bioem_cuda.cu 26 KB
Newer Older
Pilar Cossio's avatar
License  
Pilar Cossio committed
1
/* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2 3 4 5
   < BioEM software for Bayesian inference of Electron Microscopy images>
   Copyright (C) 2016 Pilar Cossio, David Rohr, Fabio Baruffa, Markus Rampp, 
        Volker Lindenstruth and Gerhard Hummer.
   Max Planck Institute of Biophysics, Frankfurt, Germany.
6

7
   See license statement for terms of distribution.
Pilar Cossio's avatar
License  
Pilar Cossio committed
8 9 10

   ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

11 12 13 14 15 16 17 18 19 20 21
#define BIOEM_GPUCODE

#if defined(_WIN32)
#include <windows.h>
#endif

#include <iostream>
using namespace std;

#include "bioem_cuda_internal.h"
#include "bioem_algorithm.h"
Pilar Cossio's avatar
Pilar Cossio committed
22
//#include "helper_cuda.h"
23

24 25 26 27 28 29 30
#define checkCudaErrors(error) \
{ \
	if ((error) != cudaSuccess) \
	{ \
		printf("CUDA Error %d / %s (%s: %d)\n", error, cudaGetErrorString(error), __FILE__, __LINE__); \
		exit(1); \
	} \
31 32
}

David Rohr's avatar
David Rohr committed
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
static const char *cufftGetErrorStrung(cufftResult error)
{
    switch (error)
    {
        case CUFFT_SUCCESS:
            return "CUFFT_SUCCESS";

        case CUFFT_INVALID_PLAN:
            return "CUFFT_INVALID_PLAN";

        case CUFFT_ALLOC_FAILED:
            return "CUFFT_ALLOC_FAILED";

        case CUFFT_INVALID_TYPE:
            return "CUFFT_INVALID_TYPE";

        case CUFFT_INVALID_VALUE:
            return "CUFFT_INVALID_VALUE";

        case CUFFT_INTERNAL_ERROR:
            return "CUFFT_INTERNAL_ERROR";

        case CUFFT_EXEC_FAILED:
            return "CUFFT_EXEC_FAILED";

        case CUFFT_SETUP_FAILED:
            return "CUFFT_SETUP_FAILED";

        case CUFFT_INVALID_SIZE:
            return "CUFFT_INVALID_SIZE";

        case CUFFT_UNALIGNED_DATA:
            return "CUFFT_UNALIGNED_DATA";
    }
    return "UNKNOWN";
}

Luka Stanisic's avatar
Luka Stanisic committed
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
/* Handing CUDA Driver errors */

#define cuErrorCheck(call) \
  do { \
    CUresult __error__; \
    if ((__error__ = (call)) != CUDA_SUCCESS) { \
      printf("CUDA Driver Error %d / %s (%s %d)\n", __error__, cuGetError(__error__),__FILE__, __LINE__); \
      return __error__; \
    } \
  } while (false)

