bioem.cpp 27.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
#include <fstream>
#include <boost/program_options.hpp>
#include <iostream>
#include <algorithm>
#include <iterator>
#include <stdio.h>
#include <stdlib.h>
#include <string>
#include <cmath>
#include <omp.h>

#include <fftw3.h>
#include <math.h>
#include "cmodules/timer.h"

#include "param.h"
#include "bioem.h"
#include "model.h"
#include "map.h"


#include "bioem_algorithm.h"


using namespace boost;
namespace po = boost::program_options;

using namespace std;

// A helper function of Boost
template<class T>
ostream& operator<<(ostream& os, const vector<T>& v)
{
34
35
	copy(v.begin(), v.end(), ostream_iterator<T>(os, " "));
	return os;
36
37
38
39
}

bioem::bioem()
{
40
	FFTAlgo = getenv("FFTALGO") == NULL ? 0 : atoi(getenv("FFTALGO"));
41
42
43
44
}

bioem::~bioem()
{
David Rohr's avatar
David Rohr committed
45

46
47
48
49
}

int bioem::configure(int ac, char* av[])
{
50
51
52
53
54
55
56
57
58
59
	/**************************************************************************************/
	/**** Configuration Routine using boost for extracting parameters, models and maps ****/
	/**************************************************************************************/
	/****** And Precalculating necessary grids, map crosscorrelations and kernels  ********/
	/*************************************************************************************/

	/*** Inizialzing default variables ***/
	std::string infile,modelfile,mapfile;
	Model.readPDB=false;
	param.writeAngles=false;
60
61
62
	RefMap.dumpMap = false;
	RefMap.loadMap = false;

63
64
65
	/*************************************************************************************/
	cout << " ++++++++++++ FROM COMMAND LINE +++++++++++\n\n";
	/*************************************************************************************/
66

67
	/********************* Command line reading input with BOOST ************************/
68

69
70
71
72
73
74
75
	try {
		po::options_description desc("Command line inputs");
		desc.add_options()
		("Inputfile", po::value<std::string>(), "Name of input parameter file")
		("Modelfile", po::value< std::string>() , "Name of model file")
		("Particlesfile", po::value< std::string>(), "Name of paricles file")
		("ReadPDB", "(Optional) If reading model file in PDB format")
76
77
		("DumpMaps", "(Optional) Dump maps after they were red from maps file")
		("LoadMapDump", "(Optional) Read Maps from dump instead of maps file")
78
79
80
81
82
83
84
85
		("help", "(Optional) Produce help message")
		;

		po::positional_options_description p;
		p.add("Inputfile", -1);
		p.add("Modelfile", -1);
		p.add("Particlesfile", -1);
		p.add("ReadPDB", -1);
86
87
88
		p.add("DumpMaps", -1);
		p.add("LoadMapDump", -1);

89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
		po::variables_map vm;
		po::store(po::command_line_parser(ac, av).
				  options(desc).positional(p).run(), vm);
		po::notify(vm);

		if((ac < 6)) {
			std::cout << desc << std::endl;
			return 0;
		}
		if (vm.count("help")) {
			cout << "Usage: options_description [options]\n";
			cout << desc;
			return 0;
		}

		if (vm.count("Inputfile"))
		{
			cout << "Input file is: ";
			cout << vm["Inputfile"].as< std::string >()<< "\n";
			infile=vm["Inputfile"].as< std::string >();
		}
		if (vm.count("Modelfile"))
		{
			cout << "Model file is: "
				 << vm["Modelfile"].as<  std::string  >() << "\n";
			modelfile=vm["Modelfile"].as<  std::string  >();
		}

		if (vm.count("ReadPDB"))
		{
			cout << "Reading model file in PDB format.\n";
			Model.readPDB=true;
		}

		if (vm.count("DumpMaps"))
		{
			cout << "Dumping Maps after reading from file.\n";
			RefMap.dumpMap = true;
		}

		if (vm.count("LoadMapDump"))
		{
			cout << "Loading Map dump.\n";
			RefMap.loadMap = true;
		}

		if (vm.count("Particlesfile"))
		{
			cout << "Paricle file is: "
				 << vm["Particlesfile"].as< std::string >() << "\n";
			mapfile=vm["Particlesfile"].as< std::string >();
		}
	}
	catch(std::exception& e)
	{
		cout << e.what() << "\n";
		return 1;
	}

	/********************* Reading Parameter Input ***************************/
	// copying inputfile to param class
	param.fileinput = infile.c_str();
	param.readParameters();

