bioem_cuda.cu 19.6 KB
Newer Older
Pilar Cossio's avatar
License  
Pilar Cossio committed
1
2
3
4
/* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
        < BioEM software for Bayesian inference of Electron Microscopy images>
            Copyright (C) 2014 Pilar Cossio, David Rohr and Gerhard Hummer.
            Max Planck Institute of Biophysics, Frankfurt, Germany.
5

Pilar Cossio's avatar
License  
Pilar Cossio committed
6
7
8
9
                See license statement for terms of distribution.

   ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

10
11
12
13
14
15
16
17
18
19
20
#define BIOEM_GPUCODE

#if defined(_WIN32)
#include <windows.h>
#endif

#include <iostream>
using namespace std;

#include "bioem_cuda_internal.h"
#include "bioem_algorithm.h"
Pilar Cossio's avatar
Pilar Cossio committed
21
//#include "helper_cuda.h"
22

23
24
25
26
27
28
29
#define checkCudaErrors(error) \
{ \
	if ((error) != cudaSuccess) \
	{ \
		printf("CUDA Error %d / %s (%s: %d)\n", error, cudaGetErrorString(error), __FILE__, __LINE__); \
		exit(1); \
	} \
30
31
}

David Rohr's avatar
David Rohr committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
static const char *cufftGetErrorStrung(cufftResult error)
{
    switch (error)
    {
        case CUFFT_SUCCESS:
            return "CUFFT_SUCCESS";

        case CUFFT_INVALID_PLAN:
            return "CUFFT_INVALID_PLAN";

        case CUFFT_ALLOC_FAILED:
            return "CUFFT_ALLOC_FAILED";

        case CUFFT_INVALID_TYPE:
            return "CUFFT_INVALID_TYPE";

        case CUFFT_INVALID_VALUE:
            return "CUFFT_INVALID_VALUE";

        case CUFFT_INTERNAL_ERROR:
            return "CUFFT_INTERNAL_ERROR";

        case CUFFT_EXEC_FAILED:
            return "CUFFT_EXEC_FAILED";

        case CUFFT_SETUP_FAILED:
            return "CUFFT_SETUP_FAILED";

        case CUFFT_INVALID_SIZE:
            return "CUFFT_INVALID_SIZE";

        case CUFFT_UNALIGNED_DATA:
            return "CUFFT_UNALIGNED_DATA";
    }
    return "UNKNOWN";
}

69
70
71
72
bioem_cuda::bioem_cuda()
{
	deviceInitialized = 0;
	GPUAlgo = getenv("GPUALGO") == NULL ? 2 : atoi(getenv("GPUALGO"));
73
74
	GPUAsync = getenv("GPUASYNC") == NULL ? 1 : atoi(getenv("GPUASYNC"));
	GPUWorkload = getenv("GPUWORKLOAD") == NULL ? 100 : atoi(getenv("GPUWORKLOAD"));
75
	GPUDualStream = getenv("GPUDUALSTREAM") == NULL ? 1 : atoi(getenv("GPUDUALSTREAM"));
76
77
78
79
80
81
82
}

bioem_cuda::~bioem_cuda()
{
	deviceExit();
}

83
__global__ void compareRefMap_kernel(const int iOrient, const int iConv, const myfloat_t* pMap, bioem_Probability pProb, const bioem_param_device param, const bioem_RefMap_Mod RefMap, const int cent_x, const int cent_y, const int maxRef)
84
85
{
	const int iRefMap = myBlockIdxX * myBlockDimX + myThreadIdxX;
86
	if (iRefMap < maxRef)
87
	{
88
		compareRefMap<0>(iRefMap, iOrient, iConv, pMap, pProb, param, RefMap, cent_x, cent_y);
89
90
91
	}
}