static const char * cuGetError(CUresult result) {
  switch (result) {
    case CUDA_SUCCESS:                              return "No errors";
    case CUDA_ERROR_INVALID_VALUE:                  return "Invalid value";
    case CUDA_ERROR_OUT_OF_MEMORY:                  return "Out of memory";
    case CUDA_ERROR_NOT_INITIALIZED:                return "Driver not initialized";
    case CUDA_ERROR_DEINITIALIZED:                  return "Driver deinitialized";
    case CUDA_ERROR_PROFILER_DISABLED:              return "Profiler disabled";
    case CUDA_ERROR_PROFILER_NOT_INITIALIZED:       return "Profiler not initialized";
    case CUDA_ERROR_PROFILER_ALREADY_STARTED:       return "Profiler already started";
    case CUDA_ERROR_PROFILER_ALREADY_STOPPED:       return "Profiler already stopped";
    case CUDA_ERROR_NO_DEVICE:                      return "No CUDA-capable device available";
    case CUDA_ERROR_INVALID_DEVICE:                 return "Invalid device";
    case CUDA_ERROR_INVALID_IMAGE:                  return "Invalid kernel image";
    case CUDA_ERROR_INVALID_CONTEXT:                return "Invalid context";
    case CUDA_ERROR_CONTEXT_ALREADY_CURRENT:        return "Context already current";
    case CUDA_ERROR_MAP_FAILED:                     return "Map failed";
    case CUDA_ERROR_UNMAP_FAILED:                   return "Unmap failed";
    case CUDA_ERROR_ARRAY_IS_MAPPED:                return "Array is mapped";
    case CUDA_ERROR_ALREADY_MAPPED:                 return "Already mapped";
    case CUDA_ERROR_NO_BINARY_FOR_GPU:              return "No binary for GPU";
    case CUDA_ERROR_ALREADY_ACQUIRED:               return "Already acquired";
    case CUDA_ERROR_NOT_MAPPED:                     return "Not mapped";
    case CUDA_ERROR_NOT_MAPPED_AS_ARRAY:            return "Not mapped as array";
    case CUDA_ERROR_NOT_MAPPED_AS_POINTER:          return "Not mapped as pointer";
    case CUDA_ERROR_ECC_UNCORRECTABLE:              return "Uncorrectable ECC error";
    case CUDA_ERROR_UNSUPPORTED_LIMIT:              return "Unsupported CUlimit";
    case CUDA_ERROR_CONTEXT_ALREADY_IN_USE:         return "Context already in use";
    case CUDA_ERROR_INVALID_SOURCE:                 return "Invalid source";
    case CUDA_ERROR_FILE_NOT_FOUND:                 return "File not found";
    case CUDA_ERROR_SHARED_OBJECT_SYMBOL_NOT_FOUND: return "Shared object symbol not found";
    case CUDA_ERROR_SHARED_OBJECT_INIT_FAILED:      return "Shared object initialization failed";
    case CUDA_ERROR_OPERATING_SYSTEM:               return "Operating System call failed";
    case CUDA_ERROR_INVALID_HANDLE:                 return "Invalid handle";
    case CUDA_ERROR_NOT_FOUND:                      return "Not found";
    case CUDA_ERROR_NOT_READY:                      return "CUDA not ready";
    case CUDA_ERROR_LAUNCH_FAILED:                  return "Launch failed";
    case CUDA_ERROR_LAUNCH_OUT_OF_RESOURCES:        return "Launch exceeded resources";
    case CUDA_ERROR_LAUNCH_TIMEOUT:                 return "Launch exceeded timeout";
    case CUDA_ERROR_LAUNCH_INCOMPATIBLE_TEXTURING:  return "Launch with incompatible texturing";
    case CUDA_ERROR_PEER_ACCESS_ALREADY_ENABLED:    return "Peer access already enabled";
    case CUDA_ERROR_PEER_ACCESS_NOT_ENABLED:        return "Peer access not enabled";
    case CUDA_ERROR_PRIMARY_CONTEXT_ACTIVE:         return "Primary context active";
    case CUDA_ERROR_CONTEXT_IS_DESTROYED:           return "Context is destroyed";
    case CUDA_ERROR_ASSERT:                         return "Device assert failed";
    case CUDA_ERROR_TOO_MANY_PEERS:                 return "Too many peers";
    case CUDA_ERROR_HOST_MEMORY_ALREADY_REGISTERED: return "Host memory already registered";
    case CUDA_ERROR_HOST_MEMORY_NOT_REGISTERED:     return "Host memory not registered";
    case CUDA_ERROR_UNKNOWN:                        return "Unknown error";
    default:                                        return "Unknown error code";
  }
}

134 135 136 137
bioem_cuda::bioem_cuda()
{
	deviceInitialized = 0;
	GPUAlgo = getenv("GPUALGO") == NULL ? 2 : atoi(getenv("GPUALGO"));
138 139
	GPUAsync = getenv("GPUASYNC") == NULL ? 1 : atoi(getenv("GPUASYNC"));
	GPUWorkload = getenv("GPUWORKLOAD") == NULL ? 100 : atoi(getenv("GPUWORKLOAD"));
140
	GPUDualStream = getenv("GPUDUALSTREAM") == NULL ? 1 : atoi(getenv("GPUDUALSTREAM"));
141 142 143 144 145 146 147
}

bioem_cuda::~bioem_cuda()
{
	deviceExit();
}

148 149 150
__global__ void compareRefMap_kernel(const int iOrient, const int iConv,  const myfloat_t amp, const myfloat_t pha, const myfloat_t env, const myfloat_t sumC,
                                                const myfloat_t sumsquareC, const myfloat_t* pMap, bioem_Probability pProb, 
						const bioem_param_device param, const bioem_RefMap_Mod RefMap, const int cent_x, const int cent_y, const int maxRef)
151 152
{
	const int iRefMap = myBlockIdxX * myBlockDimX + myThreadIdxX;
153
	if (iRefMap < maxRef)
154
	{
155
		compareRefMap<0>(iRefMap, iOrient, iConv, amp, pha, env, sumC, sumsquareC, pMap, pProb, param, RefMap, cent_x, cent_y);
156 157 158
	}
}

Pilar Cossio's avatar
Pilar Cossio committed
159
__global__ void compareRefMapShifted_kernel(const int iOrient, const int iConv, const myfloat_t amp, const myfloat_t pha, const myfloat_t env, const myfloat_t sumC, const myfloat_t sumsquareC, const myfloat_t* pMap, bioem_Probability pProb, const bioem_param_device param, const bioem_RefMap_Mod RefMap, const int maxRef)
160 161
{
	const int iRefMap = myBlockIdxX * myBlockDimX + myThreadIdxX;
162
	if (iRefMap < maxRef)
163
	{
164
		compareRefMapShifted<1>(iRefMap, iOrient, iConv, amp, pha, env, sumC, sumsquareC, pMap, pProb, param, RefMap);
165 166 167
	}
}

168 169 170 171 172 173
__global__ void cudaZeroMem(void* ptr, size_t size)
{
	int* myptr = (int*) ptr;
	int mysize = size / sizeof(int);
	int myid = myBlockDimX * myBlockIdxX + myThreadIdxX;
	int mygrid = myBlockDimX * myGridDimX;
174
	for (int i = myid; i < mysize; i += mygrid) myptr[i] = 0;
175 176
}

