bioem_cuda.cu 12.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
#define BIOEM_GPUCODE

#if defined(_WIN32)
#include <windows.h>
#endif

#include <iostream>
using namespace std;

#include "bioem_cuda_internal.h"
#include "bioem_algorithm.h"

13
14
15
16
17
18
19
#define checkCudaErrors(error) \
{ \
	if ((error) != cudaSuccess) \
	{ \
		printf("CUDA Error %d / %s (%s: %d)\n", error, cudaGetErrorString(error), __FILE__, __LINE__); \
		exit(1); \
	} \
20
21
}

David Rohr's avatar
David Rohr committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
static const char *cufftGetErrorStrung(cufftResult error)
{
    switch (error)
    {
        case CUFFT_SUCCESS:
            return "CUFFT_SUCCESS";

        case CUFFT_INVALID_PLAN:
            return "CUFFT_INVALID_PLAN";

        case CUFFT_ALLOC_FAILED:
            return "CUFFT_ALLOC_FAILED";

        case CUFFT_INVALID_TYPE:
            return "CUFFT_INVALID_TYPE";

        case CUFFT_INVALID_VALUE:
            return "CUFFT_INVALID_VALUE";

        case CUFFT_INTERNAL_ERROR:
            return "CUFFT_INTERNAL_ERROR";

        case CUFFT_EXEC_FAILED:
            return "CUFFT_EXEC_FAILED";

        case CUFFT_SETUP_FAILED:
            return "CUFFT_SETUP_FAILED";

        case CUFFT_INVALID_SIZE:
            return "CUFFT_INVALID_SIZE";

        case CUFFT_UNALIGNED_DATA:
            return "CUFFT_UNALIGNED_DATA";
    }
    return "UNKNOWN";
}

59
60
61
62
bioem_cuda::bioem_cuda()
{
	deviceInitialized = 0;
	GPUAlgo = getenv("GPUALGO") == NULL ? 2 : atoi(getenv("GPUALGO"));
63
64
	GPUAsync = getenv("GPUASYNC") == NULL ? 1 : atoi(getenv("GPUASYNC"));
	GPUWorkload = getenv("GPUWORKLOAD") == NULL ? 100 : atoi(getenv("GPUWORKLOAD"));
65
66
67
68
69
70
71
}

bioem_cuda::~bioem_cuda()
{
	deviceExit();
}

72
__global__ void compareRefMap_kernel(const int iOrient, const int iConv, const myfloat_t* pMap, bioem_Probability* pProb, const bioem_param_device param, const bioem_RefMap_Mod RefMap, const int cent_x, const int cent_y, const int maxRef)
73
74
{
	const int iRefMap = myBlockIdxX * myBlockDimX + myThreadIdxX;
75
	if (iRefMap < maxRef)
76
	{
77
		compareRefMap<0>(iRefMap, iOrient, iConv, pMap, pProb, param, RefMap, cent_x, cent_y);
78
79
80
	}
}

81
__global__ void compareRefMapShifted_kernel(const int iOrient, const int iConv, const myfloat_t* pMap, bioem_Probability* pProb, const bioem_param_device param, const bioem_RefMap_Mod RefMap, const int maxRef)
82
83
{
	const int iRefMap = myBlockIdxX * myBlockDimX + myThreadIdxX;
84
	if (iRefMap < maxRef)
85
	{
86
		compareRefMapShifted<1>(iRefMap, iOrient, iConv, pMap, pProb, param, RefMap);
87
88
89
	}
}

90
91
92
93
94
95
__global__ void cudaZeroMem(void* ptr, size_t size)
{
	int* myptr = (int*) ptr;
	int mysize = size / sizeof(int);
	int myid = myBlockDimX * myBlockIdxX + myThreadIdxX;
	int mygrid = myBlockDimX * myGridDimX;
96
	for (int i = myid; i < mysize; i += mygrid) myptr[i] = 0;
97
98
}

