bioem_cuda.cu 20.2 KB
Newer Older
Pilar Cossio's avatar
License  
Pilar Cossio committed
1
/* ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2
3
4
5
   < BioEM software for Bayesian inference of Electron Microscopy images>
   Copyright (C) 2016 Pilar Cossio, David Rohr, Fabio Baruffa, Markus Rampp, 
        Volker Lindenstruth and Gerhard Hummer.
   Max Planck Institute of Biophysics, Frankfurt, Germany.
6

7
   See license statement for terms of distribution.
Pilar Cossio's avatar
License  
Pilar Cossio committed
8
9
10

   ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/

11
12
13
14
15
16
17
18
19
20
21
#define BIOEM_GPUCODE

#if defined(_WIN32)
#include <windows.h>
#endif

#include <iostream>
using namespace std;

#include "bioem_cuda_internal.h"
#include "bioem_algorithm.h"
Pilar Cossio's avatar
Pilar Cossio committed
22
//#include "helper_cuda.h"
23

24
25
26
27
28
29
30
#define checkCudaErrors(error) \
{ \
	if ((error) != cudaSuccess) \
	{ \
		printf("CUDA Error %d / %s (%s: %d)\n", error, cudaGetErrorString(error), __FILE__, __LINE__); \
		exit(1); \
	} \
31
32
}

David Rohr's avatar
David Rohr committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
static const char *cufftGetErrorStrung(cufftResult error)
{
    switch (error)
    {
        case CUFFT_SUCCESS:
            return "CUFFT_SUCCESS";

        case CUFFT_INVALID_PLAN:
            return "CUFFT_INVALID_PLAN";

        case CUFFT_ALLOC_FAILED:
            return "CUFFT_ALLOC_FAILED";

        case CUFFT_INVALID_TYPE:
            return "CUFFT_INVALID_TYPE";

        case CUFFT_INVALID_VALUE:
            return "CUFFT_INVALID_VALUE";

        case CUFFT_INTERNAL_ERROR:
            return "CUFFT_INTERNAL_ERROR";

        case CUFFT_EXEC_FAILED:
            return "CUFFT_EXEC_FAILED";

        case CUFFT_SETUP_FAILED:
            return "CUFFT_SETUP_FAILED";

        case CUFFT_INVALID_SIZE:
            return "CUFFT_INVALID_SIZE";

        case CUFFT_UNALIGNED_DATA:
            return "CUFFT_UNALIGNED_DATA";
    }
    return "UNKNOWN";
}

70
71
72
73
bioem_cuda::bioem_cuda()
{
	deviceInitialized = 0;
	GPUAlgo = getenv("GPUALGO") == NULL ? 2 : atoi(getenv("GPUALGO"));
74
75
	GPUAsync = getenv("GPUASYNC") == NULL ? 1 : atoi(getenv("GPUASYNC"));
	GPUWorkload = getenv("GPUWORKLOAD") == NULL ? 100 : atoi(getenv("GPUWORKLOAD"));
76
	GPUDualStream = getenv("GPUDUALSTREAM") == NULL ? 1 : atoi(getenv("GPUDUALSTREAM"));
77
78
79
80
81
82
83
}

bioem_cuda::~bioem_cuda()
{
	deviceExit();
}

84
85
86
__global__ void compareRefMap_kernel(const int iOrient, const int iConv,  const myfloat_t amp, const myfloat_t pha, const myfloat_t env, const myfloat_t sumC,
                                                const myfloat_t sumsquareC, const myfloat_t* pMap, bioem_Probability pProb, 
						const bioem_param_device param, const bioem_RefMap_Mod RefMap, const int cent_x, const int cent_y, const int maxRef)
87
88
{
	const int iRefMap = myBlockIdxX * myBlockDimX + myThreadIdxX;
89
	if (iRefMap < maxRef)
90
	{
91
		compareRefMap<0>(iRefMap, iOrient, iConv, amp, pha, env, sumC, sumsquareC, pMap, pProb, param, RefMap, cent_x, cent_y);
92
93
94
	}
}

Pilar Cossio's avatar
Pilar Cossio committed
95
__global__ void compareRefMapShifted_kernel(const int iOrient, const int iConv, const myfloat_t amp, const myfloat_t pha, const myfloat_t env, const myfloat_t sumC, const myfloat_t sumsquareC, const myfloat_t* pMap, bioem_Probability pProb, const bioem_param_device param, const bioem_RefMap_Mod RefMap, const int maxRef)
96
97
{
	const int iRefMap = myBlockIdxX * myBlockDimX + myThreadIdxX;
98
	if (iRefMap < maxRef)
99
	{
100
		compareRefMapShifted<1>(iRefMap, iOrient, iConv, amp, pha, env, sumC, sumsquareC, pMap, pProb, param, RefMap);
101
102
103
	}
}