Pilar Cossio's avatar
Pilar Cossio committed
177
__global__ void compareRefMapLoopShifts_kernel(const int iOrient, const int iConv, const myfloat_t amp, const myfloat_t pha, const myfloat_t env, const myfloat_t sumC, const myfloat_t sumsquareC, const myfloat_t* pMap, bioem_Probability pProb, const bioem_param_device param, const bioem_RefMap RefMap, const int blockoffset, const int nShifts, const int nShiftBits, const int maxRef)
178 179 180 181 182 183 184 185 186
{
	const size_t myid = (myBlockIdxX + blockoffset) * myBlockDimX + myThreadIdxX;
	const int iRefMap = myid >> (nShiftBits << 1);
	const int myRef = myThreadIdxX >> (nShiftBits << 1);
	const int myShiftIdx = (myid >> nShiftBits) & (nShifts - 1);
	const int myShiftIdy = myid & (nShifts - 1);
	const int myShift = myid & (nShifts * nShifts - 1);
	const int cent_x = myShiftIdx * param.GridSpaceCenter - param.maxDisplaceCenter;
	const int cent_y = myShiftIdy * param.GridSpaceCenter - param.maxDisplaceCenter;
187

188
	const bool threadActive = myShiftIdx < nShifts && myShiftIdy < nShifts && iRefMap < maxRef;
189

Pilar Cossio's avatar
Pilar Cossio committed
190
	compareRefMap<2>(iRefMap, iOrient, iConv, amp, pha, env, sumC, sumsquareC, pMap, pProb, param, RefMap, cent_x, cent_y, myShift, nShifts * nShifts, myRef, threadActive);
191 192
}

193
__global__ void multComplexMap(const mycomplex_t* convmap, const mycomplex_t* refmap, mycuComplex_t* out, const int NumberPixelsTotal, const int MapSize, const int NumberMaps, const int Offset)
194 195
{
	if (myBlockIdxX >= NumberMaps) return;
196
	const mycuComplex_t* myin = (mycuComplex_t*) &refmap[(myBlockIdxX + Offset) * MapSize];
197
	const mycuComplex_t* myconv = (mycuComplex_t*) convmap;
198
	mycuComplex_t* myout = &out[myBlockIdxX * MapSize];
199
	for(int i = myThreadIdxX; i < NumberPixelsTotal; i += myBlockDimX)
200
	{
201 202 203 204 205 206 207
		mycuComplex_t val;
		const mycuComplex_t conv = myconv[i];
		const mycuComplex_t in = myin[i];

		val.x = conv.x * in.x + conv.y * in.y;
		val.y = conv.y * in.x - conv.x * in.y;
		myout[i] = val;
208 209 210
	}
}

211
__global__ void cuDoRefMapsFFT(const int iOrient, const int iConv, const myfloat_t amp, const myfloat_t pha, const myfloat_t env, const myfloat_t* lCC, const myfloat_t sumC, const myfloat_t sumsquareC, bioem_Probability pProb, const bioem_param_device param, const bioem_RefMap RefMap, const int maxRef, const int Offset)
212
{
213
	if (myBlockIdxX * myBlockDimX + myThreadIdxX >= maxRef) return;
214 215
	const int iRefMap = myBlockIdxX * myBlockDimX + myThreadIdxX + Offset;
	const myfloat_t* mylCC = &lCC[(myBlockIdxX * myBlockDimX + myThreadIdxX) * param.NumberPixels * param.NumberPixels];
216
	doRefMapFFT(iRefMap, iOrient, iConv, amp, pha, env, mylCC, sumC, sumsquareC, pProb, param, RefMap);
217 218
}

219 220 221 222 223 224 225 226 227 228 229 230 231
template <class T> static inline T divup(T num, T divider) {return((num + divider - 1) / divider);}
static inline bool IsPowerOf2(int x) {return ((x > 0) && ((x & (x - 1)) == 0));}
#if defined(_WIN32)
static inline int ilog2 (int value)
{
	DWORD index;
	_BitScanReverse (&index, value);
	return(value);
}
#else
static inline int ilog2(int value) {return 31 - __builtin_clz(value);}
#endif