92
__global__ void compareRefMapShifted_kernel(const int iOrient, const int iConv, const myfloat_t* pMap, bioem_Probability pProb, const bioem_param_device param, const bioem_RefMap_Mod RefMap, const int maxRef)
93
94
{
	const int iRefMap = myBlockIdxX * myBlockDimX + myThreadIdxX;
95
	if (iRefMap < maxRef)
96
	{
97
		compareRefMapShifted<1>(iRefMap, iOrient, iConv, pMap, pProb, param, RefMap);
98
99
100
	}
}

101
102
103
104
105
106
__global__ void cudaZeroMem(void* ptr, size_t size)
{
	int* myptr = (int*) ptr;
	int mysize = size / sizeof(int);
	int myid = myBlockDimX * myBlockIdxX + myThreadIdxX;
	int mygrid = myBlockDimX * myGridDimX;
107
	for (int i = myid; i < mysize; i += mygrid) myptr[i] = 0;
108
109
}

110
__global__ void compareRefMapLoopShifts_kernel(const int iOrient, const int iConv, const myfloat_t* pMap, bioem_Probability pProb, const bioem_param_device param, const bioem_RefMap RefMap, const int blockoffset, const int nShifts, const int nShiftBits, const int maxRef)
111
112
113
114
115
116
117
118
119
{
	const size_t myid = (myBlockIdxX + blockoffset) * myBlockDimX + myThreadIdxX;
	const int iRefMap = myid >> (nShiftBits << 1);
	const int myRef = myThreadIdxX >> (nShiftBits << 1);
	const int myShiftIdx = (myid >> nShiftBits) & (nShifts - 1);
	const int myShiftIdy = myid & (nShifts - 1);
	const int myShift = myid & (nShifts * nShifts - 1);
	const int cent_x = myShiftIdx * param.GridSpaceCenter - param.maxDisplaceCenter;
	const int cent_y = myShiftIdy * param.GridSpaceCenter - param.maxDisplaceCenter;
120

121
	const bool threadActive = myShiftIdx < nShifts && myShiftIdy < nShifts && iRefMap < maxRef;
122

123
	compareRefMap<2>(iRefMap, iOrient, iConv, pMap, pProb, param, RefMap, cent_x, cent_y, myShift, nShifts * nShifts, myRef, threadActive);
124
125
}

126
__global__ void multComplexMap(const mycomplex_t* convmap, const mycomplex_t* refmap, mycuComplex_t* out, const int NumberPixelsTotal, const int MapSize, const int NumberMaps, const int Offset)
127
128
{
	if (myBlockIdxX >= NumberMaps) return;
129
	const mycuComplex_t* myin = (mycuComplex_t*) &refmap[(myBlockIdxX + Offset) * MapSize];
130
	const mycuComplex_t* myconv = (mycuComplex_t*) convmap;
131
	mycuComplex_t* myout = &out[myBlockIdxX * MapSize];
132
	for(int i = myThreadIdxX; i < NumberPixelsTotal; i += myBlockDimX)
133
	{
134
135
136
137
138
139
140
		mycuComplex_t val;
		const mycuComplex_t conv = myconv[i];
		const mycuComplex_t in = myin[i];

		val.x = conv.x * in.x + conv.y * in.y;
		val.y = conv.y * in.x - conv.x * in.y;
		myout[i] = val;
141
142
143
	}
}

144
__global__ void cuDoRefMapsFFT(const int iOrient, const int iConv, const myfloat_t amp, const myfloat_t pha, const myfloat_t env, const myfloat_t* lCC, const myfloat_t sumC, const myfloat_t sumsquareC, bioem_Probability pProb, const bioem_param_device param, const bioem_RefMap RefMap, const int maxRef, const int Offset)
145
{
146
	if (myBlockIdxX * myBlockDimX + myThreadIdxX >= maxRef) return;
147
148
	const int iRefMap = myBlockIdxX * myBlockDimX + myThreadIdxX + Offset;
	const myfloat_t* mylCC = &lCC[(myBlockIdxX * myBlockDimX + myThreadIdxX) * param.NumberPixels * param.NumberPixels];
149
	doRefMapFFT(iRefMap, iOrient, iConv, amp, pha, env, mylCC, sumC, sumsquareC, pProb, param, RefMap);
150
151
}

