bioem_algorithm.h 10.9 KB
Newer Older
qon's avatar
qon committed
1
2
#ifndef BIOEM_ALGORITHM_H
#define BIOEM_ALGORITHM_H
3
4
5
//#include <boost/iterator/iterator_concepts.hpp>

#ifndef BIOEM_GPUCODE
6
//#define SSECODE //Explicit SSE code, not correct yet since loop counter is assumed multiple of 4, anyway not faster than autovectorized code, only implemented for float, not for double.
7
8
9
10
11
12
#endif

#ifdef SSECODE
#include <emmintrin.h>
#include <smmintrin.h>
#endif
qon's avatar
qon committed
13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
template <int GPUAlgo>
__device__ static inline void update_prob(const myfloat_t logpro, const int iRefMap, const int iOrient, const int iConv, const int cent_x, const int cent_y, bioem_Probability* pProb, myfloat_t* buf3 = NULL, int* bufint = NULL)
{
	/*******  Summing total Probabilities *************/
	/******* Need a constant because of numerical divergence*****/
	if(pProb[iRefMap].Constoadd < logpro)
	{
		pProb[iRefMap].Total = pProb[iRefMap].Total * exp(-logpro + pProb[iRefMap].Constoadd);
		pProb[iRefMap].Constoadd = logpro;
	}

	//Summing probabilities for each orientation
	if(pProb[iRefMap].ConstAngle[iOrient] < logpro)
	{
		pProb[iRefMap].forAngles[iOrient] = pProb[iRefMap].forAngles[iOrient] * exp(-logpro + pProb[iRefMap].ConstAngle[iOrient]);
		pProb[iRefMap].ConstAngle[iOrient] = logpro;
	}

	if (GPUAlgo != 2)
	{
		pProb[iRefMap].Total += exp(logpro - pProb[iRefMap].Constoadd);
		pProb[iRefMap].forAngles[iOrient] += exp(logpro - pProb[iRefMap].ConstAngle[iOrient]);
	}

	/********** Getting parameters that maximize the probability ***********/
	if(pProb[iRefMap].max_prob < logpro)
	{
		pProb[iRefMap].max_prob = logpro;

		if (GPUAlgo == 2)
		{
			bufint[0] = 1;
			buf3[1] = logpro;
		}
		else
		{
			pProb[iRefMap].max_prob_cent_x = cent_x;
			pProb[iRefMap].max_prob_cent_y = cent_y;
		}
		pProb[iRefMap].max_prob_orient = iOrient;
		pProb[iRefMap].max_prob_conv = iConv;
	}
}

__device__ static inline myfloat_t calc_logpro(const bioem_param_device& param, const myfloat_t sum, const myfloat_t sumsquare, const myfloat_t crossproMapConv, const myfloat_t sumref, const myfloat_t sumsquareref)
{
	// Related to Reference calculated Projection
	const myfloat_t ForLogProb = (sumsquare * param.Ntotpi - sum * sum);

	// Products of different cross-correlations (first element in formula)
	const myfloat_t firstele = param.Ntotpi * (sumsquareref * sumsquare-crossproMapConv * crossproMapConv) +
							2 * sumref * sum * crossproMapConv - sumsquareref * sum * sum - sumref * sumref * sumsquare;

	//******* Calculating log of Prob*********/
	// As in fortran code: logpro=(3-Ntotpi)*0.5*log(firstele/pConvMap[iOrient].ForLogProbfromConv[iConv])+(Ntotpi*0.5-2)*log(Ntotpi-2)-0.5*log(pConvMap[iOrient].ForLogProbfromConv[iConv])+0.5*log(PI)+(1-Ntotpi*0.5)*(log(2*PI)+1);
	const myfloat_t logpro = (3 - param.Ntotpi) * 0.5 * log(firstele) + (param.Ntotpi * 0.5 - 2) * log((param.Ntotpi - 2) * ForLogProb);
	return(logpro);
}

qon's avatar
qon committed
73
74
template <int GPUAlgo, class RefT>
__device__ static inline void compareRefMap(const int iRefMap, const int iOrient, const int iConv, const bioem_map& Mapconv, bioem_Probability* pProb, const bioem_param_device& param, const RefT& RefMap,
75
	const int cent_x, const int cent_y, const int myShift = 0, const int nShifts2 = 0, const int myRef = 0, const bool threadActive = true)
qon's avatar
qon committed
76
{
77
78
79
	/**************************************************************************************/
	/**********************  Calculating BioEM Probability ********************************/
	/************************* Loop of center displacement here ***************************/
qon's avatar
qon committed
80