	/********************* Reading Model Input ******************************/
	// copying modelfile to model class
	Model.filemodel = modelfile.c_str();
	Model.readModel();

	/********************* Reading Particle Maps Input **********************/
	/********* HERE: PROBLEM if maps dont fit on the memory!! ***************/
	// copying mapfile to ref map class
	RefMap.filemap = mapfile.c_str();
	RefMap.readRefMaps(param);

	/****************** Precalculating Necessary Stuff *********************/
	precalculate();
David Rohr's avatar
David Rohr committed
166

167
168
169
	param.nTotGridAngles = 10;
	param.nTotCTFs = 10;
	//param.param_device.maxDisplaceCenter = 0;
David Rohr's avatar
David Rohr committed
170

171
172
	deviceInit();

173
	return(0);
174
175
176
177
}

int bioem::precalculate()
{
178
179
180
	/**************************************************************************************/
	/* Precalculating Routine of Orientation grids, Map crosscorrelations and CTF Kernels */
	/**************************************************************************************/
181

182
183
	// Generating Grids of orientations
	param.CalculateGridsParam();
184

185
186
187
	//Inizialzing crosscorrelations of Maps
	memset(RefMap.sum_RefMap, 0, BIOEM_MAX_MAPS * sizeof(*RefMap.sum_RefMap));
	memset(RefMap.sumsquare_RefMap, 0, BIOEM_MAX_MAPS * sizeof(*RefMap.sum_RefMap));
188

189
190
191
192
193
194
195
196
197
198
	myfloat_t sum,sumsquare;

	//Precalculating cross-correlations of maps
	for (int iRefMap = 0; iRefMap < RefMap.ntotRefMap ; iRefMap++)
	{
		calcross_cor(RefMap.Ref[iRefMap],sum,sumsquare);
		//Storing Crosscorrelations in Map class
		RefMap.sum_RefMap[iRefMap]=sum;
		RefMap.sumsquare_RefMap[iRefMap]=sumsquare;
	}
199

200
201
	// Precalculating CTF Kernels stored in class Param
	param.CalculateRefCTF();
202

203
204
	// Precalculating Maps in Fourier space
	RefMap.PreCalculateMapsFFT(param);
205

206
	return(0);
207
208
209
210
211
}


int bioem::run()
{
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
	/**************************************************************************************/
	/**** Main BioEM routine, projects, convolutes and compares with Map using OpenMP ****/
	/**************************************************************************************/

	/**** If we want to control the number of threads -> omp_set_num_threads(XX); ******/
	/****************** Declarying class of Probability Pointer  *************************/
	pProb = new bioem_Probability[RefMap.ntotRefMap];
	crossCor = new bioem_crossCor[RefMap.ntotRefMap];

	printf("\tInitializing\n");
	// Inizialzing Probabilites to zero and constant to -Infinity
	for (int iRefMap = 0; iRefMap < RefMap.ntotRefMap; iRefMap ++)
	{
		pProb[iRefMap].Total=0.0;
		pProb[iRefMap].Constoadd=-9999999;
		pProb[iRefMap].max_prob=-9999999;
		for (int iOrient = 0; iOrient < param.nTotGridAngles; iOrient ++)
229
		{
230
231
232
233
234
			pProb[iRefMap].forAngles[iOrient]=0.0;
			pProb[iRefMap].ConstAngle[iOrient]=-99999999;
		}
	}
	/**************************************************************************************/
235
236
	deviceStartRun();

237
	/******************************** MAIN CYCLE ******************************************/
David Rohr's avatar
David Rohr committed
238

239
240
241
242
243
	/*** Declaring Private variables for each thread *****/
	mycomplex_t* proj_mapFFT;
	bioem_map conv_map;
	mycomplex_t* conv_mapFFT;
	myfloat_t sumCONV,sumsquareCONV;
244
245

	//allocating fftw_complex vector
246
247
248
	proj_mapFFT= (mycomplex_t *) myfftw_malloc(sizeof(mycomplex_t) *param.param_device.NumberPixels*param.param_device.NumberPixels);
	conv_mapFFT= (mycomplex_t *) myfftw_malloc(sizeof(mycomplex_t)*param.param_device.NumberPixels*param.param_device.NumberPixels);

