bioem_cuda.cu 14.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
#define BIOEM_GPUCODE

#if defined(_WIN32)
#include <windows.h>
#endif

#include <iostream>
using namespace std;

#include "bioem_cuda_internal.h"
#include "bioem_algorithm.h"

13 14 15 16 17 18 19
#define checkCudaErrors(error) \
{ \
	if ((error) != cudaSuccess) \
	{ \
		printf("CUDA Error %d / %s (%s: %d)\n", error, cudaGetErrorString(error), __FILE__, __LINE__); \
		exit(1); \
	} \
20 21
}

David Rohr's avatar
David Rohr committed
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
static const char *cufftGetErrorStrung(cufftResult error)
{
    switch (error)
    {
        case CUFFT_SUCCESS:
            return "CUFFT_SUCCESS";

        case CUFFT_INVALID_PLAN:
            return "CUFFT_INVALID_PLAN";

        case CUFFT_ALLOC_FAILED:
            return "CUFFT_ALLOC_FAILED";

        case CUFFT_INVALID_TYPE:
            return "CUFFT_INVALID_TYPE";

        case CUFFT_INVALID_VALUE:
            return "CUFFT_INVALID_VALUE";

        case CUFFT_INTERNAL_ERROR:
            return "CUFFT_INTERNAL_ERROR";

        case CUFFT_EXEC_FAILED:
            return "CUFFT_EXEC_FAILED";

        case CUFFT_SETUP_FAILED:
            return "CUFFT_SETUP_FAILED";

        case CUFFT_INVALID_SIZE:
            return "CUFFT_INVALID_SIZE";

        case CUFFT_UNALIGNED_DATA:
            return "CUFFT_UNALIGNED_DATA";
    }
    return "UNKNOWN";
}

59 60 61 62
bioem_cuda::bioem_cuda()
{
	deviceInitialized = 0;
	GPUAlgo = getenv("GPUALGO") == NULL ? 2 : atoi(getenv("GPUALGO"));
63 64
	GPUAsync = getenv("GPUASYNC") == NULL ? 1 : atoi(getenv("GPUASYNC"));
	GPUWorkload = getenv("GPUWORKLOAD") == NULL ? 100 : atoi(getenv("GPUWORKLOAD"));
65
	GPUDualStream = getenv("GPUDUALSTREAM") == NULL ? 1 : atoi(getenv("GPUDUALSTREAM"));
66 67 68 69 70 71 72
}

bioem_cuda::~bioem_cuda()
{
	deviceExit();
}

73
__global__ void compareRefMap_kernel(const int iOrient, const int iConv, const myfloat_t* pMap, bioem_Probability pProb, const bioem_param_device param, const bioem_RefMap_Mod RefMap, const int cent_x, const int cent_y, const int maxRef)
74 75
{
	const int iRefMap = myBlockIdxX * myBlockDimX + myThreadIdxX;
76
	if (iRefMap < maxRef)
77
	{
78
		compareRefMap<0>(iRefMap, iOrient, iConv, pMap, pProb, param, RefMap, cent_x, cent_y);
79 80 81
	}
}

82
__global__ void compareRefMapShifted_kernel(const int iOrient, const int iConv, const myfloat_t* pMap, bioem_Probability pProb, const bioem_param_device param, const bioem_RefMap_Mod RefMap, const int maxRef)
83 84
{
	const int iRefMap = myBlockIdxX * myBlockDimX + myThreadIdxX;
85
	if (iRefMap < maxRef)
86
	{
87
		compareRefMapShifted<1>(iRefMap, iOrient, iConv, pMap, pProb, param, RefMap);
88 89 90
	}
}

91 92 93 94 95 96
__global__ void cudaZeroMem(void* ptr, size_t size)
{
	int* myptr = (int*) ptr;
	int mysize = size / sizeof(int);
	int myid = myBlockDimX * myBlockIdxX + myThreadIdxX;
	int mygrid = myBlockDimX * myGridDimX;
97
	for (int i = myid; i < mysize; i += mygrid) myptr[i] = 0;
98 99
}