81
	// Taking into account the center displacement
qon's avatar
qon committed
82

83
	/*** Inizialzing crosscorrelations of calculated projected convolutions ***/
84
85
86
87
88
#ifdef SSECODE
	myfloat_t sum, sumsquare, crossproMapConv;
	__m128 sum_v = _mm_setzero_ps(), sumsquare_v = _mm_setzero_ps(), cross_v = _mm_setzero_ps(), d1, d2;
#else
	myfloat_t sum=0.0;
89
90
	myfloat_t sumsquare=0.0;
	myfloat_t crossproMapConv=0.0;
91
#endif
92
	/****** Loop over Pixels to calculate dot product and cross-correlations of displaced Ref Conv. Map***/
93
	myfloat_t logpro;
David Rohr's avatar
David Rohr committed
94
	if (GPUAlgo != 2 || threadActive)
qon's avatar
qon committed
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
	{
		int iStart, jStart, iEnd, jEnd;
		if (cent_x < 0)
		{
			iStart = -cent_x;
			iEnd = param.NumberPixels;
		}
		else
		{
			iStart = 0;
			iEnd = param.NumberPixels - cent_x;
		}
		if (cent_y < 0)
		{
			jStart = -cent_y;
			jEnd = param.NumberPixels;
		}
		else
		{
			jStart = 0;
			jEnd = param.NumberPixels - cent_y;
		}

		for (int i = iStart; i < iEnd; i += 1)
		{
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
#ifdef SSECODE
			const float* ptr1 = &Mapconv.points[i + cent_x][jStart + cent_y];
			const float* ptr2 = RefMap.getp(iRefMap, i, jStart);
			int j;
			const int count = jEnd - jStart;
			for (j = 0;j <= count - 4;j += 4)
			{
				d1 = _mm_loadu_ps(ptr1);
				d2 = _mm_loadu_ps(ptr2);
				sum_v = _mm_add_ps(sum_v, d1);
				sumsquare_v = _mm_add_ps(sumsquare_v, _mm_mul_ps(d1, d1));
				cross_v = _mm_add_ps(cross_v, _mm_mul_ps(d1, d2));
				ptr1 += 4;
				ptr2 += 4;
			}
#else
qon's avatar
qon committed
136
137
			for (int j = jStart; j < jEnd; j += 1)
			{
138
				const myfloat_t pointMap = Mapconv.points[i + cent_x][j + cent_y];
qon's avatar
qon committed
139
140
141
142
143
144
145
				const myfloat_t pointRefMap = RefMap.get(iRefMap, i, j);
				crossproMapConv += pointMap * pointRefMap;
				// Crosscorrelation of calculated displaced map
				sum += pointMap;
				// Calculate Sum of pixels squared
				sumsquare += pointMap*pointMap;
			}
146
#endif
qon's avatar
qon committed
147
		}
148
149
150
151
152
153
154
155
156
157
158
#ifdef SSECODE
		sum_v = _mm_hadd_ps(sum_v, sum_v);
		sumsquare_v = _mm_hadd_ps(sumsquare_v, sumsquare_v);
		cross_v = _mm_hadd_ps(cross_v, cross_v);
		sum_v = _mm_hadd_ps(sum_v, sum_v);
		sumsquare_v = _mm_hadd_ps(sumsquare_v, sumsquare_v);
		cross_v = _mm_hadd_ps(cross_v, cross_v);
		sum = _mm_cvtss_f32(sum_v);
		sumsquare = _mm_cvtss_f32(sumsquare_v);
		crossproMapConv = _mm_cvtss_f32(cross_v);
#endif
David Rohr's avatar
David Rohr committed
159

160
		/********** Calculating elements in BioEM Probability formula ********/
161
		logpro = calc_logpro(param, sum, sumsquare, crossproMapConv, RefMap.sum_RefMap[iRefMap], RefMap.sumsquare_RefMap[iRefMap]);
162
163
164
165
166
	}
	else
	{
		logpro = 0;
	}
qon's avatar
qon committed
167
168
169
170
171
172
173
174