249
250
251
252
253

	HighResTimer timer;

	printf("\tMain Loop (GridAngles %d, CTFs %d, RefMaps %d, Shifts (%d/%d)²), Pixels %d²\n", param.nTotGridAngles, param.nTotCTFs, RefMap.ntotRefMap, 2 * param.param_device.maxDisplaceCenter + param.param_device.GridSpaceCenter, param.param_device.GridSpaceCenter, param.param_device.NumberPixels);
	printf("\tInner Loop Count (%d %d %d) %lld\n", param.param_device.maxDisplaceCenter, param.param_device.GridSpaceCenter, param.param_device.NumberPixels, (long long int) (param.param_device.NumberPixels * param.param_device.NumberPixels * (2 * param.param_device.maxDisplaceCenter / param.param_device.GridSpaceCenter + 1) * (2 * param.param_device.maxDisplaceCenter / param.param_device.GridSpaceCenter + 1)));
254
255
256
257
258
	//#pragma omp parallel for
	for (int iProjectionOut = 0; iProjectionOut < param.nTotGridAngles; iProjectionOut++)
	{
		/***************************************************************************************/
		/***** Creating Projection for given orientation and transforming to Fourier space *****/
259
		timer.ResetStart();
260
		createProjection(iProjectionOut, proj_mapFFT);
261
262
		printf("Time Projection %d: %f\n", iProjectionOut, timer.GetCurrentElapsedTime());

263
264
265
266
		/***************************************************************************************/
		/***** **** Internal Loop over convolutions **** *****/
		for (int iConv = 0; iConv < param.nTotCTFs; iConv++)
		{
267
			printf("\t\tConvolution %d %d\n", iProjectionOut, iConv);
268
269
270
			/*** Calculating convolutions of projection map and crosscorrelations ***/
			memset(conv_mapFFT,0,param.param_device.NumberPixels*param.param_device.NumberPixels*sizeof(*conv_mapFFT));

271
			timer.ResetStart();
272
			createConvolutedProjectionMap(iProjectionOut,iConv,proj_mapFFT,conv_map,conv_mapFFT,sumCONV,sumsquareCONV);
273
274
			printf("Time Convolution %d %d: %f\n", iProjectionOut, iConv, timer.GetCurrentElapsedTime());

275
276
			/***************************************************************************************/
			/*** Comparing each calculated convoluted map with all experimental maps ***/
277
			timer.ResetStart();
278
279
280
281
282
283
284
285
286
			if (FFTAlgo == 0)
			{
				compareRefMaps(iProjectionOut, iConv, conv_map);
			}
			else
			{
				compareRefMaps2(iProjectionOut, iConv,conv_mapFFT,sumCONV,sumsquareCONV);
			}

287
288
289
			const double compTime = timer.GetCurrentElapsedTime();
			const int nShifts = 2 * param.param_device.maxDisplaceCenter / param.param_device.GridSpaceCenter + 1;
			const double nFlops = (double) RefMap.ntotRefMap * (double) nShifts * (double) nShifts *
290
								  (((double) param.param_device.NumberPixels - (double) param.param_device.maxDisplaceCenter / 2.) * ((double) param.param_device.NumberPixels - (double) param.param_device.maxDisplaceCenter / 2.) * 5. + 25.) / compTime;
291
			const double nGBs = (double) RefMap.ntotRefMap * (double) nShifts * (double) nShifts *
292
								(((double) param.param_device.NumberPixels - (double) param.param_device.maxDisplaceCenter / 2.) * ((double) param.param_device.NumberPixels - (double) param.param_device.maxDisplaceCenter / 2.) * 2. + 8.) * (double) sizeof(myfloat_t) / compTime;
293
294
295
			const double nGBs2 = (double) RefMap.ntotRefMap * ((double) param.param_device.NumberPixels * (double) param.param_device.NumberPixels + 8.) * (double) sizeof(myfloat_t) / compTime;

			printf("Time Comparison %d %d: %f sec (%f GFlops, %f GB/s (cached), %f GB/s)\n", iProjectionOut, iConv, compTime, nFlops / 1000000000., nGBs / 1000000000., nGBs2 / 1000000000.);
296
		}
297

298
299
300
301
	}
	//deallocating fftw_complex vector
	myfftw_free(proj_mapFFT);
	myfftw_free(conv_mapFFT);
David Rohr's avatar
David Rohr committed
302

303
304
	deviceFinishRun();

305
	/************* Writing Out Probabilities ***************/
306

307
	/*** Angular Probability ***/
308

309
310
311
312
	// if(param.writeAngles){
	ofstream angProbfile;
	angProbfile.open ("ANG_PROB_iRefMap");
	// }
313

314
315
	ofstream outputProbFile;
	outputProbFile.open ("Output_Probabilities");
316