152
153
154
155
156
157
158
159
160
161
162
163
164
template <class T> static inline T divup(T num, T divider) {return((num + divider - 1) / divider);}
static inline bool IsPowerOf2(int x) {return ((x > 0) && ((x & (x - 1)) == 0));}
#if defined(_WIN32)
static inline int ilog2 (int value)
{
	DWORD index;
	_BitScanReverse (&index, value);
	return(value);
}
#else
static inline int ilog2(int value) {return 31 - __builtin_clz(value);}
#endif

165
int bioem_cuda::compareRefMaps(int iOrient, int iConv, myfloat_t amp, myfloat_t pha, myfloat_t env, const myfloat_t* conv_map, mycomplex_t* localmultFFT, myfloat_t sumC, myfloat_t sumsquareC, const int startMap)
166
{
167
168
169
170
171
	if (startMap)
	{
		cout << "Error startMap not implemented for GPU Code\n";
		exit(1);
	}
172
173
174
175
	if (GPUAsync)
	{
		checkCudaErrors(cudaEventSynchronize(cudaEvent[iConv & 1]));
	}
176

177
	if (FFTAlgo)
178
	{
179
		memcpy(&pConvMapFFT_Host[(iConv & 1) * param.FFTMapSize], localmultFFT, param.FFTMapSize * sizeof(mycomplex_t));
180
181
182
183
184
185
		checkCudaErrors(cudaMemcpyAsync(&pConvMapFFT[(iConv & 1) * param.FFTMapSize], &pConvMapFFT_Host[(iConv & 1) * param.FFTMapSize], param.FFTMapSize * sizeof(mycomplex_t), cudaMemcpyHostToDevice, cudaStream[GPUAsync ? 2 : 0]));
		if (GPUAsync)
		{
			checkCudaErrors(cudaEventRecord(cudaEvent[2], cudaStream[2]));
			checkCudaErrors(cudaStreamWaitEvent(cudaStream[0], cudaEvent[2], 0));
		}
186
		if (GPUDualStream)
187
		{
188
189
190
191
192
193
			checkCudaErrors(cudaEventRecord(cudaFFTEvent[0], cudaStream[0]));
			checkCudaErrors(cudaStreamWaitEvent(cudaStream[1], cudaFFTEvent[0], 0));
		}
		for (int i = 0, j = 0; i < maxRef; i += CUDA_FFTS_AT_ONCE, j++)
		{
			if (!GPUDualStream) j = 0;
194
			const int num = min(CUDA_FFTS_AT_ONCE, maxRef - i);
195
196
			multComplexMap<<<num, CUDA_THREAD_COUNT, 0, cudaStream[j & 1]>>>(&pConvMapFFT[(iConv & 1) * param.FFTMapSize], pRefMapsFFT, pFFTtmp2[j & 1], param.param_device.NumberPixels * param.param_device.NumberFFTPixels1D, param.FFTMapSize, num, i);
			cufftResult err = mycufftExecC2R(i + CUDA_FFTS_AT_ONCE > maxRef ? plan[1][j & 1] : plan[0][j & 1], pFFTtmp2[j & 1], pFFTtmp[j & 1]);
David Rohr's avatar
David Rohr committed
197
			if (err != CUFFT_SUCCESS)
198
			{
David Rohr's avatar
David Rohr committed
199
				cout << "Error running CUFFT " << cufftGetErrorStrung(err) << "\n";
200
201
				exit(1);
			}
202
			cuDoRefMapsFFT<<<divup(num, CUDA_THREAD_COUNT), CUDA_THREAD_COUNT, 0, cudaStream[j & 1]>>>(iOrient, iConv,  amp, pha, env, pFFTtmp[j & 1], sumC, sumsquareC, pProb_device, param.param_device, *gpumap, num, i);
203
		}
204
		checkCudaErrors(cudaGetLastError());
205
206
207
208
209
		if (GPUDualStream)
		{
			checkCudaErrors(cudaEventRecord(cudaFFTEvent[1], cudaStream[1]));
			checkCudaErrors(cudaStreamWaitEvent(cudaStream[0], cudaFFTEvent[1], 0));
		}
210
211
212
	}
	else
	{
213
		checkCudaErrors(cudaMemcpyAsync(pConvMap_device[iConv & 1], conv_map, sizeof(myfloat_t) * RefMap.refMapSize, cudaMemcpyHostToDevice, cudaStream[0]));
214
215