100
__global__ void compareRefMapLoopShifts_kernel(const int iOrient, const int iConv, const myfloat_t* pMap, bioem_Probability pProb, const bioem_param_device param, const bioem_RefMap RefMap, const int blockoffset, const int nShifts, const int nShiftBits, const int maxRef)
101 102 103 104 105 106 107 108 109
{
	const size_t myid = (myBlockIdxX + blockoffset) * myBlockDimX + myThreadIdxX;
	const int iRefMap = myid >> (nShiftBits << 1);
	const int myRef = myThreadIdxX >> (nShiftBits << 1);
	const int myShiftIdx = (myid >> nShiftBits) & (nShifts - 1);
	const int myShiftIdy = myid & (nShifts - 1);
	const int myShift = myid & (nShifts * nShifts - 1);
	const int cent_x = myShiftIdx * param.GridSpaceCenter - param.maxDisplaceCenter;
	const int cent_y = myShiftIdy * param.GridSpaceCenter - param.maxDisplaceCenter;
110

111
	const bool threadActive = myShiftIdx < nShifts && myShiftIdy < nShifts && iRefMap < maxRef;
112

113
	compareRefMap<2>(iRefMap, iOrient, iConv, pMap, pProb, param, RefMap, cent_x, cent_y, myShift, nShifts * nShifts, myRef, threadActive);
114 115
}

116
__global__ void multComplexMap(const mycomplex_t* convmap, const mycomplex_t* refmap, mycuComplex_t* out, const int NumberPixelsTotal, const int MapSize, const int NumberMaps, const int Offset)
117 118
{
	if (myBlockIdxX >= NumberMaps) return;
119
	const mycuComplex_t* myin = (mycuComplex_t*) &refmap[(myBlockIdxX + Offset) * MapSize];
120
	const mycuComplex_t* myconv = (mycuComplex_t*) convmap;
121
	mycuComplex_t* myout = &out[myBlockIdxX * MapSize];
122
	for(int i = myThreadIdxX; i < NumberPixelsTotal; i += myBlockDimX)
123
	{
124 125 126 127 128 129 130
		mycuComplex_t val;
		const mycuComplex_t conv = myconv[i];
		const mycuComplex_t in = myin[i];

		val.x = conv.x * in.x + conv.y * in.y;
		val.y = conv.y * in.x - conv.x * in.y;
		myout[i] = val;
131 132 133
	}
}

134
__global__ void cuDoRefMapsFFT(const int iOrient, const int iConv, const myfloat_t* lCC, const myfloat_t sumC, const myfloat_t sumsquareC, bioem_Probability pProb, const bioem_param_device param, const bioem_RefMap RefMap, const int maxRef, const int Offset)
135
{
136
	if (myBlockIdxX * myBlockDimX + myThreadIdxX >= maxRef) return;
137 138
	const int iRefMap = myBlockIdxX * myBlockDimX + myThreadIdxX + Offset;
	const myfloat_t* mylCC = &lCC[(myBlockIdxX * myBlockDimX + myThreadIdxX) * param.NumberPixels * param.NumberPixels];
139
	doRefMapFFT(iRefMap, iOrient, iConv, mylCC, sumC, sumsquareC, pProb, param, RefMap);
140 141
}

142 143 144 145 146 147 148 149 150 151 152 153 154
template <class T> static inline T divup(T num, T divider) {return((num + divider - 1) / divider);}
static inline bool IsPowerOf2(int x) {return ((x > 0) && ((x & (x - 1)) == 0));}
#if defined(_WIN32)
static inline int ilog2 (int value)
{
	DWORD index;
	_BitScanReverse (&index, value);
	return(value);
}
#else
static inline int ilog2(int value) {return 31 - __builtin_clz(value);}
#endif

155
int bioem_cuda::compareRefMaps(int iOrient, int iConv, const myfloat_t* conv_map, mycomplex_t* localmultFFT, myfloat_t sumC, myfloat_t sumsquareC, const int startMap)
156
{
157 158 159 160 161
	if (startMap)
	{
		cout << "Error startMap not implemented for GPU Code\n";
		exit(1);
	}
162 163 164 165
	if (GPUAsync)
	{
		checkCudaErrors(cudaEventSynchronize(cudaEvent[iConv & 1]));
	}
166

