Planned maintenance on Wednesday, 2021-01-20, 17:00-18:00. Expect some interruptions during that time

bioem.cpp 24.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
#include <fstream>
#include <boost/program_options.hpp>
#include <iostream>
#include <algorithm>
#include <iterator>
#include <stdio.h>
#include <stdlib.h>
#include <string>
#include <cmath>
#include <omp.h>

#include <fftw3.h>
#include <math.h>
#include "cmodules/timer.h"

#include "param.h"
#include "bioem.h"
#include "model.h"
#include "map.h"


#include "bioem_algorithm.h"


using namespace boost;
namespace po = boost::program_options;

using namespace std;

// A helper function of Boost
template<class T>
ostream& operator<<(ostream& os, const vector<T>& v)
{
34 35
	copy(v.begin(), v.end(), ostream_iterator<T>(os, " "));
	return os;
36 37 38 39
}

bioem::bioem()
{
40
	FFTAlgo = getenv("FFTALGO") == NULL ? 0 : atoi(getenv("FFTALGO"));
41 42 43 44
}

bioem::~bioem()
{
David Rohr's avatar
David Rohr committed
45

46 47 48 49
}

int bioem::configure(int ac, char* av[])
{
50 51 52 53 54 55 56 57 58 59
	/**************************************************************************************/
	/**** Configuration Routine using boost for extracting parameters, models and maps ****/
	/**************************************************************************************/
	/****** And Precalculating necessary grids, map crosscorrelations and kernels  ********/
	/*************************************************************************************/

	/*** Inizialzing default variables ***/
	std::string infile,modelfile,mapfile;
	Model.readPDB=false;
	param.writeAngles=false;
60 61 62
	RefMap.dumpMap = false;
	RefMap.loadMap = false;

63 64 65
	/*************************************************************************************/
	cout << " ++++++++++++ FROM COMMAND LINE +++++++++++\n\n";
	/*************************************************************************************/
66

67
	/********************* Command line reading input with BOOST ************************/
68

69 70 71 72 73 74 75
	try {
		po::options_description desc("Command line inputs");
		desc.add_options()
		("Inputfile", po::value<std::string>(), "Name of input parameter file")
		("Modelfile", po::value< std::string>() , "Name of model file")
		("Particlesfile", po::value< std::string>(), "Name of paricles file")
		("ReadPDB", "(Optional) If reading model file in PDB format")
76 77
		("DumpMaps", "(Optional) Dump maps after they were red from maps file")
		("LoadMapDump", "(Optional) Read Maps from dump instead of maps file")
78 79 80 81 82 83 84 85
		("help", "(Optional) Produce help message")
		;

		po::positional_options_description p;
		p.add("Inputfile", -1);
		p.add("Modelfile", -1);
		p.add("Particlesfile", -1);
		p.add("ReadPDB", -1);
86 87 88
		p.add("DumpMaps", -1);
		p.add("LoadMapDump", -1);

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
		po::variables_map vm;
		po::store(po::command_line_parser(ac, av).
				  options(desc).positional(p).run(), vm);
		po::notify(vm);

		if((ac < 6)) {
			std::cout << desc << std::endl;
			return 0;
		}
		if (vm.count("help")) {
			cout << "Usage: options_description [options]\n";
			cout << desc;
			return 0;
		}

		if (vm.count("Inputfile"))
		{
			cout << "Input file is: ";
			cout << vm["Inputfile"].as< std::string >()<< "\n";
			infile=vm["Inputfile"].as< std::string >();
		}
		if (vm.count("Modelfile"))
		{
			cout << "Model file is: "
				 << vm["Modelfile"].as<  std::string  >() << "\n";
			modelfile=vm["Modelfile"].as<  std::string  >();
		}

		if (vm.count("ReadPDB"))
		{
			cout << "Reading model file in PDB format.\n";
			Model.readPDB=true;
		}

		if (vm.count("DumpMaps"))
		{
			cout << "Dumping Maps after reading from file.\n";
			RefMap.dumpMap = true;
		}

		if (vm.count("LoadMapDump"))
		{
			cout << "Loading Map dump.\n";
			RefMap.loadMap = true;
		}

		if (vm.count("Particlesfile"))
		{
			cout << "Paricle file is: "
				 << vm["Particlesfile"].as< std::string >() << "\n";
			mapfile=vm["Particlesfile"].as< std::string >();
		}
	}
	catch(std::exception& e)
	{
		cout << e.what() << "\n";
		return 1;
	}