104
105
106
107
108
109
__global__ void cudaZeroMem(void* ptr, size_t size)
{
	int* myptr = (int*) ptr;
	int mysize = size / sizeof(int);
	int myid = myBlockDimX * myBlockIdxX + myThreadIdxX;
	int mygrid = myBlockDimX * myGridDimX;
110
	for (int i = myid; i < mysize; i += mygrid) myptr[i] = 0;
111
112
}

Pilar Cossio's avatar
Pilar Cossio committed
113
__global__ void compareRefMapLoopShifts_kernel(const int iOrient, const int iConv, const myfloat_t amp, const myfloat_t pha, const myfloat_t env, const myfloat_t sumC, const myfloat_t sumsquareC, const myfloat_t* pMap, bioem_Probability pProb, const bioem_param_device param, const bioem_RefMap RefMap, const int blockoffset, const int nShifts, const int nShiftBits, const int maxRef)
114
115
116
117
118
119
120
121
122
{
	const size_t myid = (myBlockIdxX + blockoffset) * myBlockDimX + myThreadIdxX;
	const int iRefMap = myid >> (nShiftBits << 1);
	const int myRef = myThreadIdxX >> (nShiftBits << 1);
	const int myShiftIdx = (myid >> nShiftBits) & (nShifts - 1);
	const int myShiftIdy = myid & (nShifts - 1);
	const int myShift = myid & (nShifts * nShifts - 1);
	const int cent_x = myShiftIdx * param.GridSpaceCenter - param.maxDisplaceCenter;
	const int cent_y = myShiftIdy * param.GridSpaceCenter - param.maxDisplaceCenter;
123

124
	const bool threadActive = myShiftIdx < nShifts && myShiftIdy < nShifts && iRefMap < maxRef;
125

Pilar Cossio's avatar
Pilar Cossio committed
126
	compareRefMap<2>(iRefMap, iOrient, iConv, amp, pha, env, sumC, sumsquareC, pMap, pProb, param, RefMap, cent_x, cent_y, myShift, nShifts * nShifts, myRef, threadActive);
127
128
}

129
__global__ void multComplexMap(const mycomplex_t* convmap, const mycomplex_t* refmap, mycuComplex_t* out, const int NumberPixelsTotal, const int MapSize, const int NumberMaps, const int Offset)
130
131
{
	if (myBlockIdxX >= NumberMaps) return;
132
	const mycuComplex_t* myin = (mycuComplex_t*) &refmap[(myBlockIdxX + Offset) * MapSize];
133
	const mycuComplex_t* myconv = (mycuComplex_t*) convmap;
134
	mycuComplex_t* myout = &out[myBlockIdxX * MapSize];
135
	for(int i = myThreadIdxX; i < NumberPixelsTotal; i += myBlockDimX)
136
	{
137
138
139
140
141
142
143
		mycuComplex_t val;
		const mycuComplex_t conv = myconv[i];
		const mycuComplex_t in = myin[i];

		val.x = conv.x * in.x + conv.y * in.y;
		val.y = conv.y * in.x - conv.x * in.y;
		myout[i] = val;
144
145
146
	}
}

147
__global__ void cuDoRefMapsFFT(const int iOrient, const int iConv, const myfloat_t amp, const myfloat_t pha, const myfloat_t env, const myfloat_t* lCC, const myfloat_t sumC, const myfloat_t sumsquareC, bioem_Probability pProb, const bioem_param_device param, const bioem_RefMap RefMap, const int maxRef, const int Offset)
148
{
149
	if (myBlockIdxX * myBlockDimX + myThreadIdxX >= maxRef) return;
150
151
	const int iRefMap = myBlockIdxX * myBlockDimX + myThreadIdxX + Offset;
	const myfloat_t* mylCC = &lCC[(myBlockIdxX * myBlockDimX + myThreadIdxX) * param.NumberPixels * param.NumberPixels];
152
	doRefMapFFT(iRefMap, iOrient, iConv, amp, pha, env, mylCC, sumC, sumsquareC, pProb, param, RefMap);
153
154
}