232
int bioem_cuda::compareRefMaps(int iOrient, int iConv, myfloat_t amp, myfloat_t pha, myfloat_t env, const myfloat_t* conv_map, mycomplex_t* localmultFFT, myfloat_t sumC, myfloat_t sumsquareC, const int startMap)
233
{
234 235 236 237 238
	if (startMap)
	{
		cout << "Error startMap not implemented for GPU Code\n";
		exit(1);
	}
Luka Stanisic's avatar
Luka Stanisic committed
239 240 241 242 243 244 245
#ifdef DEBUG_GPU
	float time;
	cudaEvent_t start, stop;
	checkCudaErrors(cudaEventCreate(&start));
	checkCudaErrors(cudaEventCreate(&stop));
	checkCudaErrors(cudaEventRecord(start, 0));
#endif
246 247 248 249
	if (GPUAsync)
	{
		checkCudaErrors(cudaEventSynchronize(cudaEvent[iConv & 1]));
	}
Luka Stanisic's avatar
Luka Stanisic committed
250 251 252 253 254 255 256
#ifdef DEBUG_GPU
	checkCudaErrors(cudaEventRecord(stop, 0));
	checkCudaErrors(cudaEventSynchronize(stop));
	checkCudaErrors(cudaEventElapsedTime(&time, start, stop));
	printf("\t\t\tGPU: time to synch projections %1.6f sec\n", time/1000);
	checkCudaErrors(cudaEventRecord(start, 0));
#endif
257
	if (FFTAlgo)
258
	{
259
		memcpy(&pConvMapFFT_Host[(iConv & 1) * param.FFTMapSize], localmultFFT, param.FFTMapSize * sizeof(mycomplex_t));
260
		checkCudaErrors(cudaMemcpyAsync(&pConvMapFFT[(iConv & 1) * param.FFTMapSize], &pConvMapFFT_Host[(iConv & 1) * param.FFTMapSize], param.FFTMapSize * sizeof(mycomplex_t), cudaMemcpyHostToDevice, cudaStream[GPUAsync ? 2 : 0]));
Luka Stanisic's avatar
Luka Stanisic committed
261 262 263 264 265 266 267
#ifdef DEBUG_GPU
		checkCudaErrors(cudaEventRecord(stop, 0));
		checkCudaErrors(cudaEventSynchronize(stop));
		checkCudaErrors(cudaEventElapsedTime(&time, start, stop));
		printf("\t\t\tGPU: time for memcpy %1.6f sec\n", time/1000);
		checkCudaErrors(cudaEventRecord(start, 0));
#endif
268 269 270 271 272
		if (GPUAsync)
		{
			checkCudaErrors(cudaEventRecord(cudaEvent[2], cudaStream[2]));
			checkCudaErrors(cudaStreamWaitEvent(cudaStream[0], cudaEvent[2], 0));
		}
273
		if (GPUDualStream)
274
		{
275 276 277 278 279 280
			checkCudaErrors(cudaEventRecord(cudaFFTEvent[0], cudaStream[0]));
			checkCudaErrors(cudaStreamWaitEvent(cudaStream[1], cudaFFTEvent[0], 0));
		}
		for (int i = 0, j = 0; i < maxRef; i += CUDA_FFTS_AT_ONCE, j++)
		{
			if (!GPUDualStream) j = 0;
281
			const int num = min(CUDA_FFTS_AT_ONCE, maxRef - i);
282 283
			multComplexMap<<<num, CUDA_THREAD_COUNT, 0, cudaStream[j & 1]>>>(&pConvMapFFT[(iConv & 1) * param.FFTMapSize], pRefMapsFFT, pFFTtmp2[j & 1], param.param_device.NumberPixels * param.param_device.NumberFFTPixels1D, param.FFTMapSize, num, i);
			cufftResult err = mycufftExecC2R(i + CUDA_FFTS_AT_ONCE > maxRef ? plan[1][j & 1] : plan[0][j & 1], pFFTtmp2[j & 1], pFFTtmp[j & 1]);
David Rohr's avatar
David Rohr committed
284
			if (err != CUFFT_SUCCESS)
285
			{
David Rohr's avatar
David Rohr committed
286
				cout << "Error running CUFFT " << cufftGetErrorStrung(err) << "\n";
287 288
				exit(1);
			}
289
			cuDoRefMapsFFT<<<divup(num, CUDA_THREAD_COUNT), CUDA_THREAD_COUNT, 0, cudaStream[j & 1]>>>(iOrient, iConv,  amp, pha, env, pFFTtmp[j & 1], sumC, sumsquareC, pProb_device, param.param_device, *gpumap, num, i);
290
		}
Luka Stanisic's avatar
Luka Stanisic committed
291
		checkCudaErrors(cudaPeekAtLastError());
292 293 294 295 296
		if (GPUDualStream)
		{
			checkCudaErrors(cudaEventRecord(cudaFFTEvent[1], cudaStream[1]));
			checkCudaErrors(cudaStreamWaitEvent(cudaStream[0], cudaFFTEvent[1], 0));
		}
297 298 299
	}
	else
	{
300
		checkCudaErrors(cudaMemcpyAsync(pConvMap_device[iConv & 1], conv_map, sizeof(myfloat_t) * RefMap.refMapSize, cudaMemcpyHostToDevice, cudaStream[0]));
Luka Stanisic's avatar
Luka Stanisic committed
301 302 303 304 305 306 307
#ifdef DEBUG_GPU
		checkCudaErrors(cudaEventRecord(stop, 0));