		if (GPUAlgo == 2) //Loop over shifts
216
		{
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
			const int nShifts = 2 * param.param_device.maxDisplaceCenter / param.param_device.GridSpaceCenter + 1;
			if (!IsPowerOf2(nShifts))
			{
				cout << "Invalid number of displacements, no power of two\n";
				exit(1);
			}
			if (CUDA_THREAD_COUNT % (nShifts * nShifts))
			{
				cout << "CUDA Thread count (" << CUDA_THREAD_COUNT << ") is no multiple of number of shifts (" << (nShifts * nShifts) << ")\n";
				exit(1);
			}
			if (nShifts > CUDA_MAX_SHIFT_REDUCE)
			{
				cout << "Too many displacements for CUDA reduction\n";
				exit(1);
			}
			const int nShiftBits = ilog2(nShifts);
			size_t totalBlocks = divup((size_t) maxRef * (size_t) nShifts * (size_t) nShifts, (size_t) CUDA_THREAD_COUNT);
			size_t nBlocks = CUDA_BLOCK_COUNT;
236
			for (size_t i = 0; i < totalBlocks; i += nBlocks)
237
			{
238
				compareRefMapLoopShifts_kernel<<<min(nBlocks, totalBlocks - i), CUDA_THREAD_COUNT, (CUDA_THREAD_COUNT * 2 + CUDA_THREAD_COUNT / (nShifts * nShifts) * 4) * sizeof(myfloat_t), cudaStream[0] >>> (iOrient, iConv, pConvMap_device[iConv & 1], pProb_device, param.param_device, *gpumap, i, nShifts, nShiftBits, maxRef);
239
			}
240
		}
241
		else if (GPUAlgo == 1) //Split shifts in multiple kernels
242
		{
243
			for (int cent_x = -param.param_device.maxDisplaceCenter; cent_x <= param.param_device.maxDisplaceCenter; cent_x = cent_x + param.param_device.GridSpaceCenter)
244
			{
245
				for (int cent_y = -param.param_device.maxDisplaceCenter; cent_y <= param.param_device.maxDisplaceCenter; cent_y = cent_y + param.param_device.GridSpaceCenter)
246
				{
247
					compareRefMap_kernel<<<divup(maxRef, CUDA_THREAD_COUNT), CUDA_THREAD_COUNT, 0, cudaStream[0]>>> (iOrient, iConv, pConvMap_device[iConv & 1], pProb_device, param.param_device, *pRefMap_device_Mod, cent_x, cent_y, maxRef);
248
249
				}
			}
250
		}
251
		else if (GPUAlgo == 0) //All shifts in one kernel
252
		{
253
			compareRefMapShifted_kernel<<<divup(maxRef, CUDA_THREAD_COUNT), CUDA_THREAD_COUNT, 0, cudaStream[0]>>> (iOrient, iConv, pConvMap_device[iConv & 1], pProb_device, param.param_device, *pRefMap_device_Mod, maxRef);
254
		}
255
		else
256
		{
257
258
			cout << "Invalid GPU Algorithm selected\n";
			exit(1);
259
		}
260
	}
261
262
	if (GPUWorkload < 100)
	{
263
		bioem::compareRefMaps(iOrient, iConv, amp, pha, env, conv_map, localmultFFT, sumC, sumsquareC, maxRef);
264
	}
265
266
	if (GPUAsync)
	{
267
		checkCudaErrors(cudaEventRecord(cudaEvent[iConv & 1], cudaStream[0]));
268
	}
269
270
	else
	{
271
		checkCudaErrors(cudaStreamSynchronize(cudaStream[0]));
272
273
274
275
	}
	return(0);
}