167
	if (FFTAlgo)
168
	{
169 170
		checkCudaErrors(cudaMemcpyAsync(&pConvMapFFT[(iConv & 1) * param.FFTMapSize], localmultFFT, param.FFTMapSize * sizeof(mycomplex_t), cudaMemcpyHostToDevice, cudaStream[0]));
		if (GPUDualStream)
171
		{
172 173 174 175 176 177
			checkCudaErrors(cudaEventRecord(cudaFFTEvent[0], cudaStream[0]));
			checkCudaErrors(cudaStreamWaitEvent(cudaStream[1], cudaFFTEvent[0], 0));
		}
		for (int i = 0, j = 0; i < maxRef; i += CUDA_FFTS_AT_ONCE, j++)
		{
			if (!GPUDualStream) j = 0;
178
			const int num = min(CUDA_FFTS_AT_ONCE, maxRef - i);
179 180
			multComplexMap<<<num, CUDA_THREAD_COUNT, 0, cudaStream[j & 1]>>>(&pConvMapFFT[(iConv & 1) * param.FFTMapSize], pRefMapsFFT, pFFTtmp2[j & 1], param.param_device.NumberPixels * param.param_device.NumberFFTPixels1D, param.FFTMapSize, num, i);
			cufftResult err = mycufftExecC2R(i + CUDA_FFTS_AT_ONCE > maxRef ? plan[1][j & 1] : plan[0][j & 1], pFFTtmp2[j & 1], pFFTtmp[j & 1]);
David Rohr's avatar
David Rohr committed
181
			if (err != CUFFT_SUCCESS)
182
			{
David Rohr's avatar
David Rohr committed
183
				cout << "Error running CUFFT " << cufftGetErrorStrung(err) << "\n";
184 185
				exit(1);
			}
186
			cuDoRefMapsFFT<<<divup(num, CUDA_THREAD_COUNT), CUDA_THREAD_COUNT, 0, cudaStream[j & 1]>>>(iOrient, iConv, pFFTtmp[j & 1], sumC, sumsquareC, pProb_device, param.param_device, *gpumap, num, i);
187
		}
188
		checkCudaErrors(cudaGetLastError());
189 190 191 192 193
		if (GPUDualStream)
		{
			checkCudaErrors(cudaEventRecord(cudaFFTEvent[1], cudaStream[1]));
			checkCudaErrors(cudaStreamWaitEvent(cudaStream[0], cudaFFTEvent[1], 0));
		}
194 195 196
	}
	else
	{
197
		checkCudaErrors(cudaMemcpyAsync(pConvMap_device[iConv & 1], conv_map, sizeof(myfloat_t) * RefMap.refMapSize, cudaMemcpyHostToDevice, cudaStream[0]));
198 199

		if (GPUAlgo == 2) //Loop over shifts
200
		{
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
			const int nShifts = 2 * param.param_device.maxDisplaceCenter / param.param_device.GridSpaceCenter + 1;
			if (!IsPowerOf2(nShifts))
			{
				cout << "Invalid number of displacements, no power of two\n";
				exit(1);
			}
			if (CUDA_THREAD_COUNT % (nShifts * nShifts))
			{
				cout << "CUDA Thread count (" << CUDA_THREAD_COUNT << ") is no multiple of number of shifts (" << (nShifts * nShifts) << ")\n";
				exit(1);
			}
			if (nShifts > CUDA_MAX_SHIFT_REDUCE)
			{
				cout << "Too many displacements for CUDA reduction\n";
				exit(1);
			}
			const int nShiftBits = ilog2(nShifts);
			size_t totalBlocks = divup((size_t) maxRef * (size_t) nShifts * (size_t) nShifts, (size_t) CUDA_THREAD_COUNT);
			size_t nBlocks = CUDA_BLOCK_COUNT;
220
			for (size_t i = 0; i < totalBlocks; i += nBlocks)
221
			{
222
				compareRefMapLoopShifts_kernel<<<min(nBlocks, totalBlocks - i), CUDA_THREAD_COUNT, (CUDA_THREAD_COUNT * 2 + CUDA_THREAD_COUNT / (nShifts * nShifts) * 4) * sizeof(myfloat_t), cudaStream[0] >>> (iOrient, iConv, pConvMap_device[iConv & 1], pProb_device, param.param_device, *gpumap, i, nShifts, nShiftBits, maxRef);
223
			}
224
		}
225
		else if (GPUAlgo == 1) //Split shifts in multiple kernels
226
		{
227
			for (int cent_x = -param.param_device.maxDisplaceCenter; cent_x <= param.param_device.maxDisplaceCenter; cent_x = cent_x + param.param_device.GridSpaceCenter)
228
			{
229
				for (int cent_y = -param.param_device.maxDisplaceCenter; cent_y <= param.param_device.maxDisplaceCenter; cent_y = cent_y + param.param_device.GridSpaceCenter)
230
				{
231
					compareRefMap_kernel<<<divup(maxRef, CUDA_THREAD_COUNT), CUDA_THREAD_COUNT, 0, cudaStream[0]>>> (iOrient, iConv, pConvMap_device[iConv & 1], pProb_device, param.param_device, *pRefMap_device_Mod, cent_x, cent_y, maxRef);
232 233
				}
			}
234
		}
235
		else if (GPUAlgo == 0) //All shifts in one kernel
236
		{
237
			compareRefMapShifted_kernel<<<divup(maxRef, CUDA_THREAD_COUNT), CUDA_THREAD_COUNT, 0, cudaStream[0]>>> (iOrient, iConv, pConvMap_device[iConv & 1], pProb_device, param.param_device, *pRefMap_device_Mod, maxRef);
238
		}
239
		else
240
		{
241 242
			cout << "Invalid GPU Algorithm selected\n";
			exit(1);
243
		}
244
	}
245 246
	if (GPUWorkload < 100)
	{
247
		bioem::compareRefMaps(iOrient, iConv, conv_map, localmultFFT, sumC, sumsquareC, maxRef);
248
	}
249 250
	if (GPUAsync)
	{
251
		checkCudaErrors(cudaEventRecord(cudaEvent[iConv & 1], cudaStream[0]));
252
	}
253 254
	else
	{
255
		checkCudaErrors(cudaStreamSynchronize(cudaStream[0]));
256 257 258 259 260 261 262
	}
	return(0);
}