		checkCudaErrors(cudaEventSynchronize(stop));
		checkCudaErrors(cudaEventElapsedTime(&time, start, stop));
		printf("\t\t\tGPU: time for memcpy %1.6f sec\n", time/1000);
		checkCudaErrors(cudaEventRecord(start, 0) );
#endif
308
		if (GPUAlgo == 2) //Loop over shifts
309
		{
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
			const int nShifts = 2 * param.param_device.maxDisplaceCenter / param.param_device.GridSpaceCenter + 1;
			if (!IsPowerOf2(nShifts))
			{
				cout << "Invalid number of displacements, no power of two\n";
				exit(1);
			}
			if (CUDA_THREAD_COUNT % (nShifts * nShifts))
			{
				cout << "CUDA Thread count (" << CUDA_THREAD_COUNT << ") is no multiple of number of shifts (" << (nShifts * nShifts) << ")\n";
				exit(1);
			}
			if (nShifts > CUDA_MAX_SHIFT_REDUCE)
			{
				cout << "Too many displacements for CUDA reduction\n";
				exit(1);
			}
			const int nShiftBits = ilog2(nShifts);
			size_t totalBlocks = divup((size_t) maxRef * (size_t) nShifts * (size_t) nShifts, (size_t) CUDA_THREAD_COUNT);
			size_t nBlocks = CUDA_BLOCK_COUNT;
329
			for (size_t i = 0; i < totalBlocks; i += nBlocks)
330
			{
Pilar Cossio's avatar
Pilar Cossio committed
331
				compareRefMapLoopShifts_kernel<<<min(nBlocks, totalBlocks - i), CUDA_THREAD_COUNT, (CUDA_THREAD_COUNT * 2 + CUDA_THREAD_COUNT / (nShifts * nShifts) * 4) * sizeof(myfloat_t), cudaStream[0] >>> (iOrient, iConv, amp, pha, env, sumC, sumsquareC, pConvMap_device[iConv & 1], pProb_device, param.param_device, *gpumap, i, nShifts, nShiftBits, maxRef);
332
			}
333
		}
334
		else if (GPUAlgo == 1) //Split shifts in multiple kernels
335
		{
336
			for (int cent_x = -param.param_device.maxDisplaceCenter; cent_x <= param.param_device.maxDisplaceCenter; cent_x = cent_x + param.param_device.GridSpaceCenter)
337
			{
338
				for (int cent_y = -param.param_device.maxDisplaceCenter; cent_y <= param.param_device.maxDisplaceCenter; cent_y = cent_y + param.param_device.GridSpaceCenter)
339
				{
Pilar Cossio's avatar
Pilar Cossio committed
340
					compareRefMap_kernel<<<divup(maxRef, CUDA_THREAD_COUNT), CUDA_THREAD_COUNT, 0, cudaStream[0]>>> (iOrient, iConv, amp, pha, env, sumC, sumsquareC, pConvMap_device[iConv & 1], pProb_device, param.param_device, *pRefMap_device_Mod, cent_x, cent_y, maxRef);
341 342
				}
			}
343
		}
344
		else if (GPUAlgo == 0) //All shifts in one kernel
345
		{
346
			compareRefMapShifted_kernel<<<divup(maxRef, CUDA_THREAD_COUNT), CUDA_THREAD_COUNT, 0, cudaStream[0]>>> (iOrient, iConv, amp, pha, env, sumC, sumsquareC, pConvMap_device[iConv & 1], pProb_device, param.param_device, *pRefMap_device_Mod, maxRef);
347
		}
348
		else
349
		{
350 351
			cout << "Invalid GPU Algorithm selected\n";
			exit(1);
352
		}
353
	}
Luka Stanisic's avatar
Luka Stanisic committed
354 355 356 357 358 359 360
#ifdef DEBUG_GPU
	checkCudaErrors(cudaEventRecord(stop, 0));
	checkCudaErrors(cudaEventSynchronize(stop));
	checkCudaErrors(cudaEventElapsedTime(&time, start, stop));
	printf("\t\t\tGPU: time to run CUDA %1.6f sec\n", time/1000);
	checkCudaErrors(cudaEventRecord(start, 0));
#endif
361 362
	if (GPUWorkload < 100)
	{
363
		bioem::compareRefMaps(iOrient, iConv, amp, pha, env, conv_map, localmultFFT, sumC, sumsquareC, maxRef);
364
	}
Luka Stanisic's avatar
Luka Stanisic committed
365 366 367 368 369 370
#ifdef DEBUG_GPU
	checkCudaErrors(cudaEventRecord(stop, 0));
	checkCudaErrors(cudaEventSynchronize(stop));
	checkCudaErrors(cudaEventElapsedTime(&time, start, stop));
	printf("\t\t\tGPU: time to run OMP %1.6f sec\n", time/1000);
#endif
371 372
	if (GPUAsync)
	{
373
		checkCudaErrors(cudaEventRecord(cudaEvent[iConv & 1], cudaStream[0]));
374
	}
375 376
	else
	{
377
		checkCudaErrors(cudaStreamSynchronize(cudaStream[0]));
378 379 380 381
	}
	return(0);
}