317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
	for (int iRefMap = 0; iRefMap < RefMap.ntotRefMap; iRefMap ++)
	{
		/**** Total Probability ***/
		outputProbFile << "RefMap " << iRefMap << " Probability  "  << log(pProb[iRefMap].Total)+pProb[iRefMap].Constoadd+0.5*log(M_PI)+(1-param.param_device.Ntotpi*0.5)*(log(2*M_PI)+1)+log(param.param_device.volu) << " Constant " << pProb[iRefMap].Constoadd  << "\n";

		outputProbFile << "RefMap " << iRefMap << " Maximizing Param: ";

		/*** Param that maximize probability****/
		outputProbFile << (pProb[iRefMap].max_prob + 0.5 * log(M_PI) + (1 - param.param_device.Ntotpi * 0.5) * (log(2 * M_PI) + 1) + log(param.param_device.volu)) << " ";
		outputProbFile << param.angles[pProb[iRefMap].max_prob_orient].pos[0] << " ";
		outputProbFile << param.angles[pProb[iRefMap].max_prob_orient].pos[1] << " ";
		outputProbFile << param.angles[pProb[iRefMap].max_prob_orient].pos[2] << " ";
		outputProbFile << param.CtfParam[pProb[iRefMap].max_prob_conv].pos[0] << " ";
		outputProbFile << param.CtfParam[pProb[iRefMap].max_prob_conv].pos[1] << " ";
		outputProbFile << param.CtfParam[pProb[iRefMap].max_prob_conv].pos[2] << " ";
332
333
		outputProbFile << pProb[iRefMap].max_prob_cent_x << " ";
		outputProbFile << pProb[iRefMap].max_prob_cent_y;
334
		outputProbFile << "\n";
335

336
		/*** For individual files***/ //angProbfile.open ("ANG_PROB_"iRefMap);
337

338
		if(param.writeAngles)
339
		{
340
341
342
			for (int iProjectionOut = 0; iProjectionOut < param.nTotGridAngles; iProjectionOut++)
			{
				angProbfile << " " << iRefMap << " " << param.angles[iProjectionOut].pos[0] << " " << param.angles[iProjectionOut].pos[1] << " " << param.angles[iProjectionOut].pos[2] << " " << log(pProb[iRefMap].forAngles[iProjectionOut])+pProb[iRefMap].ConstAngle[iProjectionOut]+0.5*log(M_PI)+(1-param.param_device.Ntotpi*0.5)*(log(2*M_PI)+1)+log(param.param_device.volu) << " " << log(param.param_device.volu) << "\n";
343

344
345
346
			}
		}
	}
347

348
349
	angProbfile.close();
	outputProbFile.close();
350

351
	//Deleting allocated pointers
352

353
354
355
356
357
358
359
360
361
362
363
	if (pProb)
	{
		delete[] pProb;
		pProb = NULL;
	}

	if (param.refCTF)
	{
		delete[] param.refCTF;
		param.refCTF =NULL;
	}
364

365
366
367
368
369
	if (crossCor)
	{
		delete[] crossCor;
		crossCor = NULL;
	}
370

371
372
373
374
375
376
	if(RefMap.RefMapFFT)
	{
		delete[] RefMap.RefMapFFT;
		RefMap.RefMapFFT = NULL;
	}
	return(0);
377
378
}

379
int bioem::compareRefMaps(int iProjectionOut, int iConv, const bioem_map& conv_map, const int startMap)
380
{
381
382
383
384
385
386
	#pragma omp parallel for
	for (int iRefMap = startMap; iRefMap < RefMap.ntotRefMap; iRefMap ++)
	{
		compareRefMapShifted<-1>(iRefMap,iProjectionOut,iConv,conv_map, pProb, param.param_device, RefMap);
	}
	return(0);
387
388
}

389
int bioem::compareRefMaps2(int iOrient, int iConv, mycomplex_t* localConvFFT,myfloat_t sumC,myfloat_t sumsquareC)
390
{
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
	#pragma omp parallel for
	for (int iRefMap = 0; iRefMap < RefMap.ntotRefMap; iRefMap ++)
	{

		mycomplex_t* localCCT;
		localCCT= (mycomplex_t *) myfftw_malloc(sizeof(mycomplex_t) *param.param_device.NumberPixels*param.param_device.NumberPixels);

		mycomplex_t* lCC;
		lCC= (mycomplex_t *) myfftw_malloc(sizeof(mycomplex_t) *param.param_device.NumberPixels*param.param_device.NumberPixels);

		//setting crossCor value to zero for each projection
		for(int n=0; n < param.param_device.NtotDist ; n++)
		{
			crossCor[iRefMap].value[n]=0.0;
			crossCor[iRefMap].disx[n]=-99999;
			crossCor[iRefMap].disy[n]=-99999;
		}
408