	/********************* Reading Parameter Input ***************************/
	// copying inputfile to param class
	param.fileinput = infile.c_str();
	param.readParameters();

	/********************* Reading Model Input ******************************/
	// copying modelfile to model class
	Model.filemodel = modelfile.c_str();
	Model.readModel();

	/********************* Reading Particle Maps Input **********************/
	/********* HERE: PROBLEM if maps dont fit on the memory!! ***************/
	// copying mapfile to ref map class
	RefMap.filemap = mapfile.c_str();
	RefMap.readRefMaps(param);

	/****************** Precalculating Necessary Stuff *********************/
	precalculate();
David Rohr's avatar
David Rohr committed
166

167 168 169 170 171
	if (getenv("BIOEM_DEBUG_BREAK"))
	{
		param.nTotGridAngles = atoi(getenv("BIOEM_DEBUG_BREAK"));
		param.nTotCTFs = atoi(getenv("BIOEM_DEBUG_BREAK"));
	}
David Rohr's avatar
David Rohr committed
172

173 174
	deviceInit();

175
	return(0);
176 177 178 179
}

int bioem::precalculate()
{
180 181 182
	/**************************************************************************************/
	/* Precalculating Routine of Orientation grids, Map crosscorrelations and CTF Kernels */
	/**************************************************************************************/
183

184 185
	// Generating Grids of orientations
	param.CalculateGridsParam();
186

187 188 189 190 191 192 193 194 195 196
	myfloat_t sum,sumsquare;

	//Precalculating cross-correlations of maps
	for (int iRefMap = 0; iRefMap < RefMap.ntotRefMap ; iRefMap++)
	{
		calcross_cor(RefMap.Ref[iRefMap],sum,sumsquare);
		//Storing Crosscorrelations in Map class
		RefMap.sum_RefMap[iRefMap]=sum;
		RefMap.sumsquare_RefMap[iRefMap]=sumsquare;
	}
197

198 199
	// Precalculating CTF Kernels stored in class Param
	param.CalculateRefCTF();
200

201 202
	// Precalculating Maps in Fourier space
	RefMap.PreCalculateMapsFFT(param);
203

204
	return(0);
205 206 207 208 209
}


int bioem::run()
{
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
	/**************************************************************************************/
	/**** Main BioEM routine, projects, convolutes and compares with Map using OpenMP ****/
	/**************************************************************************************/

	/**** If we want to control the number of threads -> omp_set_num_threads(XX); ******/
	/****************** Declarying class of Probability Pointer  *************************/
	pProb = new bioem_Probability[RefMap.ntotRefMap];

	printf("\tInitializing\n");
	// Inizialzing Probabilites to zero and constant to -Infinity
	for (int iRefMap = 0; iRefMap < RefMap.ntotRefMap; iRefMap ++)
	{
		pProb[iRefMap].Total=0.0;
		pProb[iRefMap].Constoadd=-9999999;
		pProb[iRefMap].max_prob=-9999999;
		for (int iOrient = 0; iOrient < param.nTotGridAngles; iOrient ++)
226
		{
227 228 229 230 231
			pProb[iRefMap].forAngles[iOrient]=0.0;
			pProb[iRefMap].ConstAngle[iOrient]=-99999999;
		}
	}
	/**************************************************************************************/
232 233
	deviceStartRun();

234
	/******************************** MAIN CYCLE ******************************************/
David Rohr's avatar
David Rohr committed
235

236 237 238 239 240
	/*** Declaring Private variables for each thread *****/
	mycomplex_t* proj_mapFFT;
	bioem_map conv_map;
	mycomplex_t* conv_mapFFT;
	myfloat_t sumCONV,sumsquareCONV;
241 242