#ifdef BIOEM_GPUCODE
	if (GPUAlgo == 2)
	{
		extern __shared__ myfloat_t buf[];
		myfloat_t* buf2 = &buf[myBlockDimX];
		myfloat_t* buf3 = &buf2[myBlockDimX + 4 * myRef];
		int* bufint = (int*) buf3;
David Rohr's avatar
David Rohr committed
175

qon's avatar
qon committed
176
177
178
179
180
181
		buf[myThreadIdxX] = logpro;
		if (myShift == 0)
		{
			bufint[0] = 0;
		}
		__syncthreads();
David Rohr's avatar
David Rohr committed
182

qon's avatar
qon committed
183
184
185
186
187
		if (nShifts2 == CUDA_MAX_SHIFT_REDUCE) // 1024
		{
			if (myShift < 512) if (buf[myThreadIdxX + 512] > buf[myThreadIdxX]) buf[myThreadIdxX] = buf[myThreadIdxX + 512];
			__syncthreads();
		}
David Rohr's avatar
David Rohr committed
188

qon's avatar
qon committed
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
		if (nShifts2 >= 512)
		{
			if (myShift < 256) if (buf[myThreadIdxX + 256] > buf[myThreadIdxX]) buf[myThreadIdxX] = buf[myThreadIdxX + 256];
			__syncthreads();
		}

		if (nShifts2 >= 256)
		{
			if (myShift < 128) if (buf[myThreadIdxX + 128] > buf[myThreadIdxX]) buf[myThreadIdxX] = buf[myThreadIdxX + 128];
			__syncthreads();
		}

		if (nShifts2 >= 128)
		{
			if (myShift < 64) if (buf[myThreadIdxX + 64] > buf[myThreadIdxX]) buf[myThreadIdxX] = buf[myThreadIdxX + 64];
			__syncthreads();
		}

		if (myShift < 32) //Warp Size is 32, threads are synched automatically
		{
209
			volatile myfloat_t* vbuf = buf; //Mem must be volatile such that memory access is not reordered
qon's avatar
qon committed
210
211
212
213
214
215
216
217
218
			if (nShifts2 >= 64 && vbuf[myThreadIdxX + 32] > vbuf[myThreadIdxX]) vbuf[myThreadIdxX] = vbuf[myThreadIdxX + 32];
			if (nShifts2 >= 32 && vbuf[myThreadIdxX + 16] > vbuf[myThreadIdxX]) vbuf[myThreadIdxX] = vbuf[myThreadIdxX + 16];
			if (nShifts2 >= 16 && vbuf[myThreadIdxX + 8] > vbuf[myThreadIdxX]) vbuf[myThreadIdxX] = vbuf[myThreadIdxX + 8];
			if (nShifts2 >= 8 && vbuf[myThreadIdxX + 4] > vbuf[myThreadIdxX]) vbuf[myThreadIdxX] = vbuf[myThreadIdxX + 4];
			if (nShifts2 >= 4 && vbuf[myThreadIdxX + 2] > vbuf[myThreadIdxX]) vbuf[myThreadIdxX] = vbuf[myThreadIdxX + 2];
			if (nShifts2 >= 2 && vbuf[myThreadIdxX + 1] > vbuf[myThreadIdxX]) vbuf[myThreadIdxX] = vbuf[myThreadIdxX + 1];
			if (myShift == 0 && iRefMap < RefMap.ntotRefMap)
			{
				const myfloat_t logpro_max = vbuf[myThreadIdxX];
219
				update_prob<GPUAlgo>(logpro_max, iRefMap, iOrient, iConv, -1, -1, pProb, buf3, bufint);
qon's avatar
qon committed
220
221
			}
		}
David Rohr's avatar
David Rohr committed
222

qon's avatar
qon committed
223
224
225
226
227
228
		__syncthreads();
		if (bufint[0] == 1 && buf3[1] == logpro && iRefMap < RefMap.ntotRefMap && atomicAdd(&bufint[0], 1) == 1)
		{
			pProb[iRefMap].max_prob_cent_x = cent_x;
			pProb[iRefMap].max_prob_cent_y = cent_y;
		}
David Rohr's avatar
David Rohr committed
229

qon's avatar
qon committed
230
		__syncthreads();
David Rohr's avatar
David Rohr committed
231

qon's avatar
qon committed
232
233
234
235
236
237
		if (iRefMap < RefMap.ntotRefMap)
		{
			buf[myThreadIdxX] = exp(logpro - pProb[iRefMap].Constoadd);
			buf2[myThreadIdxX] = exp(logpro - pProb[iRefMap].ConstAngle[iOrient]);
		}
		__syncthreads();
David Rohr's avatar
David Rohr committed
238