409
// Before::		compareRefMapShifted<-1>(iRefMap,iProjectionOut,iConv,conv_map, pProb, param.param_device, RefMap);
410

411
		calculateCCFFT(iRefMap,iConv, localConvFFT, localCCT,lCC);
412

413
414
415
		myfftw_free(localCCT);
		myfftw_free(lCC);
	}
416
417


418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
//Not in openMP loop SUM OVER PROBABILITIES
	for (int iRefMap = 0; iRefMap < RefMap.ntotRefMap; iRefMap ++)
	{
		calProb(iRefMap,iOrient,iConv,sumC,sumsquareC);
	}

	return(0);
}

/////////////NEW ROUTINE ////////////////
int bioem::calculateCCFFT(int iRefMap, int iConv, mycomplex_t* localConvFFT,mycomplex_t* localCCT,mycomplex_t* lCC)
{
	myfftw_plan plan;

	memset(lCC,0,param.param_device.NumberPixels*param.param_device.NumberPixels*sizeof(*lCC));
	memset(localCCT,0,param.param_device.NumberPixels*param.param_device.NumberPixels*sizeof(*localCCT));

	for(int i=0; i < param.param_device.NumberPixels ; i++ )
	{
		for(int j=0; j < param.param_device.NumberPixels ; j++ )
		{
			localCCT[i*param.param_device.NumberPixels+j][0]=localConvFFT[i*param.param_device.NumberPixels+j][0]*RefMap.RefMapFFT[iRefMap].cpoints[i*param.param_device.NumberPixels+j][0]+localConvFFT[i*param.param_device.NumberPixels+j][1]*RefMap.RefMapFFT[iRefMap].cpoints[i*param.param_device.NumberPixels+j][1];
			localCCT[i*param.param_device.NumberPixels+j][1]=localConvFFT[i*param.param_device.NumberPixels+j][1]*RefMap.RefMapFFT[iRefMap].cpoints[i*param.param_device.NumberPixels+j][0]-localConvFFT[i*param.param_device.NumberPixels+j][0]*RefMap.RefMapFFT[iRefMap].cpoints[i*param.param_device.NumberPixels+j][1];
		}
	}

	#pragma omp critical
	{
		plan = myfftw_plan_dft_2d(param.param_device.NumberPixels,param.param_device.NumberPixels,localCCT,lCC,FFTW_BACKWARD,FFTW_ESTIMATE);
		myfftw_execute(plan);
	}

// Storing CORRELATIONS FOR CORRESPONDING DISPLACEMENTS & Normalizing after Backward FFT
	int n=0;
	for (int cent_x = 0; cent_x <= param.param_device.maxDisplaceCenter; cent_x=cent_x+param.param_device.GridSpaceCenter)
	{
		for (int cent_y = 0; cent_y <= param.param_device.maxDisplaceCenter; cent_y=cent_y+param.param_device.GridSpaceCenter)
		{
			crossCor[iRefMap].value[n]=float(lCC[cent_x*param.param_device.NumberPixels+cent_y][0])/float(param.param_device.NumberPixels*param.param_device.NumberPixels);
			crossCor[iRefMap].disx[n]=cent_x;
			crossCor[iRefMap].disy[n]=cent_y;
			n++;
		}
		for (int cent_y = param.param_device.NumberPixels-param.param_device.maxDisplaceCenter; cent_y < param.param_device.NumberPixels; cent_y=cent_y+param.param_device.GridSpaceCenter)
		{
			crossCor[iRefMap].value[n]=float(lCC[cent_x*param.param_device.NumberPixels+cent_y][0])/float(param.param_device.NumberPixels*param.param_device.NumberPixels);
			crossCor[iRefMap].disx[n]=cent_x;
			crossCor[iRefMap].disy[n]=param.param_device.NumberPixels-cent_y;
			n++;
		}
	}
	for (int cent_x = param.param_device.NumberPixels-param.param_device.maxDisplaceCenter; cent_x < param.param_device.NumberPixels; cent_x=cent_x+param.param_device.GridSpaceCenter)
	{
		for (int cent_y = 0; cent_y < param.param_device.maxDisplaceCenter; cent_y=cent_y+param.param_device.GridSpaceCenter)
		{
			crossCor[iRefMap].value[n]=float(lCC[cent_x*param.param_device.NumberPixels+cent_y][0])/float(param.param_device.NumberPixels*param.param_device.NumberPixels);
			crossCor[iRefMap].disx[n]=param.param_device.NumberPixels-cent_x;
			crossCor[iRefMap].disy[n]=cent_y;
			n++;
		}
		for (int cent_y = param.param_device.NumberPixels-param.param_device.maxDisplaceCenter; cent_y <= param.param_device.NumberPixels; cent_y=cent_y+param.param_device.GridSpaceCenter)
		{
			crossCor[iRefMap].value[n]=float(lCC[cent_x*param.param_device.NumberPixels+cent_y][0])/float(param.param_device.NumberPixels*param.param_device.NumberPixels);
			crossCor[iRefMap].disx[n]=param.param_device.NumberPixels-cent_x;
			crossCor[iRefMap].disy[n]=param.param_device.NumberPixels-cent_y;
			n++;
		}
	}
//#pragma omp critical
	{
		myfftw_destroy_plan(plan);
	}
	/* Controll but slows down the parallelisim
	  if(n> MAX_DISPLACE && n> param.param_device.NtotDist)
	 {
		cout << "Problem with displace center and Max allowed" ;
		exit(1);
		}*/
//
	return (0);
}
499