	//allocating fftw_complex vector
243 244
	proj_mapFFT= (mycomplex_t *) myfftw_malloc(sizeof(mycomplex_t) * param.param_device.NumberPixels*param.param_device.NumberFFTPixels1D);
	conv_mapFFT= (mycomplex_t *) myfftw_malloc(sizeof(mycomplex_t) * param.param_device.NumberPixels*param.param_device.NumberFFTPixels1D);
245 246 247 248 249

	HighResTimer timer;

	printf("\tMain Loop (GridAngles %d, CTFs %d, RefMaps %d, Shifts (%d/%d)²), Pixels %d²\n", param.nTotGridAngles, param.nTotCTFs, RefMap.ntotRefMap, 2 * param.param_device.maxDisplaceCenter + param.param_device.GridSpaceCenter, param.param_device.GridSpaceCenter, param.param_device.NumberPixels);
	printf("\tInner Loop Count (%d %d %d) %lld\n", param.param_device.maxDisplaceCenter, param.param_device.GridSpaceCenter, param.param_device.NumberPixels, (long long int) (param.param_device.NumberPixels * param.param_device.NumberPixels * (2 * param.param_device.maxDisplaceCenter / param.param_device.GridSpaceCenter + 1) * (2 * param.param_device.maxDisplaceCenter / param.param_device.GridSpaceCenter + 1)));
250 251 252 253
	for (int iProjectionOut = 0; iProjectionOut < param.nTotGridAngles; iProjectionOut++)
	{
		/***************************************************************************************/
		/***** Creating Projection for given orientation and transforming to Fourier space *****/
254
		timer.ResetStart();
255
		createProjection(iProjectionOut, proj_mapFFT);
256 257
		printf("Time Projection %d: %f\n", iProjectionOut, timer.GetCurrentElapsedTime());

258 259 260 261
		/***************************************************************************************/
		/***** **** Internal Loop over convolutions **** *****/
		for (int iConv = 0; iConv < param.nTotCTFs; iConv++)
		{
262
			printf("\t\tConvolution %d %d\n", iProjectionOut, iConv);
263 264
			/*** Calculating convolutions of projection map and crosscorrelations ***/

265
			timer.ResetStart();
266
			createConvolutedProjectionMap(iProjectionOut,iConv,proj_mapFFT,conv_map,conv_mapFFT,sumCONV,sumsquareCONV);
267 268
			printf("Time Convolution %d %d: %f\n", iProjectionOut, iConv, timer.GetCurrentElapsedTime());

269 270
			/***************************************************************************************/
			/*** Comparing each calculated convoluted map with all experimental maps ***/
271
			timer.ResetStart();
272
			compareRefMaps(iProjectionOut, iConv, conv_map, conv_mapFFT, sumCONV, sumsquareCONV);
273

274 275 276
			const double compTime = timer.GetCurrentElapsedTime();
			const int nShifts = 2 * param.param_device.maxDisplaceCenter / param.param_device.GridSpaceCenter + 1;
			const double nFlops = (double) RefMap.ntotRefMap * (double) nShifts * (double) nShifts *
277
								  (((double) param.param_device.NumberPixels - (double) param.param_device.maxDisplaceCenter / 2.) * ((double) param.param_device.NumberPixels - (double) param.param_device.maxDisplaceCenter / 2.) * 5. + 25.) / compTime;
278
			const double nGBs = (double) RefMap.ntotRefMap * (double) nShifts * (double) nShifts *
279
								(((double) param.param_device.NumberPixels - (double) param.param_device.maxDisplaceCenter / 2.) * ((double) param.param_device.NumberPixels - (double) param.param_device.maxDisplaceCenter / 2.) * 2. + 8.) * (double) sizeof(myfloat_t) / compTime;
280 281 282
			const double nGBs2 = (double) RefMap.ntotRefMap * ((double) param.param_device.NumberPixels * (double) param.param_device.NumberPixels + 8.) * (double) sizeof(myfloat_t) / compTime;

			printf("Time Comparison %d %d: %f sec (%f GFlops, %f GB/s (cached), %f GB/s)\n", iProjectionOut, iConv, compTime, nFlops / 1000000000., nGBs / 1000000000., nGBs2 / 1000000000.);
283 284 285 286 287
		}
	}
	//deallocating fftw_complex vector
	myfftw_free(proj_mapFFT);
	myfftw_free(conv_mapFFT);
David Rohr's avatar
David Rohr committed
288