David Rohr's avatar
David Rohr committed
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
int bioem_cuda::selectCudaDevice()
{
	int count;
	
	long long int bestDeviceSpeed = -1;
	int bestDevice;
	cudaDeviceProp deviceProp;
	
	checkCudaErrors(cudaGetDeviceCount(&count));
	if (count == 0)
	{
		printf("No CUDA device detected\n");
		return(1);
	}
	for (int i = 0;i < count;i++)
	{
#if CUDA_VERSION > 3010
		size_t free, total;
#else
		unsigned int free, total;
#endif
		cuInit(0);
		CUdevice tmpDevice;
		cuDeviceGet(&tmpDevice, i);
		CUcontext tmpContext;
		cuCtxCreate(&tmpContext, 0, tmpDevice);
		if(cuMemGetInfo(&free, &total)) exit(1);
		cuCtxDestroy(tmpContext);
		checkCudaErrors(cudaGetDeviceProperties(&deviceProp, i));

David Rohr's avatar
David Rohr committed
306
		if (DebugOutput >= 2 && mpi_rank == 0) printf("CUDA Device %2d: %s (Rev: %d.%d - Mem Avail %lld / %lld)\n", i, deviceProp.name, deviceProp.major, deviceProp.minor, (long long int) free, (long long int) deviceProp.totalGlobalMem);
David Rohr's avatar
David Rohr committed
307
308
309
310
311
312
313
		long long int deviceSpeed = (long long int) deviceProp.multiProcessorCount * (long long int) deviceProp.clockRate * (long long int) deviceProp.warpSize;
		if (deviceSpeed > bestDeviceSpeed)
		{
			bestDevice = i;
			bestDeviceSpeed = deviceSpeed;
		}
	}
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
	if (getenv("GPUDEVICE"))
	{
		int device = atoi(getenv("GPUDEVICE"));
		if (device > count)
		{
			printf("Invalid CUDA device specified, max device number is %d\n", count);
			exit(1);
		}
#ifdef WITH_MPI
		if (device == -1)
		{
			device = mpi_rank % count;
		}
#endif
		if (device < 0)
		{
			printf("Negative CUDA device specified: %d, invalid!\n", device);
		}
		bestDevice = device;
	}
	checkCudaErrors(cudaSetDevice(bestDevice));
David Rohr's avatar
David Rohr committed
335
336
337

	cudaGetDeviceProperties(&deviceProp ,bestDevice); 

David Rohr's avatar
David Rohr committed
338
	if (DebugOutput >= 3)
David Rohr's avatar
David Rohr committed
339
	{
David Rohr's avatar
David Rohr committed
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
		printf("Using CUDA Device %s with Properties:\n", deviceProp.name);
		printf("totalGlobalMem = %lld\n", (unsigned long long int) deviceProp.totalGlobalMem);
		printf("sharedMemPerBlock = %lld\n", (unsigned long long int) deviceProp.sharedMemPerBlock);
		printf("regsPerBlock = %d\n", deviceProp.regsPerBlock);
		printf("warpSize = %d\n", deviceProp.warpSize);
		printf("memPitch = %lld\n", (unsigned long long int) deviceProp.memPitch);
		printf("maxThreadsPerBlock = %d\n", deviceProp.maxThreadsPerBlock);
		printf("maxThreadsDim = %d %d %d\n", deviceProp.maxThreadsDim[0], deviceProp.maxThreadsDim[1], deviceProp.maxThreadsDim[2]);
		printf("maxGridSize = %d %d %d\n", deviceProp.maxGridSize[0], deviceProp.maxGridSize[1], deviceProp.maxGridSize[2]);
		printf("totalConstMem = %lld\n", (unsigned long long int) deviceProp.totalConstMem);
		printf("major = %d\n", deviceProp.major);
		printf("minor = %d\n", deviceProp.minor);
		printf("clockRate = %d\n", deviceProp.clockRate);
		printf("memoryClockRate = %d\n", deviceProp.memoryClockRate);
		printf("multiProcessorCount = %d\n", deviceProp.multiProcessorCount);
		printf("textureAlignment = %lld\n", (unsigned long long int) deviceProp.textureAlignment);
David Rohr's avatar
David Rohr committed
356
357
	}
	