qon's avatar
qon committed
239
240
241
242
243
244
245
246
247
		if (nShifts2 == CUDA_MAX_SHIFT_REDUCE) // 1024
		{
			if (myShift < 512)
			{
				buf[myThreadIdxX] += buf[myThreadIdxX + 512];
				buf2[myThreadIdxX] += buf2[myThreadIdxX + 512];
			}
			__syncthreads();
		}
David Rohr's avatar
David Rohr committed
248

qon's avatar
qon committed
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
		if (nShifts2 >= 512)
		{
			if (myShift < 256)
			{
				buf[myThreadIdxX] += buf[myThreadIdxX + 256];
				buf2[myThreadIdxX] += buf2[myThreadIdxX + 256];
			}
			__syncthreads();
		}

		if (nShifts2 >= 256)
		{
			if (myShift < 128)
			{
				buf[myThreadIdxX] += buf[myThreadIdxX + 128];
				buf2[myThreadIdxX] += buf2[myThreadIdxX + 128];
			}
			__syncthreads();
		}

		if (nShifts2 >= 128)
		{
			if (myShift < 64)
			{
				buf[myThreadIdxX] += buf[myThreadIdxX + 64];
				buf2[myThreadIdxX] += buf2[myThreadIdxX + 64];
			}
			__syncthreads();
		}

		if (myShift < 32) //Warp Size is 32, threads are synched automatically
		{
281
282
			volatile myfloat_t* vbuf = buf; //Mem must be volatile such that memory access is not reordered
			volatile myfloat_t* vbuf2 = buf2;
qon's avatar
qon committed
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
			if (nShifts2 >= 64)
			{
				vbuf[myThreadIdxX] += vbuf[myThreadIdxX + 32];
				vbuf2[myThreadIdxX] += vbuf2[myThreadIdxX + 32];
			}
			if (nShifts2 >= 32)
			{
				vbuf[myThreadIdxX] += vbuf[myThreadIdxX + 16];
				vbuf2[myThreadIdxX] += vbuf2[myThreadIdxX + 16];
			}
			if (nShifts2 >= 16)
			{
				vbuf[myThreadIdxX] += vbuf[myThreadIdxX + 8];
				vbuf2[myThreadIdxX] += vbuf2[myThreadIdxX + 8];
			}
			if (nShifts2 >= 8)
			{
				vbuf[myThreadIdxX] += vbuf[myThreadIdxX + 4];
				vbuf2[myThreadIdxX] += vbuf2[myThreadIdxX + 4];
			}
			if (nShifts2 >= 4)
			{
				vbuf[myThreadIdxX] += vbuf[myThreadIdxX + 2];
				vbuf2[myThreadIdxX] += vbuf2[myThreadIdxX + 2];
			}
			if (nShifts2 >= 2)
			{
				vbuf[myThreadIdxX] += vbuf[myThreadIdxX + 1];
				vbuf2[myThreadIdxX] += vbuf2[myThreadIdxX + 1];
			}
			if (myShift == 0 && iRefMap < RefMap.ntotRefMap)
			{
				pProb[iRefMap].Total += vbuf[myThreadIdxX];
				pProb[iRefMap].forAngles[iOrient] += vbuf2[myThreadIdxX];
			}
		}
	}
	else
#endif

323
324
	/***** Summing & Storing total/Orientation Probabilites for each map ************/
	{
325
		update_prob<-1>(logpro, iRefMap, iOrient, iConv, cent_x, cent_y, pProb);
326
	}
qon's avatar
qon committed
327
328
329
330
331
}

template <int GPUAlgo, class RefT>
__device__ static inline void compareRefMapShifted(const int iRefMap, const int iOrient, const int iConv, const bioem_map& Mapconv, bioem_Probability* pProb, const bioem_param_device& param, const RefT& RefMap)
{
332
333
334
335
	for (int cent_x = -param.maxDisplaceCenter; cent_x <= param.maxDisplaceCenter; cent_x=cent_x+param.GridSpaceCenter)
	{
		for (int cent_y = -param.maxDisplaceCenter; cent_y <= param.maxDisplaceCenter; cent_y=cent_y+param.GridSpaceCenter)
		{
qon's avatar
qon committed
336
			compareRefMap<GPUAlgo>(iRefMap, iOrient, iConv, Mapconv, pProb, param, RefMap, cent_x, cent_y);
337
338
		}
	}
qon's avatar
qon committed
339
340
341
}

#endif