500
501
int bioem::calProb(int iRefMap,int iOrient, int iConv,myfloat_t sumC,myfloat_t sumsquareC)
{
502

503
504
505
	/********************************************************/
	/*********** Calculates the BioEM probability ***********/
	/********************************************************/
506

507
	const myfloat_t ForLogProb = (sumsquareC * param.param_device.Ntotpi - sumC * sumC);
508

509
510
// Loop again over displacements
	for(int n=0; n < param.param_device.NtotDist ; n++)
511
	{
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
		// Products of different cross-correlations (first element in formula)
		const myfloat_t firstele = param.param_device.Ntotpi * (RefMap.sumsquare_RefMap[iRefMap] * sumsquareC -   crossCor[iRefMap].value[n]*  crossCor[iRefMap].value[n]) +
								   2 * RefMap.sum_RefMap[iRefMap] * sumC *   crossCor[iRefMap].value[n] - RefMap.sumsquare_RefMap[iRefMap] * sumC * sumC - RefMap.sum_RefMap[iRefMap] * RefMap.sum_RefMap[iRefMap] * sumsquareC;

		//******* Calculating log of Prob*********/
		// As in fortran code: logpro=(3-Ntotpi)*0.5*log(firstele/pConvMap[iOrient].ForLogProbfromConv[iConv])+(Ntotpi*0.5-2)*log(Ntotpi-2)-0.5*log(pConvMap[iOrient].ForLogProbfromConv[iConv])+0.5*log(PI)+(1-Ntotpi*0.5)*(log(2*PI)+1);
		const myfloat_t logpro = (3 - param.param_device.Ntotpi) * 0.5 * log(firstele) + (param.param_device.Ntotpi * 0.5 - 2) * log((param.param_device.Ntotpi - 2) * ForLogProb);
//   cout << n <<" " << firstele << " "<< logpro << "\n";
		{
			/*******  Summing total Probabilities *************/
			/******* Need a constant because of numerical divergence*****/
			if(pProb[iRefMap].Constoadd < logpro)
			{
				pProb[iRefMap].Total = pProb[iRefMap].Total * exp(-logpro + pProb[iRefMap].Constoadd);
				pProb[iRefMap].Constoadd = logpro;
			}
			pProb[iRefMap].Total += exp(logpro - pProb[iRefMap].Constoadd);

			//Summing probabilities for each orientation
			if(pProb[iRefMap].ConstAngle[iOrient] < logpro)
			{
				pProb[iRefMap].forAngles[iOrient] = pProb[iRefMap].forAngles[iOrient] * exp(-logpro + pProb[iRefMap].ConstAngle[iOrient]);
				pProb[iRefMap].ConstAngle[iOrient] = logpro;
			}
			pProb[iRefMap].forAngles[iOrient] += exp(logpro - pProb[iRefMap].ConstAngle[iOrient]);

			/********** Getting parameters that maximize the probability ***********/
			if(pProb[iRefMap].max_prob < logpro)
			{
				pProb[iRefMap].max_prob = logpro;
				pProb[iRefMap].max_prob_cent_x = crossCor[iRefMap].disx[n];
				pProb[iRefMap].max_prob_cent_y = crossCor[iRefMap].disy[n];
				pProb[iRefMap].max_prob_orient = iOrient;
				pProb[iRefMap].max_prob_conv = iConv;
			}
		}
	}
	return (0);
550
551
552
}


553
int bioem::createProjection(int iMap,mycomplex_t* mapFFT)
554
{
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717