David Rohr's avatar
David Rohr committed
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
int bioem_cuda::selectCudaDevice()
{
	int count;
	
	long long int bestDeviceSpeed = -1;
	int bestDevice;
	cudaDeviceProp deviceProp;
	
	checkCudaErrors(cudaGetDeviceCount(&count));
	if (count == 0)
	{
		printf("No CUDA device detected\n");
		return(1);
	}
	for (int i = 0;i < count;i++)
	{
#if CUDA_VERSION > 3010
		size_t free, total;
#else
		unsigned int free, total;
#endif
		cuInit(0);
		CUdevice tmpDevice;
		cuDeviceGet(&tmpDevice, i);
		CUcontext tmpContext;
		cuCtxCreate(&tmpContext, 0, tmpDevice);
		if(cuMemGetInfo(&free, &total)) exit(1);
		cuCtxDestroy(tmpContext);
		checkCudaErrors(cudaGetDeviceProperties(&deviceProp, i));

David Rohr's avatar
David Rohr committed
412
		if (DebugOutput >= 2 && mpi_rank == 0) printf("CUDA Device %2d: %s (Rev: %d.%d - Mem Avail %lld / %lld)\n", i, deviceProp.name, deviceProp.major, deviceProp.minor, (long long int) free, (long long int) deviceProp.totalGlobalMem);
David Rohr's avatar
David Rohr committed
413 414 415 416 417 418 419
		long long int deviceSpeed = (long long int) deviceProp.multiProcessorCount * (long long int) deviceProp.clockRate * (long long int) deviceProp.warpSize;
		if (deviceSpeed > bestDeviceSpeed)
		{
			bestDevice = i;
			bestDeviceSpeed = deviceSpeed;
		}
	}
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
	if (getenv("GPUDEVICE"))
	{
		int device = atoi(getenv("GPUDEVICE"));
		if (device > count)
		{
			printf("Invalid CUDA device specified, max device number is %d\n", count);
			exit(1);
		}
#ifdef WITH_MPI
		if (device == -1)
		{
			device = mpi_rank % count;
		}
#endif
		if (device < 0)
		{
			printf("Negative CUDA device specified: %d, invalid!\n", device);
		}
		bestDevice = device;
	}
	checkCudaErrors(cudaSetDevice(bestDevice));
David Rohr's avatar
David Rohr committed
441 442 443

	cudaGetDeviceProperties(&deviceProp ,bestDevice); 

David Rohr's avatar
David Rohr committed
444
	if (DebugOutput >= 3)
David Rohr's avatar
David Rohr committed
445
	{
David Rohr's avatar
David Rohr committed
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
		printf("Using CUDA Device %s with Properties:\n", deviceProp.name);
		printf("totalGlobalMem = %lld\n", (unsigned long long int) deviceProp.totalGlobalMem);
		printf("sharedMemPerBlock = %lld\n", (unsigned long long int) deviceProp.sharedMemPerBlock);
		printf("regsPerBlock = %d\n", deviceProp.regsPerBlock);
		printf("warpSize = %d\n", deviceProp.warpSize);
		printf("memPitch = %lld\n", (unsigned long long int) deviceProp.memPitch);
		printf("maxThreadsPerBlock = %d\n", deviceProp.maxThreadsPerBlock);
		printf("maxThreadsDim = %d %d %d\n", deviceProp.maxThreadsDim[0], deviceProp.maxThreadsDim[1], deviceProp.maxThreadsDim[2]);
		printf("maxGridSize = %d %d %d\n", deviceProp.maxGridSize[0], deviceProp.maxGridSize[1], deviceProp.maxGridSize[2]);
		printf("totalConstMem = %lld\n", (unsigned long long int) deviceProp.totalConstMem);
		printf("major = %d\n", deviceProp.major);
		printf("minor = %d\n", deviceProp.minor);
		printf("clockRate = %d\n", deviceProp.clockRate);
		printf("memoryClockRate = %d\n", deviceProp.memoryClockRate);
		printf("multiProcessorCount = %d\n", deviceProp.multiProcessorCount);
		printf("textureAlignment = %lld\n", (unsigned long long int) deviceProp.textureAlignment);
David Rohr's avatar
David Rohr committed
462 463
	}
	
David Rohr's avatar
David Rohr committed
464 465
	if (DebugOutput >= 1)
	{
David Rohr's avatar
David Rohr committed
466
		printf("BioEM for CUDA initialized (MPI Rank %d), %d GPUs found, using GPU %d\n", mpi_rank, count, bestDevice);
David Rohr's avatar
David Rohr committed
467 468
	}
	
David Rohr's avatar
David Rohr committed
469 470 471
	return(0);
}

472 473 474
int bioem_cuda::deviceInit()
{
	deviceExit();
David Rohr's avatar
David Rohr committed
475
	
476
	selectCudaDevice();
477

478 479
	if (FFTAlgo) GPUAlgo = 2;