99
__global__ void compareRefMapLoopShifts_kernel(const int iOrient, const int iConv, const myfloat_t* pMap, bioem_Probability* pProb, const bioem_param_device param, const bioem_RefMap RefMap, const int blockoffset, const int nShifts, const int nShiftBits, const int maxRef)
100
101
102
103
104
105
106
107
108
{
	const size_t myid = (myBlockIdxX + blockoffset) * myBlockDimX + myThreadIdxX;
	const int iRefMap = myid >> (nShiftBits << 1);
	const int myRef = myThreadIdxX >> (nShiftBits << 1);
	const int myShiftIdx = (myid >> nShiftBits) & (nShifts - 1);
	const int myShiftIdy = myid & (nShifts - 1);
	const int myShift = myid & (nShifts * nShifts - 1);
	const int cent_x = myShiftIdx * param.GridSpaceCenter - param.maxDisplaceCenter;
	const int cent_y = myShiftIdy * param.GridSpaceCenter - param.maxDisplaceCenter;
109

110
	const bool threadActive = myShiftIdx < nShifts && myShiftIdy < nShifts && iRefMap < maxRef;
111

112
	compareRefMap<2>(iRefMap, iOrient, iConv, pMap, pProb, param, RefMap, cent_x, cent_y, myShift, nShifts * nShifts, myRef, threadActive);
113
114
}

115
__global__ void multComplexMap(const mycomplex_t* convmap, const mycomplex_t* refmap, mycuComplex_t* out, const int NumberPixelsTotal, const int MapSize, const int NumberMaps, const int Offset)
116
117
{
	if (myBlockIdxX >= NumberMaps) return;
118
	const mycomplex_t* myin = &refmap[myBlockIdxX * MapSize + Offset];
119
	mycuComplex_t* myout = &out[myBlockIdxX * MapSize];
120
	for(int i = myThreadIdxX; i < NumberPixelsTotal; i += myBlockDimX)
121
122
123
124
125
126
	{
		myout[i].x = convmap[i][0] * myin[i][0] + convmap[i][1] * myin[i][1];
		myout[i].y = convmap[i][1] * myin[i][0] - convmap[i][0] * myin[i][1];
	}
}

127
__global__ void cuDoRefMapsFFT(const int iOrient, const int iConv, const myfloat_t* lCC, const myfloat_t sumC, const myfloat_t sumsquareC, bioem_Probability* pProb, const bioem_param_device param, const bioem_RefMap RefMap, const int maxRef, const int Offset)
128
{
129
130
	const int iRefMap = myBlockIdxX * myBlockDimX + myThreadIdxX + Offset;
	const myfloat_t* mylCC = &lCC[(myBlockIdxX * myBlockDimX + myThreadIdxX) * param.NumberPixels * param.NumberPixels];
131
	if (iRefMap >= maxRef) return;
132
	doRefMapFFT(iRefMap, iOrient, iConv, mylCC, sumC, sumsquareC, pProb, param, RefMap);
133
134
}

135
136
137
138
139
140
141
142
143
144
145
146
147
template <class T> static inline T divup(T num, T divider) {return((num + divider - 1) / divider);}
static inline bool IsPowerOf2(int x) {return ((x > 0) && ((x & (x - 1)) == 0));}
#if defined(_WIN32)
static inline int ilog2 (int value)
{
	DWORD index;
	_BitScanReverse (&index, value);
	return(value);
}
#else
static inline int ilog2(int value) {return 31 - __builtin_clz(value);}
#endif

148
int bioem_cuda::compareRefMaps(int iProjectionOut, int iConv, const myfloat_t* conv_map, mycomplex_t* localmultFFT, myfloat_t sumC, myfloat_t sumsquareC, const int startMap)
149
{
150
151
152
153
154
	if (startMap)
	{
		cout << "Error startMap not implemented for GPU Code\n";
		exit(1);
	}
155
156
157
158
	if (GPUAsync)
	{
		checkCudaErrors(cudaEventSynchronize(cudaEvent[iConv & 1]));
	}
159

