1);
		cuCtxDestroy(tmpContext);
		checkCudaErrors(cudaGetDeviceProperties(&deviceProp, i));

David Rohr's avatar
David Rohr committed
412
		if (DebugOutput >= 2 && mpi_rank == 0) printf("CUDA Device %2d: %s (Rev: %d.%d - Mem Avail %lld / %lld)\n", i, deviceProp.name, deviceProp.major, deviceProp.minor, (long long int) free, (long long int) deviceProp.totalGlobalMem);
David Rohr's avatar
David Rohr committed
413
414
415
416
417
418
419
		long long int deviceSpeed = (long long int) deviceProp.multiProcessorCount * (long long int) deviceProp.clockRate * (long long int) deviceProp.warpSize;
		if (deviceSpeed > bestDeviceSpeed)
		{
			bestDevice = i;
			bestDeviceSpeed = deviceSpeed;
		}
	}
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
	if (getenv("GPUDEVICE"))
	{
		int device = atoi(getenv("GPUDEVICE"));
		if (device > count)
		{
			printf("Invalid CUDA device specified, max device number is %d\n", count);
			exit(1);
		}
#ifdef WITH_MPI
		if (device == -1)
		{
			device = mpi_rank % count;
		}
#endif
		if (device < 0)
		{
			printf("Negative CUDA device specified: %d, invalid!\n", device);
		}
		bestDevice = device;
	}
	checkCudaErrors(cudaSetDevice(bestDevice));
David Rohr's avatar
David Rohr committed
441
442
443

	cudaGetDeviceProperties(&deviceProp ,bestDevice); 

David Rohr's avatar
David Rohr committed
444
	if (DebugOutput >= 3)
David Rohr's avatar
David Rohr committed
445
	{
David Rohr's avatar
David Rohr committed
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
		printf("Using CUDA Device %s with Properties:\n", deviceProp.name);
		printf("totalGlobalMem = %lld\n", (unsigned long long int) deviceProp.totalGlobalMem);
		printf("sharedMemPerBlock = %lld\n", (unsigned long long int) deviceProp.sharedMemPerBlock);
		printf("regsPerBlock = %d\n", deviceProp.regsPerBlock);
		printf("warpSize = %d\n", deviceProp.warpSize);
		printf("memPitch = %lld\n", (unsigned long long int) deviceProp.memPitch);
		printf("maxThreadsPerBlock = %d\n", deviceProp.maxThreadsPerBlock);
		printf("maxThreadsDim = %d %d %d\n", deviceProp.maxThreadsDim[0], deviceProp.maxThreadsDim[1], deviceProp.maxThreadsDim[2]);
		printf("maxGridSize = %d %d %d\n", deviceProp.maxGridSize[0], deviceProp.maxGridSize[1], deviceProp.maxGridSize[2]);
		printf("totalConstMem = %lld\n", (unsigned long long int) deviceProp.totalConstMem);
		printf("major = %d\n", deviceProp.major);
		printf("minor = %d\n", deviceProp.minor);
		printf("clockRate = %d\n", deviceProp.clockRate);
		printf("memoryClockRate = %d\n", deviceProp.memoryClockRate);
		printf("multiProcessorCount = %d\n", deviceProp.multiProcessorCount);
		printf("textureAlignment = %lld\n", (unsigned long long int) deviceProp.textureAlignment);
David Rohr's avatar
David Rohr committed
462
463
	}
	
David Rohr's avatar
David Rohr committed
464
465
	if (DebugOutput >= 1)
	{
David Rohr's avatar
David Rohr committed
466
		printf("BioEM for CUDA initialized (MPI Rank %d), %d GPUs found, using GPU %d\n", mpi_rank, count, bestDevice);
David Rohr's avatar
David Rohr committed
467
468
	}
	
David Rohr's avatar
David Rohr committed
469
470
471
	return(0);
}

472
473
474
int bioem_cuda::deviceInit()
{
	deviceExit();
David Rohr's avatar
David Rohr committed
475
	
476
	selectCudaDevice();
477

478
479
	if (FFTAlgo) GPUAlgo = 2;

480
481
482
483
484
	gpumap = new bioem_RefMap;
	memcpy(gpumap, &RefMap, sizeof(bioem_RefMap));
	if (FFTAlgo == 0)
	{
		checkCudaErrors(cudaMalloc(&maps, sizeof(myfloat_t) * RefMap.ntotRefMap * RefMap.refMapSize));
485
486
487
488
489
490
491
492
493
494
495
496
497