int bioem_cuda::deviceInit()
{
	deviceExit();
263

264 265
	if (FFTAlgo) GPUAlgo = 2;

266 267 268 269 270
	gpumap = new bioem_RefMap;
	memcpy(gpumap, &RefMap, sizeof(bioem_RefMap));
	if (FFTAlgo == 0)
	{
		checkCudaErrors(cudaMalloc(&maps, sizeof(myfloat_t) * RefMap.ntotRefMap * RefMap.refMapSize));
271 272 273 274 275 276 277 278 279 280 281 282 283

		if (GPUAlgo == 0 || GPUAlgo == 1)
		{
			pRefMap_device_Mod = (bioem_RefMap_Mod*) gpumap;
			bioem_RefMap_Mod* RefMapGPU = new bioem_RefMap_Mod;
			RefMapGPU->init(RefMap);
			checkCudaErrors(cudaMemcpy(maps, RefMapGPU->maps, sizeof(myfloat_t) * RefMap.ntotRefMap * RefMap.refMapSize, cudaMemcpyHostToDevice));
			delete RefMapGPU;
		}
		else
		{
			checkCudaErrors(cudaMemcpy(maps, RefMap.maps, sizeof(myfloat_t) * RefMap.ntotRefMap * RefMap.refMapSize, cudaMemcpyHostToDevice));
		}
284 285 286 287 288 289 290 291 292
	}
	checkCudaErrors(cudaMalloc(&sum, sizeof(myfloat_t) * RefMap.ntotRefMap));
	checkCudaErrors(cudaMemcpy(sum, RefMap.sum_RefMap, sizeof(myfloat_t) * RefMap.ntotRefMap, cudaMemcpyHostToDevice));
	checkCudaErrors(cudaMalloc(&sumsquare, sizeof(myfloat_t) * RefMap.ntotRefMap));
	checkCudaErrors(cudaMemcpy(sumsquare, RefMap.sumsquare_RefMap, sizeof(myfloat_t) * RefMap.ntotRefMap, cudaMemcpyHostToDevice));
	gpumap->maps = maps;
	gpumap->sum_RefMap = sum;
	gpumap->sumsquare_RefMap = sumsquare;

293 294 295
	pProb_device = pProb;
	checkCudaErrors(cudaMalloc(&pProb_device.ptr, pProb_device.get_size(RefMap.ntotRefMap, param.nTotGridAngles)));
	pProb_device.set_pointers();
296
	for (int i = 0; i < 2; i++)
297
	{
298
		checkCudaErrors(cudaStreamCreate(&cudaStream[i]));
299
		checkCudaErrors(cudaEventCreate(&cudaEvent[i]));
300
		checkCudaErrors(cudaEventCreate(&cudaFFTEvent[i]));
301
		checkCudaErrors(cudaMalloc(&pConvMap_device[i], sizeof(myfloat_t) * RefMap.refMapSize));
302
	}
303

