bioem_algorithm.h 10.9 KB
Newer Older
qon's avatar
qon committed
1 2
#ifndef BIOEM_ALGORITHM_H
#define BIOEM_ALGORITHM_H
3 4 5
//#include <boost/iterator/iterator_concepts.hpp>

#ifndef BIOEM_GPUCODE
6
//#define SSECODE //Explicit SSE code, not correct yet since loop counter is assumed multiple of 4, anyway not faster than autovectorized code, only implemented for float, not for double.
7 8 9 10 11 12
#endif

#ifdef SSECODE
#include <emmintrin.h>
#include <smmintrin.h>
#endif
qon's avatar
qon committed
13

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
template <int GPUAlgo>
__device__ static inline void update_prob(const myfloat_t logpro, const int iRefMap, const int iOrient, const int iConv, const int cent_x, const int cent_y, bioem_Probability* pProb, myfloat_t* buf3 = NULL, int* bufint = NULL)
{
	/*******  Summing total Probabilities *************/
	/******* Need a constant because of numerical divergence*****/
	if(pProb[iRefMap].Constoadd < logpro)
	{
		pProb[iRefMap].Total = pProb[iRefMap].Total * exp(-logpro + pProb[iRefMap].Constoadd);
		pProb[iRefMap].Constoadd = logpro;
	}

	//Summing probabilities for each orientation
	if(pProb[iRefMap].ConstAngle[iOrient] < logpro)
	{
		pProb[iRefMap].forAngles[iOrient] = pProb[iRefMap].forAngles[iOrient] * exp(-logpro + pProb[iRefMap].ConstAngle[iOrient]);
		pProb[iRefMap].ConstAngle[iOrient] = logpro;
	}

	if (GPUAlgo != 2)
	{
		pProb[iRefMap].Total += exp(logpro - pProb[iRefMap].Constoadd);
		pProb[iRefMap].forAngles[iOrient] += exp(logpro - pProb[iRefMap].ConstAngle[iOrient]);
	}

	/********** Getting parameters that maximize the probability ***********/
	if(pProb[iRefMap].max_prob < logpro)
	{
		pProb[iRefMap].max_prob = logpro;

		if (GPUAlgo == 2)
		{
			bufint[0] = 1;
			buf3[1] = logpro;
		}
		else
		{
			pProb[iRefMap].max_prob_cent_x = cent_x;
			pProb[iRefMap].max_prob_cent_y = cent_y;
		}
		pProb[iRefMap].max_prob_orient = iOrient;
		pProb[iRefMap].max_prob_conv = iConv;
	}
}

__device__ static inline myfloat_t calc_logpro(const bioem_param_device& param, const myfloat_t sum, const myfloat_t sumsquare, const myfloat_t crossproMapConv, const myfloat_t sumref, const myfloat_t sumsquareref)
{
	// Related to Reference calculated Projection
	const myfloat_t ForLogProb = (sumsquare * param.Ntotpi - sum * sum);

	// Products of different cross-correlations (first element in formula)
	const myfloat_t firstele = param.Ntotpi * (sumsquareref * sumsquare-crossproMapConv * crossproMapConv) +
							2 * sumref * sum * crossproMapConv - sumsquareref * sum * sum - sumref * sumref * sumsquare;

	//******* Calculating log of Prob*********/
	// As in fortran code: logpro=(3-Ntotpi)*0.5*log(firstele/pConvMap[iOrient].ForLogProbfromConv[iConv])+(Ntotpi*0.5-2)*log(Ntotpi-2)-0.5*log(pConvMap[iOrient].ForLogProbfromConv[iConv])+0.5*log(PI)+(1-Ntotpi*0.5)*(log(2*PI)+1);
	const myfloat_t logpro = (3 - param.Ntotpi) * 0.5 * log(firstele) + (param.Ntotpi * 0.5 - 2) * log((param.Ntotpi - 2) * ForLogProb);
	return(logpro);
}

qon's avatar
qon committed
73 74
template <int GPUAlgo, class RefT>
__device__ static inline void compareRefMap(const int iRefMap, const int iOrient, const int iConv, const bioem_map& Mapconv, bioem_Probability* pProb, const bioem_param_device& param, const RefT& RefMap,
75
	const int cent_x, const int cent_y, const int myShift = 0, const int nShifts2 = 0, const int myRef = 0, const bool threadActive = true)
qon's avatar
qon committed
76
{
77 78 79
	/**************************************************************************************/
	/**********************  Calculating BioEM Probability ********************************/
	/************************* Loop of center displacement here ***************************/
qon's avatar
qon committed
80