		if (GPUAlgo == 0 || GPUAlgo == 1)
		{
			pRefMap_device_Mod = (bioem_RefMap_Mod*) gpumap;
			bioem_RefMap_Mod* RefMapGPU = new bioem_RefMap_Mod;
			RefMapGPU->init(RefMap);
			checkCudaErrors(cudaMemcpy(maps, RefMapGPU->maps, sizeof(myfloat_t) * RefMap.ntotRefMap * RefMap.refMapSize, cudaMemcpyHostToDevice));
			delete RefMapGPU;
		}
		else
		{
			checkCudaErrors(cudaMemcpy(maps, RefMap.maps, sizeof(myfloat_t) * RefMap.ntotRefMap * RefMap.refMapSize, cudaMemcpyHostToDevice));
		}
498
499
500
501
502
503
504
505
506
	}
	checkCudaErrors(cudaMalloc(&sum, sizeof(myfloat_t) * RefMap.ntotRefMap));
	checkCudaErrors(cudaMemcpy(sum, RefMap.sum_RefMap, sizeof(myfloat_t) * RefMap.ntotRefMap, cudaMemcpyHostToDevice));
	checkCudaErrors(cudaMalloc(&sumsquare, sizeof(myfloat_t) * RefMap.ntotRefMap));
	checkCudaErrors(cudaMemcpy(sumsquare, RefMap.sumsquare_RefMap, sizeof(myfloat_t) * RefMap.ntotRefMap, cudaMemcpyHostToDevice));
	gpumap->maps = maps;
	gpumap->sum_RefMap = sum;
	gpumap->sumsquare_RefMap = sumsquare;

507
	checkCudaErrors(cudaMalloc(&pProb_memory, pProb_device.get_size(RefMap.ntotRefMap, param.nTotGridAngles, param.nTotCC, param.param_device.writeAngles, param.param_device.writeCC)));
508

509
	for (int i = 0; i < 2; i++)
510
	{
511
		checkCudaErrors(cudaStreamCreate(&cudaStream[i]));
512
		checkCudaErrors(cudaEventCreate(&cudaEvent[i]));
513
		checkCudaErrors(cudaEventCreate(&cudaFFTEvent[i]));
514
		checkCudaErrors(cudaMalloc(&pConvMap_device[i], sizeof(myfloat_t) * RefMap.refMapSize));
515
	}
516
517
518
519
520
	if (GPUAsync)
	{
		checkCudaErrors(cudaStreamCreate(&cudaStream[2]));
		checkCudaErrors(cudaEventCreate(&cudaEvent[2]));
	}
521

522
523
	if (FFTAlgo)
	{
524
		checkCudaErrors(cudaMalloc(&pRefMapsFFT, RefMap.ntotRefMap * param.FFTMapSize * sizeof(mycomplex_t)));
525
526
527
528
		checkCudaErrors(cudaMalloc(&pFFTtmp2[0], CUDA_FFTS_AT_ONCE * param.FFTMapSize * 2 * sizeof(mycomplex_t)));
		checkCudaErrors(cudaMalloc(&pFFTtmp[0], CUDA_FFTS_AT_ONCE * param.param_device.NumberPixels * param.param_device.NumberPixels * 2 * sizeof(myfloat_t)));
		pFFTtmp2[1] = pFFTtmp2[0] + CUDA_FFTS_AT_ONCE * param.FFTMapSize;
		pFFTtmp[1] = pFFTtmp[0] + CUDA_FFTS_AT_ONCE * param.param_device.NumberPixels * param.param_device.NumberPixels;
529
		checkCudaErrors(cudaMalloc(&pConvMapFFT, param.FFTMapSize * sizeof(mycomplex_t) * 2));
530
		checkCudaErrors(cudaHostAlloc(&pConvMapFFT_Host, param.FFTMapSize * sizeof(mycomplex_t) * 2, 0));
531
		checkCudaErrors(cudaMemcpy(pRefMapsFFT, RefMap.RefMapsFFT, RefMap.ntotRefMap * param.FFTMapSize * sizeof(mycomplex_t), cudaMemcpyHostToDevice));
532
533
	}

534
535
536
537
538
539
540
	deviceInitialized = 1;
	return(0);
}

int bioem_cuda::deviceExit()
{
	if (deviceInitialized == 0) return(0);
541

542

David Rohr's avatar
David Rohr committed
543
	cudaFree(pProb_memory);
544
545
	cudaFree(sum);
	cudaFree(sumsquare);
546
	for (int i = 0; i < 2; i++)
547
	{
548
		cudaStreamDestroy(cudaStream[i]);
549
		cudaEventDestroy(cudaEvent[i]);
550
		cudaEventDestroy(cudaFFTEvent[i]);
551
		cudaFree(pConvMap_device[i]);
552
	}
553
554
555
556
	if (FFTAlgo)
	{
		cudaFree(pRefMapsFFT);
		cudaFree(pConvMapFFT);
557
		cudaFreeHost(pConvMapFFT_Host);
558
559
		cudaFree(pFFTtmp[0]);
		cudaFree(pFFTtmp2[0]);
560
	}
561
562
563
564
565
566
567
568
	else
	{
		cudaFree(maps);
	}
	if (GPUAlgo == 0 || GPUAlgo == 1)
	{
		cudaFree(pRefMap_device_Mod);
	}
569
570
571
572
573
574
	if (GPUAsync)
	{
		cudaStreamDestroy(cudaStream[2]);
		cudaEventDestroy(cudaEvent[2]);
	}