304 305
	if (FFTAlgo)
	{
306
		checkCudaErrors(cudaMalloc(&pRefMapsFFT, RefMap.ntotRefMap * param.FFTMapSize * sizeof(mycomplex_t)));
307 308 309 310
		checkCudaErrors(cudaMalloc(&pFFTtmp2[0], CUDA_FFTS_AT_ONCE * param.FFTMapSize * 2 * sizeof(mycomplex_t)));
		checkCudaErrors(cudaMalloc(&pFFTtmp[0], CUDA_FFTS_AT_ONCE * param.param_device.NumberPixels * param.param_device.NumberPixels * 2 * sizeof(myfloat_t)));
		pFFTtmp2[1] = pFFTtmp2[0] + CUDA_FFTS_AT_ONCE * param.FFTMapSize;
		pFFTtmp[1] = pFFTtmp[0] + CUDA_FFTS_AT_ONCE * param.param_device.NumberPixels * param.param_device.NumberPixels;
311 312
		checkCudaErrors(cudaMalloc(&pConvMapFFT, param.FFTMapSize * sizeof(mycomplex_t) * 2));
		checkCudaErrors(cudaMemcpy(pRefMapsFFT, RefMap.RefMapsFFT, RefMap.ntotRefMap * param.FFTMapSize * sizeof(mycomplex_t), cudaMemcpyHostToDevice));
313 314
	}

315 316 317 318 319 320 321
	deviceInitialized = 1;
	return(0);
}

int bioem_cuda::deviceExit()
{
	if (deviceInitialized == 0) return(0);
322

323

324
	cudaFree(pProb_device.ptr);
325 326
	cudaFree(sum);
	cudaFree(sumsquare);
327
	for (int i = 0; i < 2; i++)
328
	{
329
		cudaStreamDestroy(cudaStream[i]);
330
		cudaEventDestroy(cudaEvent[i]);
331
		cudaEventDestroy(cudaFFTEvent[i]);
332
		cudaFree(pConvMap_device[i]);
333
	}
334 335 336 337
	if (FFTAlgo)
	{
		cudaFree(pRefMapsFFT);
		cudaFree(pConvMapFFT);
338 339
		cudaFree(pFFTtmp[0]);
		cudaFree(pFFTtmp2[0]);
340
	}
341 342 343 344 345 346 347 348 349
	else
	{
		cudaFree(maps);
	}
	if (GPUAlgo == 0 || GPUAlgo == 1)
	{
		cudaFree(pRefMap_device_Mod);
	}
	delete gpumap;
350
	cudaThreadExit();
351

352 353 354 355 356 357
	deviceInitialized = 0;
	return(0);
}

int bioem_cuda::deviceStartRun()
{
358
	maxRef = GPUWorkload >= 100 ? RefMap.ntotRefMap : ((size_t) RefMap.ntotRefMap * (size_t) GPUWorkload / 100);
359

360
	cudaMemcpy(pProb_device.ptr, pProb.ptr, pProb.get_size(RefMap.ntotRefMap, param.nTotGridAngles), cudaMemcpyHostToDevice);
361 362 363

	if (FFTAlgo)
	{
364
		for (int j = 0;j < 2;j++)
365
		{
366
			for (int i = 0; i < 2; i++)
367
			{
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
				int n[2] = {param.param_device.NumberPixels, param.param_device.NumberPixels};
				if (cufftPlanMany(&plan[i][j], 2, n, NULL, 1, param.FFTMapSize, NULL, 1, 0, MY_CUFFT_C2R, i ? (maxRef % CUDA_FFTS_AT_ONCE) : CUDA_FFTS_AT_ONCE) != CUFFT_SUCCESS)
				{
					cout << "Error planning CUFFT\n";
					exit(1);
				}
				if (cufftSetCompatibilityMode(plan[i][j], CUFFT_COMPATIBILITY_NATIVE) != CUFFT_SUCCESS)
				{
					cout << "Error planning CUFFT compatibility\n";
					exit(1);
				}
				if (cufftSetStream(plan[i][j], cudaStream[j]) != CUFFT_SUCCESS)
				{
					cout << "Error setting CUFFT stream\n";
					exit(1);
				}
384
			}
385
			if (!GPUDualStream) break;
386 387
		}
	}
388 389 390 391 392
	return(0);
}

int bioem_cuda::deviceFinishRun()
{
393
	if (GPUAsync) cudaStreamSynchronize(cudaStream[0]);
394
	cudaMemcpy(pProb.ptr, pProb_device.ptr, pProb.get_size(RefMap.ntotRefMap, param.nTotGridAngles), cudaMemcpyDeviceToHost);
395

396 397
	if (FFTAlgo)
	{
398 399 400 401 402
		for (int j = 0;j < 2;j++)
		{
			for (int i = 0; i < 2; i++) cufftDestroy(plan[i][j]);
			if (!GPUDualStream) break;
		}
403 404
	}

405 406 407 408 409 410 411
	return(0);
}

bioem* bioem_cuda_create()
{
	return new bioem_cuda;
}