480 481 482 483 484
	gpumap = new bioem_RefMap;
	memcpy(gpumap, &RefMap, sizeof(bioem_RefMap));
	if (FFTAlgo == 0)
	{
		checkCudaErrors(cudaMalloc(&maps, sizeof(myfloat_t) * RefMap.ntotRefMap * RefMap.refMapSize));
485 486 487 488 489 490 491 492 493 494 495 496 497

		if (GPUAlgo == 0 || GPUAlgo == 1)
		{
			pRefMap_device_Mod = (bioem_RefMap_Mod*) gpumap;
			bioem_RefMap_Mod* RefMapGPU = new bioem_RefMap_Mod;
			RefMapGPU->init(RefMap);
			checkCudaErrors(cudaMemcpy(maps, RefMapGPU->maps, sizeof(myfloat_t) * RefMap.ntotRefMap * RefMap.refMapSize, cudaMemcpyHostToDevice));
			delete RefMapGPU;
		}
		else
		{
			checkCudaErrors(cudaMemcpy(maps, RefMap.maps, sizeof(myfloat_t) * RefMap.ntotRefMap * RefMap.refMapSize, cudaMemcpyHostToDevice));
		}
498 499 500 501 502 503 504 505 506
	}
	checkCudaErrors(cudaMalloc(&sum, sizeof(myfloat_t) * RefMap.ntotRefMap));
	checkCudaErrors(cudaMemcpy(sum, RefMap.sum_RefMap, sizeof(myfloat_t) * RefMap.ntotRefMap, cudaMemcpyHostToDevice));
	checkCudaErrors(cudaMalloc(&sumsquare, sizeof(myfloat_t) * RefMap.ntotRefMap));
	checkCudaErrors(cudaMemcpy(sumsquare, RefMap.sumsquare_RefMap, sizeof(myfloat_t) * RefMap.ntotRefMap, cudaMemcpyHostToDevice));
	gpumap->maps = maps;
	gpumap->sum_RefMap = sum;
	gpumap->sumsquare_RefMap = sumsquare;

507
	checkCudaErrors(cudaMalloc(&pProb_memory, pProb_device.get_size(RefMap.ntotRefMap, param.nTotGridAngles, param.nTotCC, param.param_device.writeAngles, param.param_device.writeCC)));
508

509
	for (int i = 0; i < 2; i++)
510
	{
511
		checkCudaErrors(cudaStreamCreate(&cudaStream[i]));
512
		checkCudaErrors(cudaEventCreate(&cudaEvent[i]));
513
		checkCudaErrors(cudaEventCreate(&cudaFFTEvent[i]));
514
		checkCudaErrors(cudaMalloc(&pConvMap_device[i], sizeof(myfloat_t) * RefMap.refMapSize));
515
	}
516 517 518 519 520
	if (GPUAsync)
	{
		checkCudaErrors(cudaStreamCreate(&cudaStream[2]));
		checkCudaErrors(cudaEventCreate(&cudaEvent[2]));
	}
521

522 523
	if (FFTAlgo)
	{
524
		checkCudaErrors(cudaMalloc(&pRefMapsFFT, RefMap.ntotRefMap * param.FFTMapSize * sizeof(mycomplex_t)));
525 526 527 528
		checkCudaErrors(cudaMalloc(&pFFTtmp2[0], CUDA_FFTS_AT_ONCE * param.FFTMapSize * 2 * sizeof(mycomplex_t)));
		checkCudaErrors(cudaMalloc(&pFFTtmp[0], CUDA_FFTS_AT_ONCE * param.param_device.NumberPixels * param.param_device.NumberPixels * 2 * sizeof(myfloat_t)));
		pFFTtmp2[1] = pFFTtmp2[0] + CUDA_FFTS_AT_ONCE * param.FFTMapSize;
		pFFTtmp[1] = pFFTtmp[0] + CUDA_FFTS_AT_ONCE * param.param_device.NumberPixels * param.param_device.NumberPixels;
529
		checkCudaErrors(cudaMalloc(&pConvMapFFT, param.FFTMapSize * sizeof(mycomplex_t) * 2));
530
		checkCudaErrors(cudaHostAlloc(&pConvMapFFT_Host, param.FFTMapSize * sizeof(mycomplex_t) * 2, 0));
531
		checkCudaErrors(cudaMemcpy(pRefMapsFFT, RefMap.RefMapsFFT, RefMap.ntotRefMap * param.FFTMapSize * sizeof(mycomplex_t), cudaMemcpyHostToDevice));
532 533
	}

534 535 536 537 538 539 540
	deviceInitialized = 1;
	return(0);
}

int bioem_cuda::deviceExit()
{
	if (deviceInitialized == 0) return(0);
541

542

David Rohr's avatar
David Rohr committed
543
	cudaFree(pProb_memory);
544 545
	cudaFree(sum);
	cudaFree(sumsquare);
546
	for (int i = 0; i < 2; i++)
547
	{
548
		cudaStreamDestroy(cudaStream[i]);
549
		cudaEventDestroy(cudaEvent[i]);
550
		cudaEventDestroy(cudaFFTEvent[i]);
551
		cudaFree(pConvMap_device[i]);
552
	}
553 554 555 556
	if (FFTAlgo)
	{
		cudaFree(pRefMapsFFT);
		cudaFree(pConvMapFFT);
557
		cudaFreeHost(pConvMapFFT_Host);
558 559
		cudaFree(pFFTtmp[0]);
		cudaFree(pFFTtmp2[0]);
560
	}
561 562 563 564 565 566 567 568
	else
	{
		cudaFree(maps);
	}
	if (GPUAlgo == 0 || GPUAlgo == 1)
	{
		cudaFree(pRefMap_device_Mod);
	}
569 570 571 572 573 574
	if (GPUAsync)
	{
		cudaStreamDestroy(cudaStream[2]);
		cudaEventDestroy(cudaEvent[2]);
	}