575
	delete gpumap;
576
	cudaThreadExit();
577

578
579
580
581
582
583
	deviceInitialized = 0;
	return(0);
}

int bioem_cuda::deviceStartRun()
{
David Rohr's avatar
David Rohr committed
584
585
586
587
588
589
590
591
592
	if (GPUWorkload >= 100)
	{
		maxRef = RefMap.ntotRefMap;
		pProb_host = &pProb;
	}
	else
	{
		maxRef = (size_t) RefMap.ntotRefMap * (size_t) GPUWorkload / 100;
		pProb_host = new bioem_Probability;
593
		pProb_host->init(maxRef, param.nTotGridAngles, param.nTotCC, *this);
David Rohr's avatar
David Rohr committed
594
595
		pProb_host->copyFrom(&pProb, *this);
	}
596

David Rohr's avatar
David Rohr committed
597
598
599
	pProb_device = *pProb_host;
	pProb_device.ptr = pProb_memory;
	pProb_device.set_pointers();
600
	checkCudaErrors(cudaMemcpyAsync(pProb_device.ptr, pProb_host->ptr, pProb_host->get_size(maxRef, param.nTotGridAngles, param.nTotCC, param.param_device.writeAngles, param.param_device.writeCC), cudaMemcpyHostToDevice, cudaStream[0]));
601
602
603

	if (FFTAlgo)
	{
604
		for (int j = 0;j < 2;j++)
605
		{
606
			for (int i = 0; i < 2; i++)
607
			{
608
				if (i && maxRef % CUDA_FFTS_AT_ONCE == 0) continue;
609
610
611
612
613
614
				int n[2] = {param.param_device.NumberPixels, param.param_device.NumberPixels};
				if (cufftPlanMany(&plan[i][j], 2, n, NULL, 1, param.FFTMapSize, NULL, 1, 0, MY_CUFFT_C2R, i ? (maxRef % CUDA_FFTS_AT_ONCE) : CUDA_FFTS_AT_ONCE) != CUFFT_SUCCESS)
				{
					cout << "Error planning CUFFT\n";
					exit(1);
				}
615
			        if (cufftSetCompatibilityMode(plan[i][j], CUFFT_COMPATIBILITY_FFTW_PADDING) != CUFFT_SUCCESS)
616
617
618
619
620
621
622
623
624
				{
					cout << "Error planning CUFFT compatibility\n";
					exit(1);
				}
				if (cufftSetStream(plan[i][j], cudaStream[j]) != CUFFT_SUCCESS)
				{
					cout << "Error setting CUFFT stream\n";
					exit(1);
				}
625
			}
626
			if (!GPUDualStream) break;
627
628
		}
	}
629
630
631
632
633
	return(0);
}

int bioem_cuda::deviceFinishRun()
{
634
	if (GPUAsync) cudaStreamSynchronize(cudaStream[0]);
635
	checkCudaErrors(cudaMemcpyAsync(pProb_host->ptr, pProb_device.ptr, pProb_host->get_size(maxRef, param.nTotGridAngles, param.nTotCC, param.param_device.writeAngles, param.param_device.writeCC), cudaMemcpyDeviceToHost, cudaStream[0]));
636

637
638
	if (FFTAlgo)
	{
639
640
		for (int j = 0;j < 2;j++)
		{
641
642
643
644
645
			for (int i = 0; i < 2; i++)
			{
				if (i && maxRef % CUDA_FFTS_AT_ONCE == 0) continue;
				cufftDestroy(plan[i][j]);
			}
646
647
			if (!GPUDualStream) break;
		}
648
	}
David Rohr's avatar
David Rohr committed
649
650
651
652
	cudaThreadSynchronize();
	if (GPUWorkload < 100)
	{
		pProb.copyFrom(pProb_host, *this);
653
		free_device_host(pProb_host->ptr);
David Rohr's avatar
David Rohr committed
654
655
		delete[] pProb_host;
	}
656

657
658
659
	return(0);
}

660
661
662
663
664
665
666
667
668
669
670
671
void* bioem_cuda::malloc_device_host(size_t size)
{
	void* ptr;
	checkCudaErrors(cudaHostAlloc(&ptr, size, 0));
	return(ptr);
}

void bioem_cuda::free_device_host(void* ptr)
{
	cudaFreeHost(ptr);
}

672
673
bioem* bioem_cuda_create()
{
David Rohr's avatar
David Rohr committed
674
675
676
677
678
679
680
681
682
	int count;
	
	if (cudaGetDeviceCount(&count) != cudaSuccess) count = 0;
	if (count == 0)
	{
		printf("No CUDA device available, using fallback to CPU version\n");
		return new bioem;
	}

683
684
	return new bioem_cuda;
}