81
	// Taking into account the center displacement
qon's avatar
qon committed
82

83
	/*** Inizialzing crosscorrelations of calculated projected convolutions ***/
84 85 86 87 88
#ifdef SSECODE
	myfloat_t sum, sumsquare, crossproMapConv;
	__m128 sum_v = _mm_setzero_ps(), sumsquare_v = _mm_setzero_ps(), cross_v = _mm_setzero_ps(), d1, d2;
#else
	myfloat_t sum=0.0;
89 90
	myfloat_t sumsquare=0.0;
	myfloat_t crossproMapConv=0.0;
91
#endif
92
	/****** Loop over Pixels to calculate dot product and cross-correlations of displaced Ref Conv. Map***/
93
	myfloat_t logpro;
David Rohr's avatar
David Rohr committed
94
	if (GPUAlgo != 2 || threadActive)
qon's avatar
qon committed
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
	{
		int iStart, jStart, iEnd, jEnd;
		if (cent_x < 0)
		{
			iStart = -cent_x;
			iEnd = param.NumberPixels;
		}
		else
		{
			iStart = 0;
			iEnd = param.NumberPixels - cent_x;
		}
		if (cent_y < 0)
		{
			jStart = -cent_y;
			jEnd = param.NumberPixels;
		}
		else
		{
			jStart = 0;
			jEnd = param.NumberPixels - cent_y;
		}

		for (int i = iStart; i < iEnd; i += 1)
		{
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
#ifdef SSECODE
			const float* ptr1 = &Mapconv.points[i + cent_x][jStart + cent_y];
			const float* ptr2 = RefMap.getp(iRefMap, i, jStart);
			int j;
			const int count = jEnd - jStart;
			for (j = 0;j <= count - 4;j += 4)
			{
				d1 = _mm_loadu_ps(ptr1);
				d2 = _mm_loadu_ps(ptr2);
				sum_v = _mm_add_ps(sum_v, d1);
				sumsquare_v = _mm_add_ps(sumsquare_v, _mm_mul_ps(d1, d1));
				cross_v = _mm_add_ps(cross_v, _mm_mul_ps(d1, d2));
				ptr1 += 4;
				ptr2 += 4;
			}
#else
qon's avatar
qon committed
136 137
			for (int j = jStart; j < jEnd; j += 1)
			{
138
				const myfloat_t pointMap = Mapconv.points[i + cent_x][j + cent_y];
qon's avatar
qon committed
139 140 141 142 143 144 145
				const myfloat_t pointRefMap = RefMap.get(iRefMap, i, j);
				crossproMapConv += pointMap * pointRefMap;
				// Crosscorrelation of calculated displaced map
				sum += pointMap;
				// Calculate Sum of pixels squared
				sumsquare += pointMap*pointMap;
			}
146
#endif
qon's avatar
qon committed
147
		}
148 149 150 151 152 153 154 155 156 157 158
#ifdef SSECODE
		sum_v = _mm_hadd_ps(sum_v, sum_v);
		sumsquare_v = _mm_hadd_ps(sumsquare_v, sumsquare_v);
		cross_v = _mm_hadd_ps(cross_v, cross_v);
		sum_v = _mm_hadd_ps(sum_v, sum_v);
		sumsquare_v = _mm_hadd_ps(sumsquare_v, sumsquare_v);
		cross_v = _mm_hadd_ps(cross_v, cross_v);
		sum = _mm_cvtss_f32(sum_v);
		sumsquare = _mm_cvtss_f32(sumsquare_v);
		crossproMapConv = _mm_cvtss_f32(cross_v);
#endif
David Rohr's avatar
David Rohr committed
159

160
		/********** Calculating elements in BioEM Probability formula ********/
161
		logpro = calc_logpro(param, sum, sumsquare, crossproMapConv, RefMap.sum_RefMap[iRefMap], RefMap.sumsquare_RefMap[iRefMap]);
162 163 164 165 166
	}
	else
	{
		logpro = 0;
	}
qon's avatar
qon committed
167 168 169 170 171 172 173 174