	/**************************************************************************************/
	/****  BioEM Create Projection routine in Euler angle predefined grid****************
	********************* and turns projection into Fourier space **********************/
	/**************************************************************************************/

	myfloat3_t RotatedPointsModel[Model.nPointsModel];
	myfloat_t rotmat[3][3];
	myfloat_t alpha, gam,beta;
	myfftw_plan plan;
	mycomplex_t* localproj;

	localproj= (mycomplex_t *) myfftw_malloc(sizeof(mycomplex_t) *param.param_device.NumberPixels*param.param_device.NumberPixels);
	memset(localproj,0,param.param_device.NumberPixels*param.param_device.NumberPixels*sizeof(*localproj));

	alpha=param.angles[iMap].pos[0];
	beta=param.angles[iMap].pos[1];
	gam=param.angles[iMap].pos[2];

	/**** To see how things are going: cout << "Id " << omp_get_thread_num() <<  " Angs: " << alpha << " " << beta << " " << gam << "\n"; ***/

	/********** Creat Rotation with pre-defiend grid of orientations**********/

	rotmat[0][0]=cos(gam)*cos(alpha)-cos(beta)*sin(alpha)*sin(gam);
	rotmat[0][1]=cos(gam)*sin(alpha)+cos(beta)*cos(alpha)*sin(gam);
	rotmat[0][2]=sin(gam)*sin(beta);
	rotmat[1][0]=-sin(gam)*cos(alpha)-cos(beta)*sin(alpha)*cos(gam);
	rotmat[1][1]=-sin(gam)*sin(alpha)+cos(beta)*cos(alpha)*cos(gam);
	rotmat[1][2]=cos(gam)*sin(beta);
	rotmat[2][0]=sin(beta)*sin(alpha);
	rotmat[2][1]=-sin(beta)*cos(alpha);
	rotmat[2][2]=cos(beta);


	for(int n=0; n< Model.nPointsModel; n++)
	{
		RotatedPointsModel[n].pos[0]=0.0;
		RotatedPointsModel[n].pos[1]=0.0;
		RotatedPointsModel[n].pos[2]=0.0;
	}
	for(int n=0; n< Model.nPointsModel; n++)
	{
		for(int k=0; k< 3; k++)
		{
			for(int j=0; j< 3; j++)
			{
				RotatedPointsModel[n].pos[k]+=rotmat[k][j]*Model.PointsModel[n].pos[j];
			}
		}
	}

	int i, j;

	/************ Projection over the Z axis********************/
	for(int n=0; n< Model.nPointsModel; n++)
	{
		//Getting pixel that represents coordinates & shifting the start at to Numpix/2,Numpix/2 )
		i=floor(RotatedPointsModel[n].pos[0]/param.pixelSize+float(param.param_device.NumberPixels)/2.0+0.5);
		j=floor(RotatedPointsModel[n].pos[1]/param.pixelSize+float(param.param_device.NumberPixels)/2.0+0.5);

		localproj[i*param.param_device.NumberPixels+j][0]+=Model.densityPointsModel[n]/Model.NormDen;


	}

	/**** Output Just to check****/
	if(iMap==10)
	{
		ofstream myexamplemap;
		ofstream myexampleRot;
		myexamplemap.open ("MAP_i10");
		myexampleRot.open ("Rot_i10");
		myexamplemap << "ANGLES " << alpha << " " << beta << " " << gam << "\n";
		for(int k=0; k<param.param_device.NumberPixels; k++)
		{
			for(int j=0; j<param.param_device.NumberPixels; j++) myexamplemap << "\nMAP " << k << " " << j<< " " <<localproj[k*param.param_device.NumberPixels+j][0];
		}
		myexamplemap << " \n";
		for(int n=0; n< Model.nPointsModel; n++)myexampleRot << "\nCOOR " << RotatedPointsModel[n].pos[0] << " " << RotatedPointsModel[n].pos[1] << " " << RotatedPointsModel[n].pos[2];
		myexamplemap.close();
		myexampleRot.close();
	}

	/***** Converting projection to Fourier Space for Convolution later with kernel****/
	/********** Omp Critical is necessary with FFTW*******/
	//#pragma omp critical
	{
		plan = myfftw_plan_dft_2d(param.param_device.NumberPixels,param.param_device.NumberPixels,localproj,mapFFT,FFTW_FORWARD,FFTW_ESTIMATE);

		myfftw_execute(plan);
		myfftw_destroy_plan(plan);
		myfftw_free(localproj);
	}

	return(0);
}

int bioem::createConvolutedProjectionMap(int iMap,int iConv,mycomplex_t* lproj,bioem_map& Mapconv,mycomplex_t* localmultFFT,myfloat_t& sumC,myfloat_t& sumsquareC)
{
	/**************************************************************************************/
	/****  BioEM Create Convoluted Projection Map routine, multiplies in Fourier **********
	**************** calculated Projection with convoluted precalculated Kernel**********
	*************** and Backtransforming it to real Space ******************************/
	/**************************************************************************************/

	myfftw_plan plan;
	mycomplex_t* localconvFFT;
	localconvFFT= (mycomplex_t *) myfftw_malloc(sizeof(mycomplex_t)*param.param_device.NumberPixels*param.param_device.NumberPixels);