289 290
	deviceFinishRun();

291
	/************* Writing Out Probabilities ***************/
292

293
	/*** Angular Probability ***/
294

295 296 297 298
	// if(param.writeAngles){
	ofstream angProbfile;
	angProbfile.open ("ANG_PROB_iRefMap");
	// }
299

300 301
	ofstream outputProbFile;
	outputProbFile.open ("Output_Probabilities");
302

303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
	for (int iRefMap = 0; iRefMap < RefMap.ntotRefMap; iRefMap ++)
	{
		/**** Total Probability ***/
		outputProbFile << "RefMap " << iRefMap << " Probability  "  << log(pProb[iRefMap].Total)+pProb[iRefMap].Constoadd+0.5*log(M_PI)+(1-param.param_device.Ntotpi*0.5)*(log(2*M_PI)+1)+log(param.param_device.volu) << " Constant " << pProb[iRefMap].Constoadd  << "\n";

		outputProbFile << "RefMap " << iRefMap << " Maximizing Param: ";

		/*** Param that maximize probability****/
		outputProbFile << (pProb[iRefMap].max_prob + 0.5 * log(M_PI) + (1 - param.param_device.Ntotpi * 0.5) * (log(2 * M_PI) + 1) + log(param.param_device.volu)) << " ";
		outputProbFile << param.angles[pProb[iRefMap].max_prob_orient].pos[0] << " ";
		outputProbFile << param.angles[pProb[iRefMap].max_prob_orient].pos[1] << " ";
		outputProbFile << param.angles[pProb[iRefMap].max_prob_orient].pos[2] << " ";
		outputProbFile << param.CtfParam[pProb[iRefMap].max_prob_conv].pos[0] << " ";
		outputProbFile << param.CtfParam[pProb[iRefMap].max_prob_conv].pos[1] << " ";
		outputProbFile << param.CtfParam[pProb[iRefMap].max_prob_conv].pos[2] << " ";
318 319
		outputProbFile << pProb[iRefMap].max_prob_cent_x << " ";
		outputProbFile << pProb[iRefMap].max_prob_cent_y;
320
		outputProbFile << "\n";
321

322
		/*** For individual files***/ //angProbfile.open ("ANG_PROB_"iRefMap);
323

324
		if(param.writeAngles)
325
		{
326 327 328
			for (int iProjectionOut = 0; iProjectionOut < param.nTotGridAngles; iProjectionOut++)
			{
				angProbfile << " " << iRefMap << " " << param.angles[iProjectionOut].pos[0] << " " << param.angles[iProjectionOut].pos[1] << " " << param.angles[iProjectionOut].pos[2] << " " << log(pProb[iRefMap].forAngles[iProjectionOut])+pProb[iRefMap].ConstAngle[iProjectionOut]+0.5*log(M_PI)+(1-param.param_device.Ntotpi*0.5)*(log(2*M_PI)+1)+log(param.param_device.volu) << " " << log(param.param_device.volu) << "\n";
329

330 331 332
			}
		}
	}
333

334 335
	angProbfile.close();
	outputProbFile.close();
336

337
	//Deleting allocated pointers
338

339 340 341 342 343 344 345 346 347 348 349
	if (pProb)
	{
		delete[] pProb;
		pProb = NULL;
	}

	if (param.refCTF)
	{
		delete[] param.refCTF;
		param.refCTF =NULL;
	}
350

351 352 353 354 355 356
	if(RefMap.RefMapFFT)
	{
		delete[] RefMap.RefMapFFT;
		RefMap.RefMapFFT = NULL;
	}
	return(0);
357 358
}