160
	if (FFTAlgo)
161
	{
162
		checkCudaErrors(cudaMemcpyAsync(&pConvMapFFT[(iConv & 1) * param.FFTMapSize], localmultFFT, param.FFTMapSize * sizeof(mycomplex_t), cudaMemcpyHostToDevice, cudaStream));
163
		for (int i = 0; i < maxRef; i += CUDA_FFTS_AT_ONCE)
164
		{
165
			const int num = min(CUDA_FFTS_AT_ONCE, maxRef - i);
166
			multComplexMap<<<num, CUDA_THREAD_COUNT, 0, cudaStream>>>(&pConvMapFFT[(iConv & 1) * param.FFTMapSize], pRefMapsFFT, pFFTtmp2, param.param_device.NumberPixels * param.param_device.NumberFFTPixels1D, param.FFTMapSize, num, i);
David Rohr's avatar
David Rohr committed
167
168
			cufftResult err = mycufftExecC2R(i + CUDA_FFTS_AT_ONCE > maxRef ? plan[1] : plan[0], pFFTtmp2, pFFTtmp);
			if (err != CUFFT_SUCCESS)
169
			{
David Rohr's avatar
David Rohr committed
170
				cout << "Error running CUFFT " << cufftGetErrorStrung(err) << "\n";
171
172
				exit(1);
			}
173
			cuDoRefMapsFFT<<<divup(num, CUDA_THREAD_COUNT), CUDA_THREAD_COUNT, 0, cudaStream>>>(iProjectionOut, iConv, pFFTtmp, sumC, sumsquareC, pProb_device, param.param_device, *gpumap, num, i);
174
		}
175
176
177
178
		checkCudaErrors(cudaGetLastError());
	}
	else
	{
179
		checkCudaErrors(cudaMemcpyAsync(pConvMap_device[iConv & 1], conv_map, sizeof(myfloat_t) * RefMap.refMapSize, cudaMemcpyHostToDevice, cudaStream));
180
181

		if (GPUAlgo == 2) //Loop over shifts
182
		{
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
			const int nShifts = 2 * param.param_device.maxDisplaceCenter / param.param_device.GridSpaceCenter + 1;
			if (!IsPowerOf2(nShifts))
			{
				cout << "Invalid number of displacements, no power of two\n";
				exit(1);
			}
			if (CUDA_THREAD_COUNT % (nShifts * nShifts))
			{
				cout << "CUDA Thread count (" << CUDA_THREAD_COUNT << ") is no multiple of number of shifts (" << (nShifts * nShifts) << ")\n";
				exit(1);
			}
			if (nShifts > CUDA_MAX_SHIFT_REDUCE)
			{
				cout << "Too many displacements for CUDA reduction\n";
				exit(1);
			}
			const int nShiftBits = ilog2(nShifts);
			size_t totalBlocks = divup((size_t) maxRef * (size_t) nShifts * (size_t) nShifts, (size_t) CUDA_THREAD_COUNT);
			size_t nBlocks = CUDA_BLOCK_COUNT;
202
			for (size_t i = 0; i < totalBlocks; i += nBlocks)
203
			{
204
				compareRefMapLoopShifts_kernel<<<min(nBlocks, totalBlocks - i), CUDA_THREAD_COUNT, (CUDA_THREAD_COUNT * 2 + CUDA_THREAD_COUNT / (nShifts * nShifts) * 4) * sizeof(myfloat_t), cudaStream >>> (iProjectionOut, iConv, pConvMap_device[iConv & 1], pProb_device, param.param_device, *gpumap, i, nShifts, nShiftBits, maxRef);
205
			}
206
		}
207
		else if (GPUAlgo == 1) //Split shifts in multiple kernels
208
		{
209
			for (int cent_x = -param.param_device.maxDisplaceCenter; cent_x <= param.param_device.maxDisplaceCenter; cent_x = cent_x + param.param_device.GridSpaceCenter)
210
			{
211
				for (int cent_y = -param.param_device.maxDisplaceCenter; cent_y <= param.param_device.maxDisplaceCenter; cent_y = cent_y + param.param_device.GridSpaceCenter)
212
				{
213
					compareRefMap_kernel<<<divup(maxRef, CUDA_THREAD_COUNT), CUDA_THREAD_COUNT, 0, cudaStream>>> (iProjectionOut, iConv, pConvMap_device[iConv & 1], pProb_device, param.param_device, *pRefMap_device_Mod, cent_x, cent_y, maxRef);
214
215
				}
			}
216
		}
217
		else if (GPUAlgo == 0) //All shifts in one kernel
218
		{
219
			compareRefMapShifted_kernel<<<divup(maxRef, CUDA_THREAD_COUNT), CUDA_THREAD_COUNT, 0, cudaStream>>> (iProjectionOut, iConv, pConvMap_device[iConv & 1], pProb_device, param.param_device, *pRefMap_device_Mod, maxRef);
220
		}
221
		else
222
		{
223
224
			cout << "Invalid GPU Algorithm selected\n";
			exit(1);
225
		}
226
	}
227
228
	if (GPUWorkload < 100)
	{
229
		bioem::compareRefMaps(iProjectionOut, iConv, conv_map, localmultFFT, sumC, sumsquareC, maxRef);
230
	}
231
232
233
	if (GPUAsync)
	{
		checkCudaErrors(cudaEventRecord(cudaEvent[iConv & 1], cudaStream));
234
	}
235
236
237
238
239
240
241
242
243
244
	else
	{
		checkCudaErrors(cudaStreamSynchronize(cudaStream));
	}
	return(0);
}