575
	delete gpumap;
576
	cudaThreadExit();
577

578 579 580 581 582 583
	deviceInitialized = 0;
	return(0);
}

int bioem_cuda::deviceStartRun()
{
David Rohr's avatar
David Rohr committed
584 585 586 587 588 589 590 591 592
	if (GPUWorkload >= 100)
	{
		maxRef = RefMap.ntotRefMap;
		pProb_host = &pProb;
	}
	else
	{
		maxRef = (size_t) RefMap.ntotRefMap * (size_t) GPUWorkload / 100;
		pProb_host = new bioem_Probability;
593
		pProb_host->init(maxRef, param.nTotGridAngles, param.nTotCC, *this);
David Rohr's avatar
David Rohr committed
594 595
		pProb_host->copyFrom(&pProb, *this);
	}
596

David Rohr's avatar
David Rohr committed
597 598 599
	pProb_device = *pProb_host;
	pProb_device.ptr = pProb_memory;
	pProb_device.set_pointers();
600
	checkCudaErrors(cudaMemcpyAsync(pProb_device.ptr, pProb_host->ptr, pProb_host->get_size(maxRef, param.nTotGridAngles, param.nTotCC, param.param_device.writeAngles, param.param_device.writeCC), cudaMemcpyHostToDevice, cudaStream[0]));
601 602 603

	if (FFTAlgo)
	{
604
		for (int j = 0;j < 2;j++)
605
		{
606
			for (int i = 0; i < 2; i++)
607
			{
608
				if (i && maxRef % CUDA_FFTS_AT_ONCE == 0) continue;
609 610 611 612 613 614
				int n[2] = {param.param_device.NumberPixels, param.param_device.NumberPixels};
				if (cufftPlanMany(&plan[i][j], 2, n, NULL, 1, param.FFTMapSize, NULL, 1, 0, MY_CUFFT_C2R, i ? (maxRef % CUDA_FFTS_AT_ONCE) : CUDA_FFTS_AT_ONCE) != CUFFT_SUCCESS)
				{
					cout << "Error planning CUFFT\n";
					exit(1);
				}
615
			        if (cufftSetCompatibilityMode(plan[i][j], CUFFT_COMPATIBILITY_FFTW_PADDING) != CUFFT_SUCCESS)
616 617 618 619 620 621 622 623 624
				{
					cout << "Error planning CUFFT compatibility\n";
					exit(1);
				}
				if (cufftSetStream(plan[i][j], cudaStream[j]) != CUFFT_SUCCESS)
				{
					cout << "Error setting CUFFT stream\n";
					exit(1);
				}
625
			}
626
			if (!GPUDualStream) break;
627 628
		}
	}
629 630 631 632 633
	return(0);
}

int bioem_cuda::deviceFinishRun()
{
634
	if (GPUAsync) cudaStreamSynchronize(cudaStream[0]);
635
	checkCudaErrors(cudaMemcpyAsync(pProb_host->ptr, pProb_device.ptr, pProb_host->get_size(maxRef, param.nTotGridAngles, param.nTotCC, param.param_device.writeAngles, param.param_device.writeCC), cudaMemcpyDeviceToHost, cudaStream[0]));
636

637 638
	if (FFTAlgo)
	{
639 640
		for (int j = 0;j < 2;j++)
		{
641 642 643 644 645
			for (int i = 0; i < 2; i++)
			{
				if (i && maxRef % CUDA_FFTS_AT_ONCE == 0) continue;
				cufftDestroy(plan[i][j]);
			}
646 647
			if (!GPUDualStream) break;
		}
648
	}
David Rohr's avatar
David Rohr committed
649 650 651 652
	cudaThreadSynchronize();
	if (GPUWorkload < 100)
	{
		pProb.copyFrom(pProb_host, *this);
653
		free_device_host(pProb_host->ptr);
David Rohr's avatar
David Rohr committed
654 655
		delete[] pProb_host;
	}
656

657 658 659
	return(0);
}

660 661 662 663 664 665 666 667 668 669 670 671
void* bioem_cuda::malloc_device_host(size_t size)
{
	void* ptr;
	checkCudaErrors(cudaHostAlloc(&ptr, size, 0));
	return(ptr);
}

void bioem_cuda::free_device_host(void* ptr)
{
	cudaFreeHost(ptr);
}

672 673
bioem* bioem_cuda_create()
{
David Rohr's avatar
David Rohr committed
674 675 676 677 678 679 680 681 682
	int count;
	
	if (cudaGetDeviceCount(&count) != cudaSuccess) count = 0;
	if (count == 0)
	{
		printf("No CUDA device available, using fallback to CPU version\n");
		return new bioem;
	}

683 684
	return new bioem_cuda;
}