359
int bioem::compareRefMaps(int iProjectionOut, int iConv, const bioem_map& conv_map, mycomplex_t* localmultFFT, myfloat_t sumC, myfloat_t sumsquareC, const int startMap)
360
{
361
	if (FFTAlgo)
362
	{
363
#pragma omp parallel
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
		{
			mycomplex_t *localCCT;
			myfloat_t *lCC;
			localCCT= (mycomplex_t *) myfftw_malloc(sizeof(mycomplex_t) *param.param_device.NumberPixels*param.param_device.NumberFFTPixels1D);
			lCC= (myfloat_t *) myfftw_malloc(sizeof(myfloat_t) *param.param_device.NumberPixels*param.param_device.NumberPixels);

			const int num_threads = omp_get_num_threads();
			const int thread_id = omp_get_thread_num();
			const int mapsPerThread = (RefMap.ntotRefMap - startMap + num_threads - 1) / num_threads;
			const int iStart = startMap + thread_id * mapsPerThread;
			const int iEnd = min(RefMap.ntotRefMap, startMap + (thread_id + 1) * mapsPerThread);

			for (int iRefMap = iStart; iRefMap < iEnd; iRefMap ++)
			{
				calculateCCFFT(iRefMap,iProjectionOut, iConv, sumC,sumsquareC, localmultFFT, localCCT,lCC);
			}
			myfftw_free(localCCT);
			myfftw_free(lCC);
		}
	}
	else
385
	{
386 387
#pragma omp parallel for
		for (int iRefMap = startMap; iRefMap < RefMap.ntotRefMap; iRefMap ++)
388
		{
389
			compareRefMapShifted<-1>(iRefMap,iProjectionOut,iConv,conv_map, pProb, param.param_device, RefMap);
390 391 392 393 394 395
		}
	}
	return(0);
}

/////////////NEW ROUTINE ////////////////
396
inline int bioem::calculateCCFFT(int iRefMap, int iOrient, int iConv, myfloat_t sumC,myfloat_t sumsquareC, mycomplex_t* localConvFFT,mycomplex_t* localCCT,myfloat_t* lCC)
397
{
398
	for(int i = 0;i < param.param_device.NumberPixels * param.param_device.NumberFFTPixels1D;i++)
399
	{
400 401
		localCCT[i][0] = localConvFFT[i][0] * RefMap.RefMapFFT[iRefMap].cpoints[i][0] + localConvFFT[i][1] * RefMap.RefMapFFT[iRefMap].cpoints[i][1];
		localCCT[i][1] = localConvFFT[i][1] * RefMap.RefMapFFT[iRefMap].cpoints[i][0] - localConvFFT[i][0] * RefMap.RefMapFFT[iRefMap].cpoints[i][1];
402 403
	}

404
	myfftw_execute_dft_c2r(param.fft_plan_c2r_backward,localCCT,lCC);
405 406 407 408 409 410

// Storing CORRELATIONS FOR CORRESPONDING DISPLACEMENTS & Normalizing after Backward FFT
	for (int cent_x = 0; cent_x <= param.param_device.maxDisplaceCenter; cent_x=cent_x+param.param_device.GridSpaceCenter)
	{
		for (int cent_y = 0; cent_y <= param.param_device.maxDisplaceCenter; cent_y=cent_y+param.param_device.GridSpaceCenter)
		{
411
			calProb(iRefMap, iOrient, iConv, sumC, sumsquareC, (myfloat_t) lCC[cent_x*param.param_device.NumberPixels+cent_y]/ (myfloat_t) (param.param_device.NumberPixels * param.param_device.NumberPixels), cent_x, cent_y);
412 413 414
		}
		for (int cent_y = param.param_device.NumberPixels-param.param_device.maxDisplaceCenter; cent_y < param.param_device.NumberPixels; cent_y=cent_y+param.param_device.GridSpaceCenter)
		{
415
			calProb(iRefMap, iOrient, iConv, sumC, sumsquareC, (myfloat_t) lCC[cent_x*param.param_device.NumberPixels+cent_y]/ (myfloat_t) (param.param_device.NumberPixels*param.param_device.NumberPixels), cent_x, param.param_device.NumberPixels-cent_y);
416 417 418 419 420 421
		}
	}
	for (int cent_x = param.param_device.NumberPixels-param.param_device.maxDisplaceCenter; cent_x < param.param_device.NumberPixels; cent_x=cent_x+param.param_device.GridSpaceCenter)
	{
		for (int cent_y = 0; cent_y < param.param_device.maxDisplaceCenter; cent_y=cent_y+param.param_device.GridSpaceCenter)
		{
422
			calProb(iRefMap, iOrient, iConv, sumC, sumsquareC, (myfloat_t) lCC[cent_x*param.param_device.NumberPixels+cent_y]/ (myfloat_t) (param.param_device.NumberPixels*param.param_device.NumberPixels), param.param_device.NumberPixels-cent_x, cent_y);
423 424 425
		}
		for (int cent_y = param.param_device.NumberPixels-param.param_device.maxDisplaceCenter; cent_y <= param.param_device.NumberPixels; cent_y=cent_y+param.param_device.GridSpaceCenter)
		{
426
			calProb(iRefMap, iOrient, iConv, sumC, sumsquareC, (myfloat_t) lCC[cent_x*param.param_device.NumberPixels+cent_y]/ (myfloat_t) (param.param_device.NumberPixels*param.param_device.NumberPixels), param.param_device.NumberPixels-cent_x, param.param_device.NumberPixels-cent_y);
427 428
		}
	}
429