	/**** Multiplying FFTmap with corresponding kernel ****/

	for(int i=0; i < param.param_device.NumberPixels ; i++ )
	{
		for(int j=0; j < param.param_device.NumberPixels ; j++ )
		{   //Projection*CONJ(KERNEL)
			localmultFFT[i*param.param_device.NumberPixels+j][0]=lproj[i*param.param_device.NumberPixels+j][0]*param.refCTF[iConv].cpoints[i*param.param_device.NumberPixels+j][0]+lproj[i*param.param_device.NumberPixels+j][1]*param.refCTF[iConv].cpoints[i*param.param_device.NumberPixels+j][1];
			localmultFFT[i*param.param_device.NumberPixels+j][1]=lproj[i*param.param_device.NumberPixels+j][1]*param.refCTF[iConv].cpoints[i*param.param_device.NumberPixels+j][0]-lproj[i*param.param_device.NumberPixels+j][0]*param.refCTF[iConv].cpoints[i*param.param_device.NumberPixels+j][1];
			// cout << "GG " << i << " " << j << " " << param.refCTF[iConv].cpoints[i*param.param_device.NumberPixels+j][0] << " " <<param.refCTF[iConv].cpoints[i*param.param_device.NumberPixels+j][1] <<" " <<lproj[i*param.param_device.NumberPixels+j][0] <<" " <<lproj[i*param.param_device.NumberPixels+j][1] << "\n";
		}
	}

	/**** Bringing convoluted Map to real Space ****/
	//#pragma omp critical
	{
		plan = myfftw_plan_dft_2d(param.param_device.NumberPixels,param.param_device.NumberPixels,localmultFFT,localconvFFT,FFTW_BACKWARD,FFTW_ESTIMATE);
		myfftw_execute(plan);
	}


	/****Asigning convolution fftw_complex to bioem_map ****/
	for(int i=0; i < param.param_device.NumberPixels ; i++ )
	{
		for(int j=0; j < param.param_device.NumberPixels ; j++ )
		{
			Mapconv.points[i][j]=localconvFFT[i*param.param_device.NumberPixels+j][0];
		}
	}

	/*** Calculating Cross-correlations of cal-convoluted map with its self *****/
	sumC=0;
	sumsquareC=0;
	for(int i=0; i < param.param_device.NumberPixels ; i++ )
	{
		for(int j=0; j < param.param_device.NumberPixels ; j++ )
		{
			sumC+=localconvFFT[i*param.param_device.NumberPixels+j][0];
			sumsquareC+=localconvFFT[i*param.param_device.NumberPixels+j][0]*localconvFFT[i*param.param_device.NumberPixels+j][0];
		}
	}
	/*** The DTF gives an unnormalized value so have to divded by the total number of pixels in Fourier ***/
	// Normalizing
	sumC=sumC/float(param.param_device.NumberPixels*param.param_device.NumberPixels);
	sumsquareC=sumsquareC/pow(float(param.param_device.NumberPixels),4);

	/**** Freeing fftw_complex created (dont know if omp critical is necessary) ****/
	//#pragma omp critical
	{
		myfftw_destroy_plan(plan);
		myfftw_free(localconvFFT);
	}

	return(0);
718
719
720
721
}

int bioem::calcross_cor(bioem_map& localmap,myfloat_t& sum,myfloat_t& sumsquare)
{
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
	/*********************** Routine to calculate Cross correlations***********************/

	sum=0.0;
	sumsquare=0.0;
	for (int i = 0; i < param.param_device.NumberPixels; i++)
	{
		for (int j = 0; j < param.param_device.NumberPixels; j++)
		{
			// Calculate Sum of pixels
			sum += localmap.points[i][j];
			// Calculate Sum of pixels squared
			sumsquare += localmap.points[i][j]*localmap.points[i][j];
		}
	}
	return(0);
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
}

int bioem::deviceInit()
{
	return(0);
}

int bioem::deviceStartRun()
{
	return(0);
}

int bioem::deviceFinishRun()
{
	return(0);
}