David Rohr's avatar
David Rohr committed
358
359
	if (DebugOutput >= 1)
	{
David Rohr's avatar
David Rohr committed
360
		printf("BioEM for CUDA initialized (MPI Rank %d), %d GPUs found, using GPU %d\n", mpi_rank, count, bestDevice);
David Rohr's avatar
David Rohr committed
361
362
	}
	
David Rohr's avatar
David Rohr committed
363
364
365
	return(0);
}

366
367
368
int bioem_cuda::deviceInit()
{
	deviceExit();
David Rohr's avatar
David Rohr committed
369
	
370
	selectCudaDevice();
371

372
373
	if (FFTAlgo) GPUAlgo = 2;

374
375
376
377
378
	gpumap = new bioem_RefMap;
	memcpy(gpumap, &RefMap, sizeof(bioem_RefMap));
	if (FFTAlgo == 0)
	{
		checkCudaErrors(cudaMalloc(&maps, sizeof(myfloat_t) * RefMap.ntotRefMap * RefMap.refMapSize));
379
380
381
382
383
384
385
386
387
388
389
390
391

		if (GPUAlgo == 0 || GPUAlgo == 1)
		{
			pRefMap_device_Mod = (bioem_RefMap_Mod*) gpumap;
			bioem_RefMap_Mod* RefMapGPU = new bioem_RefMap_Mod;
			RefMapGPU->init(RefMap);
			checkCudaErrors(cudaMemcpy(maps, RefMapGPU->maps, sizeof(myfloat_t) * RefMap.ntotRefMap * RefMap.refMapSize, cudaMemcpyHostToDevice));
			delete RefMapGPU;
		}
		else
		{
			checkCudaErrors(cudaMemcpy(maps, RefMap.maps, sizeof(myfloat_t) * RefMap.ntotRefMap * RefMap.refMapSize, cudaMemcpyHostToDevice));
		}
392
393
394
395
396
397
398
399
400
	}
	checkCudaErrors(cudaMalloc(&sum, sizeof(myfloat_t) * RefMap.ntotRefMap));
	checkCudaErrors(cudaMemcpy(sum, RefMap.sum_RefMap, sizeof(myfloat_t) * RefMap.ntotRefMap, cudaMemcpyHostToDevice));
	checkCudaErrors(cudaMalloc(&sumsquare, sizeof(myfloat_t) * RefMap.ntotRefMap));
	checkCudaErrors(cudaMemcpy(sumsquare, RefMap.sumsquare_RefMap, sizeof(myfloat_t) * RefMap.ntotRefMap, cudaMemcpyHostToDevice));
	gpumap->maps = maps;
	gpumap->sum_RefMap = sum;
	gpumap->sumsquare_RefMap = sumsquare;

401
	checkCudaErrors(cudaMalloc(&pProb_memory, pProb_device.get_size(RefMap.ntotRefMap, param.nTotGridAngles, param.nTotCC, param.param_device.writeAngles, param.param_device.writeCC)));
402

403
	for (int i = 0; i < 2; i++)
404
	{
405
		checkCudaErrors(cudaStreamCreate(&cudaStream[i]));
406
		checkCudaErrors(cudaEventCreate(&cudaEvent[i]));
407
		checkCudaErrors(cudaEventCreate(&cudaFFTEvent[i]));
408
		checkCudaErrors(cudaMalloc(&pConvMap_device[i], sizeof(myfloat_t) * RefMap.refMapSize));
409
	}
410
411
412
413
414
	if (GPUAsync)
	{
		checkCudaErrors(cudaStreamCreate(&cudaStream[2]));
		checkCudaErrors(cudaEventCreate(&cudaEvent[2]));
	}
415