430 431
	return (0);
}
432

433
inline int bioem::calProb(int iRefMap,int iOrient, int iConv,myfloat_t sumC,myfloat_t sumsquareC, float value, int disx, int disy)
434
{
435

436 437 438
	/********************************************************/
	/*********** Calculates the BioEM probability ***********/
	/********************************************************/
439

440
	const myfloat_t logpro = calc_logpro(param.param_device, sumC, sumsquareC, value, RefMap.sum_RefMap[iRefMap], RefMap.sumsquare_RefMap[iRefMap]);
441

442 443 444 445 446 447 448 449
	//update_prob<-1>(logpro, iRefMap, iOrient, iConv, disx, disy, pProb);
	//GCC is too stupid to inline properly, so the code is copied here
    if(pProb[iRefMap].Constoadd < logpro)
    {
		pProb[iRefMap].Total = pProb[iRefMap].Total * exp(-logpro + pProb[iRefMap].Constoadd);
		pProb[iRefMap].Constoadd = logpro;
	}
	pProb[iRefMap].Total += exp(logpro - pProb[iRefMap].Constoadd);
450

451 452 453 454 455 456
	if(pProb[iRefMap].ConstAngle[iOrient] < logpro)
	{
		pProb[iRefMap].forAngles[iOrient] = pProb[iRefMap].forAngles[iOrient] * exp(-logpro + pProb[iRefMap].ConstAngle[iOrient]);
		pProb[iRefMap].ConstAngle[iOrient] = logpro;
	}
	pProb[iRefMap].forAngles[iOrient] += exp(logpro - pProb[iRefMap].ConstAngle[iOrient]);
457

458 459 460 461 462 463 464 465
	if(pProb[iRefMap].max_prob < logpro)
	{
		pProb[iRefMap].max_prob = logpro;
		pProb[iRefMap].max_prob_cent_x = disx;
		pProb[iRefMap].max_prob_cent_y = disy;
		pProb[iRefMap].max_prob_orient = iOrient;
		pProb[iRefMap].max_prob_conv = iConv;
	}
466 467

	return (0);
468 469 470
}


471
int bioem::createProjection(int iMap,mycomplex_t* mapFFT)
472
{
473 474 475 476 477 478 479 480
	/**************************************************************************************/
	/****  BioEM Create Projection routine in Euler angle predefined grid****************
	********************* and turns projection into Fourier space **********************/
	/**************************************************************************************/

	myfloat3_t RotatedPointsModel[Model.nPointsModel];
	myfloat_t rotmat[3][3];
	myfloat_t alpha, gam,beta;
481
	myfloat_t* localproj;
482

483
	localproj= (myfloat_t *) myfftw_malloc(sizeof(myfloat_t) *param.param_device.NumberPixels*param.param_device.NumberPixels);
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
	memset(localproj,0,param.param_device.NumberPixels*param.param_device.NumberPixels*sizeof(*localproj));

	alpha=param.angles[iMap].pos[0];
	beta=param.angles[iMap].pos[1];
	gam=param.angles[iMap].pos[2];