int bioem_cuda::deviceInit()
{
	deviceExit();
245

246
247
	if (FFTAlgo) GPUAlgo = 2;

248
249
250
251
252
	gpumap = new bioem_RefMap;
	memcpy(gpumap, &RefMap, sizeof(bioem_RefMap));
	if (FFTAlgo == 0)
	{
		checkCudaErrors(cudaMalloc(&maps, sizeof(myfloat_t) * RefMap.ntotRefMap * RefMap.refMapSize));
253
254
255
256
257
258
259
260
261
262
263
264
265

		if (GPUAlgo == 0 || GPUAlgo == 1)
		{
			pRefMap_device_Mod = (bioem_RefMap_Mod*) gpumap;
			bioem_RefMap_Mod* RefMapGPU = new bioem_RefMap_Mod;
			RefMapGPU->init(RefMap);
			checkCudaErrors(cudaMemcpy(maps, RefMapGPU->maps, sizeof(myfloat_t) * RefMap.ntotRefMap * RefMap.refMapSize, cudaMemcpyHostToDevice));
			delete RefMapGPU;
		}
		else
		{
			checkCudaErrors(cudaMemcpy(maps, RefMap.maps, sizeof(myfloat_t) * RefMap.ntotRefMap * RefMap.refMapSize, cudaMemcpyHostToDevice));
		}
266
267
268
269
270
271
272
273
274
	}
	checkCudaErrors(cudaMalloc(&sum, sizeof(myfloat_t) * RefMap.ntotRefMap));
	checkCudaErrors(cudaMemcpy(sum, RefMap.sum_RefMap, sizeof(myfloat_t) * RefMap.ntotRefMap, cudaMemcpyHostToDevice));
	checkCudaErrors(cudaMalloc(&sumsquare, sizeof(myfloat_t) * RefMap.ntotRefMap));
	checkCudaErrors(cudaMemcpy(sumsquare, RefMap.sumsquare_RefMap, sizeof(myfloat_t) * RefMap.ntotRefMap, cudaMemcpyHostToDevice));
	gpumap->maps = maps;
	gpumap->sum_RefMap = sum;
	gpumap->sumsquare_RefMap = sumsquare;

275
276
	checkCudaErrors(cudaStreamCreate(&cudaStream));
	checkCudaErrors(cudaMalloc(&pProb_device, sizeof(bioem_Probability) * RefMap.ntotRefMap));
277
	for (int i = 0; i < 2; i++)
278
279
	{
		checkCudaErrors(cudaEventCreate(&cudaEvent[i]));
280
		checkCudaErrors(cudaMalloc(&pConvMap_device[i], sizeof(myfloat_t) * RefMap.refMapSize));
281
	}
282