416
417
	if (FFTAlgo)
	{
418
		checkCudaErrors(cudaMalloc(&pRefMapsFFT, RefMap.ntotRefMap * param.FFTMapSize * sizeof(mycomplex_t)));
419
420
421
422
		checkCudaErrors(cudaMalloc(&pFFTtmp2[0], CUDA_FFTS_AT_ONCE * param.FFTMapSize * 2 * sizeof(mycomplex_t)));
		checkCudaErrors(cudaMalloc(&pFFTtmp[0], CUDA_FFTS_AT_ONCE * param.param_device.NumberPixels * param.param_device.NumberPixels * 2 * sizeof(myfloat_t)));
		pFFTtmp2[1] = pFFTtmp2[0] + CUDA_FFTS_AT_ONCE * param.FFTMapSize;
		pFFTtmp[1] = pFFTtmp[0] + CUDA_FFTS_AT_ONCE * param.param_device.NumberPixels * param.param_device.NumberPixels;
423
		checkCudaErrors(cudaMalloc(&pConvMapFFT, param.FFTMapSize * sizeof(mycomplex_t) * 2));
424
		checkCudaErrors(cudaHostAlloc(&pConvMapFFT_Host, param.FFTMapSize * sizeof(mycomplex_t) * 2, 0));
425
		checkCudaErrors(cudaMemcpy(pRefMapsFFT, RefMap.RefMapsFFT, RefMap.ntotRefMap * param.FFTMapSize * sizeof(mycomplex_t), cudaMemcpyHostToDevice));
426
427
	}

428
429
430
431
432
433
434
	deviceInitialized = 1;
	return(0);
}

int bioem_cuda::deviceExit()
{
	if (deviceInitialized == 0) return(0);
435

436

David Rohr's avatar
David Rohr committed
437
	cudaFree(pProb_memory);
438
439
	cudaFree(sum);
	cudaFree(sumsquare);
440
	for (int i = 0; i < 2; i++)
441
	{
442
		cudaStreamDestroy(cudaStream[i]);
443
		cudaEventDestroy(cudaEvent[i]);
444
		cudaEventDestroy(cudaFFTEvent[i]);
445
		cudaFree(pConvMap_device[i]);
446
	}
447
448
449
450
	if (FFTAlgo)
	{
		cudaFree(pRefMapsFFT);
		cudaFree(pConvMapFFT);
451
		cudaFreeHost(pConvMapFFT_Host);
452
453
		cudaFree(pFFTtmp[0]);
		cudaFree(pFFTtmp2[0]);
454
	}
455
456
457
458
459
460
461
462
	else
	{
		cudaFree(maps);
	}
	if (GPUAlgo == 0 || GPUAlgo == 1)
	{
		cudaFree(pRefMap_device_Mod);
	}
463
464
465
466
467
468
	if (GPUAsync)
	{
		cudaStreamDestroy(cudaStream[2]);
		cudaEventDestroy(cudaEvent[2]);
	}

469
	delete gpumap;
470
	cudaThreadExit();
471

472
473
474
475
476
477
	deviceInitialized = 0;
	return(0);
}

int bioem_cuda::deviceStartRun()
{
David Rohr's avatar
David Rohr committed
478
479
480
481
482
483
484
485
486
	if (GPUWorkload >= 100)
	{
		maxRef = RefMap.ntotRefMap;
		pProb_host = &pProb;
	}
	else
	{
		maxRef = (size_t) RefMap.ntotRefMap * (size_t) GPUWorkload / 100;
		pProb_host = new bioem_Probability;
487
		pProb_host->init(maxRef, param.nTotGridAngles, param.nTotCC, *this);
David Rohr's avatar
David Rohr committed
488
489
		pProb_host->copyFrom(&pProb, *this);
	}
490