#ifdef BIOEM_GPUCODE
	if (GPUAlgo == 2)
	{
		extern __shared__ myfloat_t buf[];
		myfloat_t* buf2 = &buf[myBlockDimX];
		myfloat_t* buf3 = &buf2[myBlockDimX + 4 * myRef];
		int* bufint = (int*) buf3;
David Rohr's avatar
David Rohr committed
175

qon's avatar
qon committed
176 177 178 179 180 181
		buf[myThreadIdxX] = logpro;
		if (myShift == 0)
		{
			bufint[0] = 0;
		}
		__syncthreads();
David Rohr's avatar
David Rohr committed
182

qon's avatar
qon committed
183 184 185 186 187
		if (nShifts2 == CUDA_MAX_SHIFT_REDUCE) // 1024
		{
			if (myShift < 512) if (buf[myThreadIdxX + 512] > buf[myThreadIdxX]) buf[myThreadIdxX] = buf[myThreadIdxX + 512];
			__syncthreads();
		}
David Rohr's avatar
David Rohr committed
188

qon's avatar
qon committed
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
		if (nShifts2 >= 512)
		{
			if (myShift < 256) if (buf[myThreadIdxX + 256] > buf[myThreadIdxX]) buf[myThreadIdxX] = buf[myThreadIdxX + 256];
			__syncthreads();
		}

		if (nShifts2 >= 256)
		{
			if (myShift < 128) if (buf[myThreadIdxX + 128] > buf[myThreadIdxX]) buf[myThreadIdxX] = buf[myThreadIdxX + 128];
			__syncthreads();
		}

		if (nShifts2 >= 128)
		{
			if (myShift < 64) if (buf[myThreadIdxX + 64] > buf[myThreadIdxX]) buf[myThreadIdxX] = buf[myThreadIdxX + 64];
			__syncthreads();
		}

		if (myShift < 32) //Warp Size is 32, threads are synched automatically
		{
209
			volatile myfloat_t* vbuf = buf; //Mem must be volatile such that memory access is not reordered
qon's avatar
qon committed
210 211 212 213 214 215 216 217 218
			if (nShifts2 >= 64 && vbuf[myThreadIdxX + 32] > vbuf[myThreadIdxX]) vbuf[myThreadIdxX] = vbuf[myThreadIdxX + 32];
			if (nShifts2 >= 32 && vbuf[myThreadIdxX + 16] > vbuf[myThreadIdxX]) vbuf[myThreadIdxX] = vbuf[myThreadIdxX + 16];
			if (nShifts2 >= 16 && vbuf[myThreadIdxX + 8] > vbuf[myThreadIdxX]) vbuf[myThreadIdxX] = vbuf[myThreadIdxX + 8];
			if (nShifts2 >= 8 && vbuf[myThreadIdxX + 4] > vbuf[myThreadIdxX]) vbuf[myThreadIdxX] = vbuf[myThreadIdxX + 4];
			if (nShifts2 >= 4 && vbuf[myThreadIdxX + 2] > vbuf[myThreadIdxX]) vbuf[myThreadIdxX] = vbuf[myThreadIdxX + 2];
			if (nShifts2 >= 2 && vbuf[myThreadIdxX + 1] > vbuf[myThreadIdxX]) vbuf[myThreadIdxX] = vbuf[myThreadIdxX + 1];
			if (myShift == 0 && iRefMap < RefMap.ntotRefMap)
			{
				const myfloat_t logpro_max = vbuf[myThreadIdxX];
219
				update_prob<GPUAlgo>(logpro_max, iRefMap, iOrient, iConv, -1, -1, pProb, buf3, bufint);
qon's avatar
qon committed
220 221
			}
		}
David Rohr's avatar
David Rohr committed
222

qon's avatar
qon committed
223 224 225 226 227 228
		__syncthreads();
		if (bufint[0] == 1 && buf3[1] == logpro && iRefMap < RefMap.ntotRefMap && atomicAdd(&bufint[0], 1) == 1)
		{
			pProb[iRefMap].max_prob_cent_x = cent_x;
			pProb[iRefMap].max_prob_cent_y = cent_y;
		}
David Rohr's avatar
David Rohr committed
229

qon's avatar
qon committed
230
		__syncthreads();
David Rohr's avatar
David Rohr committed
231

qon's avatar
qon committed
232 233 234 235 236 237
		if (iRefMap < RefMap.ntotRefMap)
		{
			buf[myThreadIdxX] = exp(logpro - pProb[iRefMap].Constoadd);
			buf2[myThreadIdxX] = exp(logpro - pProb[iRefMap].ConstAngle[iOrient]);
		}
		__syncthreads();
David Rohr's avatar
David Rohr committed
238