	/**** To see how things are going: cout << "Id " << omp_get_thread_num() <<  " Angs: " << alpha << " " << beta << " " << gam << "\n"; ***/

	/********** Creat Rotation with pre-defiend grid of orientations**********/

	rotmat[0][0]=cos(gam)*cos(alpha)-cos(beta)*sin(alpha)*sin(gam);
	rotmat[0][1]=cos(gam)*sin(alpha)+cos(beta)*cos(alpha)*sin(gam);
	rotmat[0][2]=sin(gam)*sin(beta);
	rotmat[1][0]=-sin(gam)*cos(alpha)-cos(beta)*sin(alpha)*cos(gam);
	rotmat[1][1]=-sin(gam)*sin(alpha)+cos(beta)*cos(alpha)*cos(gam);
	rotmat[1][2]=cos(gam)*sin(beta);
	rotmat[2][0]=sin(beta)*sin(alpha);
	rotmat[2][1]=-sin(beta)*cos(alpha);
	rotmat[2][2]=cos(beta);


	for(int n=0; n< Model.nPointsModel; n++)
	{
		RotatedPointsModel[n].pos[0]=0.0;
		RotatedPointsModel[n].pos[1]=0.0;
		RotatedPointsModel[n].pos[2]=0.0;
	}
	for(int n=0; n< Model.nPointsModel; n++)
	{
		for(int k=0; k< 3; k++)
		{
			for(int j=0; j< 3; j++)
			{
				RotatedPointsModel[n].pos[k]+=rotmat[k][j]*Model.PointsModel[n].pos[j];
			}
		}
	}

	int i, j;

	/************ Projection over the Z axis********************/
	for(int n=0; n< Model.nPointsModel; n++)
	{
		//Getting pixel that represents coordinates & shifting the start at to Numpix/2,Numpix/2 )
528 529
		i=floor(RotatedPointsModel[n].pos[0]/param.pixelSize+ (myfloat_t) param.param_device.NumberPixels / 2.0f + 0.5f);
		j=floor(RotatedPointsModel[n].pos[1]/param.pixelSize+ (myfloat_t) param.param_device.NumberPixels / 2.0f + 0.5f);
530

531
		localproj[i*param.param_device.NumberPixels+j]+=Model.densityPointsModel[n]/Model.NormDen;
532 533 534 535 536 537 538 539 540 541 542 543
	}

	/**** Output Just to check****/
	if(iMap==10)
	{
		ofstream myexamplemap;
		ofstream myexampleRot;
		myexamplemap.open ("MAP_i10");
		myexampleRot.open ("Rot_i10");
		myexamplemap << "ANGLES " << alpha << " " << beta << " " << gam << "\n";
		for(int k=0; k<param.param_device.NumberPixels; k++)
		{
544
			for(int j=0; j<param.param_device.NumberPixels; j++) myexamplemap << "\nMAP " << k << " " << j<< " " <<localproj[k*param.param_device.NumberPixels+j];
545 546 547 548 549 550 551 552 553
		}
		myexamplemap << " \n";
		for(int n=0; n< Model.nPointsModel; n++)myexampleRot << "\nCOOR " << RotatedPointsModel[n].pos[0] << " " << RotatedPointsModel[n].pos[1] << " " << RotatedPointsModel[n].pos[2];
		myexamplemap.close();
		myexampleRot.close();
	}

	/***** Converting projection to Fourier Space for Convolution later with kernel****/
	/********** Omp Critical is necessary with FFTW*******/
554
	myfftw_execute_dft_r2c(param.fft_plan_r2c_forward,localproj,mapFFT);
555 556 557 558

	return(0);
}

559
int bioem::createConvolutedProjectionMap(int iMap,int iConv,mycomplex_t* lproj,bioem_map& Mapconv, mycomplex_t* localmultFFT, myfloat_t& sumC, myfloat_t& sumsquareC)
560 561 562 563 564 565 566
{
	/**************************************************************************************/
	/****  BioEM Create Convoluted Projection Map routine, multiplies in Fourier **********
	**************** calculated Projection with convoluted precalculated Kernel**********
	*************** and Backtransforming it to real Space ******************************/
	/**************************************************************************************/