David Rohr's avatar
David Rohr committed
491
492
493
	pProb_device = *pProb_host;
	pProb_device.ptr = pProb_memory;
	pProb_device.set_pointers();
494
	checkCudaErrors(cudaMemcpyAsync(pProb_device.ptr, pProb_host->ptr, pProb_host->get_size(maxRef, param.nTotGridAngles, param.nTotCC, param.param_device.writeAngles, param.param_device.writeCC), cudaMemcpyHostToDevice, cudaStream[0]));
495
496
497

	if (FFTAlgo)
	{
498
		for (int j = 0;j < 2;j++)
499
		{
500
			for (int i = 0; i < 2; i++)
501
			{
502
				if (i && maxRef % CUDA_FFTS_AT_ONCE == 0) continue;
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
				int n[2] = {param.param_device.NumberPixels, param.param_device.NumberPixels};
				if (cufftPlanMany(&plan[i][j], 2, n, NULL, 1, param.FFTMapSize, NULL, 1, 0, MY_CUFFT_C2R, i ? (maxRef % CUDA_FFTS_AT_ONCE) : CUDA_FFTS_AT_ONCE) != CUFFT_SUCCESS)
				{
					cout << "Error planning CUFFT\n";
					exit(1);
				}
				if (cufftSetCompatibilityMode(plan[i][j], CUFFT_COMPATIBILITY_NATIVE) != CUFFT_SUCCESS)
				{
					cout << "Error planning CUFFT compatibility\n";
					exit(1);
				}
				if (cufftSetStream(plan[i][j], cudaStream[j]) != CUFFT_SUCCESS)
				{
					cout << "Error setting CUFFT stream\n";
					exit(1);
				}
519
			}
520
			if (!GPUDualStream) break;
521
522
		}
	}
523
524
525
526
527
	return(0);
}

int bioem_cuda::deviceFinishRun()
{
528
	if (GPUAsync) cudaStreamSynchronize(cudaStream[0]);
529
	checkCudaErrors(cudaMemcpyAsync(pProb_host->ptr, pProb_device.ptr, pProb_host->get_size(maxRef, param.nTotGridAngles, param.nTotCC, param.param_device.writeAngles, param.param_device.writeCC), cudaMemcpyDeviceToHost, cudaStream[0]));
530

531
532
	if (FFTAlgo)
	{
533
534
		for (int j = 0;j < 2;j++)
		{
535
536
537
538
539
			for (int i = 0; i < 2; i++)
			{
				if (i && maxRef % CUDA_FFTS_AT_ONCE == 0) continue;
				cufftDestroy(plan[i][j]);
			}
540
541
			if (!GPUDualStream) break;
		}
542
	}
David Rohr's avatar
David Rohr committed
543
544
545
546
	cudaThreadSynchronize();
	if (GPUWorkload < 100)
	{
		pProb.copyFrom(pProb_host, *this);
547
		free_device_host(pProb_host->ptr);
David Rohr's avatar
David Rohr committed
548
549
		delete[] pProb_host;
	}
550

551
552
553
	return(0);
}

554
555
556
557
558
559
560
561
562
563
564
565
void* bioem_cuda::malloc_device_host(size_t size)
{
	void* ptr;
	checkCudaErrors(cudaHostAlloc(&ptr, size, 0));
	return(ptr);
}

void bioem_cuda::free_device_host(void* ptr)
{
	cudaFreeHost(ptr);
}

566
567
bioem* bioem_cuda_create()
{
David Rohr's avatar
David Rohr committed
568
569
570
571
572
573
574
575
576
	int count;
	
	if (cudaGetDeviceCount(&count) != cudaSuccess) count = 0;
	if (count == 0)
	{
		printf("No CUDA device available, using fallback to CPU version\n");
		return new bioem;
	}

577
578
	return new bioem_cuda;
}