qon's avatar
qon committed
239 240 241 242 243 244 245 246 247
		if (nShifts2 == CUDA_MAX_SHIFT_REDUCE) // 1024
		{
			if (myShift < 512)
			{
				buf[myThreadIdxX] += buf[myThreadIdxX + 512];
				buf2[myThreadIdxX] += buf2[myThreadIdxX + 512];
			}
			__syncthreads();
		}
David Rohr's avatar
David Rohr committed
248

qon's avatar
qon committed
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
		if (nShifts2 >= 512)
		{
			if (myShift < 256)
			{
				buf[myThreadIdxX] += buf[myThreadIdxX + 256];
				buf2[myThreadIdxX] += buf2[myThreadIdxX + 256];
			}
			__syncthreads();
		}

		if (nShifts2 >= 256)
		{
			if (myShift < 128)
			{
				buf[myThreadIdxX] += buf[myThreadIdxX + 128];
				buf2[myThreadIdxX] += buf2[myThreadIdxX + 128];
			}
			__syncthreads();
		}

		if (nShifts2 >= 128)
		{
			if (myShift < 64)
			{
				buf[myThreadIdxX] += buf[myThreadIdxX + 64];
				buf2[myThreadIdxX] += buf2[myThreadIdxX + 64];
			}
			__syncthreads();
		}

		if (myShift < 32) //Warp Size is 32, threads are synched automatically
		{
281 282
			volatile myfloat_t* vbuf = buf; //Mem must be volatile such that memory access is not reordered
			volatile myfloat_t* vbuf2 = buf2;
qon's avatar
qon committed
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
			if (nShifts2 >= 64)
			{
				vbuf[myThreadIdxX] += vbuf[myThreadIdxX + 32];
				vbuf2[myThreadIdxX] += vbuf2[myThreadIdxX + 32];
			}
			if (nShifts2 >= 32)
			{
				vbuf[myThreadIdxX] += vbuf[myThreadIdxX + 16];
				vbuf2[myThreadIdxX] += vbuf2[myThreadIdxX + 16];
			}
			if (nShifts2 >= 16)
			{
				vbuf[myThreadIdxX] += vbuf[myThreadIdxX + 8];
				vbuf2[myThreadIdxX] += vbuf2[myThreadIdxX + 8];
			}
			if (nShifts2 >= 8)
			{
				vbuf[myThreadIdxX] += vbuf[myThreadIdxX + 4];
				vbuf2[myThreadIdxX] += vbuf2[myThreadIdxX + 4];
			}
			if (nShifts2 >= 4)
			{
				vbuf[myThreadIdxX] += vbuf[myThreadIdxX + 2];
				vbuf2[myThreadIdxX] += vbuf2[myThreadIdxX + 2];
			}
			if (nShifts2 >= 2)
			{
				vbuf[myThreadIdxX] += vbuf[myThreadIdxX + 1];
				vbuf2[myThreadIdxX] += vbuf2[myThreadIdxX + 1];
			}
			if (myShift == 0 && iRefMap < RefMap.ntotRefMap)
			{
				pProb[iRefMap].Total += vbuf[myThreadIdxX];
				pProb[iRefMap].forAngles[iOrient] += vbuf2[myThreadIdxX];
			}
		}
	}
	else
#endif

323 324
	/***** Summing & Storing total/Orientation Probabilites for each map ************/
	{
325
		update_prob<-1>(logpro, iRefMap, iOrient, iConv, cent_x, cent_y, pProb);
326
	}
qon's avatar
qon committed
327 328 329 330 331
}

template <int GPUAlgo, class RefT>
__device__ static inline void compareRefMapShifted(const int iRefMap, const int iOrient, const int iConv, const bioem_map& Mapconv, bioem_Probability* pProb, const bioem_param_device& param, const RefT& RefMap)
{
332 333 334 335
	for (int cent_x = -param.maxDisplaceCenter; cent_x <= param.maxDisplaceCenter; cent_x=cent_x+param.GridSpaceCenter)
	{
		for (int cent_y = -param.maxDisplaceCenter; cent_y <= param.maxDisplaceCenter; cent_y=cent_y+param.GridSpaceCenter)
		{
qon's avatar
qon committed
336
			compareRefMap<GPUAlgo>(iRefMap, iOrient, iConv, Mapconv, pProb, param, RefMap, cent_x, cent_y);
337 338
		}
	}
qon's avatar
qon committed
339 340 341
}

#endif