567 568 569 570
	myfloat_t* localconvFFT;
	localconvFFT= (myfloat_t *) myfftw_malloc(sizeof(myfloat_t)*param.param_device.NumberPixels*param.param_device.NumberPixels);
	mycomplex_t* tmp;
	tmp = (mycomplex_t*) myfftw_malloc(sizeof(mycomplex_t) * param.param_device.NumberPixels * param.param_device.NumberFFTPixels1D);
571 572 573

	/**** Multiplying FFTmap with corresponding kernel ****/

574
	for(int i=0;i < param.param_device.NumberPixels * param.param_device.NumberFFTPixels1D;i++)
575
	{
576 577 578
		localmultFFT[i][0] = lproj[i][0] * param.refCTF[iConv].cpoints[i][0] + lproj[i][1] * param.refCTF[iConv].cpoints[i][1];
		localmultFFT[i][1] = lproj[i][1] * param.refCTF[iConv].cpoints[i][0] - lproj[i][0] * param.refCTF[iConv].cpoints[i][1];
		// cout << "GG " << i << " " << j << " " << param.refCTF[iConv].cpoints[i][0] << " " <<param.refCTF[iConv].cpoints[i][1] <<" " <<lproj[i][0] <<" " <<lproj[i][1] << "\n";
579 580
	}

581 582 583
	//FFTW_C2R will destroy the input array, so we have to work on a copy here
	memcpy(tmp, localmultFFT, sizeof(mycomplex_t) * param.param_device.NumberPixels * param.param_device.NumberFFTPixels1D);

584
	/**** Bringing convoluted Map to real Space ****/
585
	myfftw_execute_dft_c2r(param.fft_plan_c2r_backward,tmp,localconvFFT);
586 587 588 589 590 591

	/****Asigning convolution fftw_complex to bioem_map ****/
	for(int i=0; i < param.param_device.NumberPixels ; i++ )
	{
		for(int j=0; j < param.param_device.NumberPixels ; j++ )
		{
592
			Mapconv.points[i][j]=localconvFFT[i*param.param_device.NumberPixels+j];
593 594 595 596 597 598
		}
	}

	/*** Calculating Cross-correlations of cal-convoluted map with its self *****/
	sumC=0;
	sumsquareC=0;
599
	for(int i = 0; i < param.param_device.NumberPixels * param.param_device.NumberPixels; i++)
600
	{
601 602
		sumC += localconvFFT[i];
		sumsquareC += localconvFFT[i] * localconvFFT[i];
603 604 605
	}
	/*** The DTF gives an unnormalized value so have to divded by the total number of pixels in Fourier ***/
	// Normalizing
606 607 608 609
	myfloat_t norm2 = (myfloat_t) (param.param_device.NumberPixels * param.param_device.NumberPixels);
	myfloat_t norm4 = norm2 * norm2;
	sumC = sumC / norm2;
	sumsquareC = sumsquareC / norm4;
610 611

	/**** Freeing fftw_complex created (dont know if omp critical is necessary) ****/
612
	myfftw_free(localconvFFT);
613
	myfftw_free(tmp);
614 615

	return(0);
616 617 618 619
}

int bioem::calcross_cor(bioem_map& localmap,myfloat_t& sum,myfloat_t& sumsquare)
{
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
	/*********************** Routine to calculate Cross correlations***********************/

	sum=0.0;
	sumsquare=0.0;
	for (int i = 0; i < param.param_device.NumberPixels; i++)
	{
		for (int j = 0; j < param.param_device.NumberPixels; j++)
		{
			// Calculate Sum of pixels
			sum += localmap.points[i][j];
			// Calculate Sum of pixels squared
			sumsquare += localmap.points[i][j]*localmap.points[i][j];
		}
	}
	return(0);
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
}

int bioem::deviceInit()
{
	return(0);
}

int bioem::deviceStartRun()
{
	return(0);
}

int bioem::deviceFinishRun()
{
	return(0);
}