283
284
	if (FFTAlgo)
	{
285
286
		checkCudaErrors(cudaMalloc(&pRefMapsFFT, RefMap.ntotRefMap * param.FFTMapSize * sizeof(mycomplex_t)));
		checkCudaErrors(cudaMalloc(&pFFTtmp2, CUDA_FFTS_AT_ONCE * param.FFTMapSize * sizeof(mycomplex_t)));
287
		checkCudaErrors(cudaMalloc(&pFFTtmp, CUDA_FFTS_AT_ONCE * param.param_device.NumberPixels * param.param_device.NumberPixels * sizeof(myfloat_t)));
288
289
		checkCudaErrors(cudaMalloc(&pConvMapFFT, param.FFTMapSize * sizeof(mycomplex_t) * 2));
		checkCudaErrors(cudaMemcpy(pRefMapsFFT, RefMap.RefMapsFFT, RefMap.ntotRefMap * param.FFTMapSize * sizeof(mycomplex_t), cudaMemcpyHostToDevice));
290
291
	}

292
293
294
295
296
297
298
	deviceInitialized = 1;
	return(0);
}

int bioem_cuda::deviceExit()
{
	if (deviceInitialized == 0) return(0);
299

300
301
	cudaStreamDestroy(cudaStream);
	cudaFree(pProb_device);
302
303
	cudaFree(sum);
	cudaFree(sumsquare);
304
	for (int i = 0; i < 2; i++)
305
306
	{
		cudaEventDestroy(cudaEvent[i]);
307
		cudaFree(pConvMap_device[i]);
308
	}
309
310
311
312
	if (FFTAlgo)
	{
		cudaFree(pRefMapsFFT);
		cudaFree(pConvMapFFT);
313
		//cudaFree(pFFTtmp);
314
315
		cudaFree(pFFTtmp2);
	}
316
317
318
319
320
321
322
323
324
	else
	{
		cudaFree(maps);
	}
	if (GPUAlgo == 0 || GPUAlgo == 1)
	{
		cudaFree(pRefMap_device_Mod);
	}
	delete gpumap;
325
	cudaThreadExit();
326

327
328
329
330
331
332
	deviceInitialized = 0;
	return(0);
}

int bioem_cuda::deviceStartRun()
{
333
	maxRef = GPUWorkload >= 100 ? RefMap.ntotRefMap : ((size_t) RefMap.ntotRefMap * (size_t) GPUWorkload / 100);
334

335
	cudaMemcpy(pProb_device, pProb, sizeof(bioem_Probability) * maxRef, cudaMemcpyHostToDevice);
336
337
338

	if (FFTAlgo)
	{
339
		for (int i = 0; i < 2; i++)
340
341
		{
			int n[2] = {param.param_device.NumberPixels, param.param_device.NumberPixels};
342
			if (cufftPlanMany(&plan[i], 2, n, NULL, 1, param.FFTMapSize, NULL, 1, 0, MY_CUFFT_C2R, i ? (maxRef % CUDA_FFTS_AT_ONCE) : CUDA_FFTS_AT_ONCE) != CUFFT_SUCCESS)
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
			{
				cout << "Error planning CUFFT\n";
				exit(1);
			}
			if (cufftSetCompatibilityMode(plan[i], CUFFT_COMPATIBILITY_NATIVE) != CUFFT_SUCCESS)
			{
				cout << "Error planning CUFFT compatibility\n";
				exit(1);
			}
			if (cufftSetStream(plan[i], cudaStream) != CUFFT_SUCCESS)
			{
				cout << "Error setting CUFFT stream\n";
				exit(1);
			}
		}
	}
359
360
361
362
363
364
	return(0);
}

int bioem_cuda::deviceFinishRun()
{
	if (GPUAsync) cudaStreamSynchronize(cudaStream);
365
	cudaMemcpy(pProb, pProb_device, sizeof(bioem_Probability) * maxRef, cudaMemcpyDeviceToHost);
366

367
368
	if (FFTAlgo)
	{
369
		for (int i = 0; i < 2; i++) cufftDestroy(plan[i]);
370
371
	}

372
373
374
375
376
377
378
	return(0);
}

bioem* bioem_cuda_create()
{
	return new bioem_cuda;
}