155
156
157
158
159
160
161
162
163
164
165
166
167
template <class T> static inline T divup(T num, T divider) {return((num + divider - 1) / divider);}
static inline bool IsPowerOf2(int x) {return ((x > 0) && ((x & (x - 1)) == 0));}
#if defined(_WIN32)
static inline int ilog2 (int value)
{
	DWORD index;
	_BitScanReverse (&index, value);
	return(value);
}
#else
static inline int ilog2(int value) {return 31 - __builtin_clz(value);}
#endif

168
int bioem_cuda::compareRefMaps(int iOrient, int iConv, myfloat_t amp, myfloat_t pha, myfloat_t env, const myfloat_t* conv_map, mycomplex_t* localmultFFT, myfloat_t sumC, myfloat_t sumsquareC, const int startMap)
169
{
170
171
172
173
174
	if (startMap)
	{
		cout << "Error startMap not implemented for GPU Code\n";
		exit(1);
	}
175
176
177
178
	if (GPUAsync)
	{
		checkCudaErrors(cudaEventSynchronize(cudaEvent[iConv & 1]));
	}
179

180
	if (FFTAlgo)
181
	{
182
		memcpy(&pConvMapFFT_Host[(iConv & 1) * param.FFTMapSize], localmultFFT, param.FFTMapSize * sizeof(mycomplex_t));
183
184
185
186
187
188
		checkCudaErrors(cudaMemcpyAsync(&pConvMapFFT[(iConv & 1) * param.FFTMapSize], &pConvMapFFT_Host[(iConv & 1) * param.FFTMapSize], param.FFTMapSize * sizeof(mycomplex_t), cudaMemcpyHostToDevice, cudaStream[GPUAsync ? 2 : 0]));
		if (GPUAsync)
		{
			checkCudaErrors(cudaEventRecord(cudaEvent[2], cudaStream[2]));
			checkCudaErrors(cudaStreamWaitEvent(cudaStream[0], cudaEvent[2], 0));
		}
189
		if (GPUDualStream)
190
		{
191
192
193
194
195
196
			checkCudaErrors(cudaEventRecord(cudaFFTEvent[0], cudaStream[0]));
			checkCudaErrors(cudaStreamWaitEvent(cudaStream[1], cudaFFTEvent[0], 0));
		}
		for (int i = 0, j = 0; i < maxRef; i += CUDA_FFTS_AT_ONCE, j++)
		{
			if (!GPUDualStream) j = 0;
197
			const int num = min(CUDA_FFTS_AT_ONCE, maxRef - i);
198
199
			multComplexMap<<<num, CUDA_THREAD_COUNT, 0, cudaStream[j & 1]>>>(&pConvMapFFT[(iConv & 1) * param.FFTMapSize], pRefMapsFFT, pFFTtmp2[j & 1], param.param_device.NumberPixels * param.param_device.NumberFFTPixels1D, param.FFTMapSize, num, i);
			cufftResult err = mycufftExecC2R(i + CUDA_FFTS_AT_ONCE > maxRef ? plan[1][j & 1] : plan[0][j & 1], pFFTtmp2[j & 1], pFFTtmp[j & 1]);
David Rohr's avatar
David Rohr committed
200
			if (err != CUFFT_SUCCESS)
201
			{
David Rohr's avatar
David Rohr committed
202
				cout << "Error running CUFFT " << cufftGetErrorStrung(err) << "\n";
203
204
				exit(1);
			}
205
			cuDoRefMapsFFT<<<divup(num, CUDA_THREAD_COUNT), CUDA_THREAD_COUNT, 0, cudaStream[j & 1]>>>(iOrient, iConv,  amp, pha, env, pFFTtmp[j & 1], sumC, sumsquareC, pProb_device, param.param_device, *gpumap, num, i);
206
		}
207
		checkCudaErrors(cudaGetLastError());
208
209
210
211
212
		if (GPUDualStream)
		{
			checkCudaErrors(cudaEventRecord(cudaFFTEvent[1], cudaStream[1]));
			checkCudaErrors(cudaStreamWaitEvent(cudaStream[0], cudaFFTEvent[1], 0));
		}
213
214
215
	}
	else
	{
216
		checkCudaErrors(cudaMemcpyAsync(pConvMap_device[iConv & 1], conv_map, sizeof(myfloat_t) * RefMap.refMapSize, cudaMemcpyHostToDevice, cudaStream[0]));
217
218

		if (GPUAlgo == 2) //Loop over shifts
219
		{
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
			const int nShifts = 2 * param.param_device.maxDisplaceCenter / param.param_device.GridSpaceCenter + 1;
			if (!IsPowerOf2(nShifts))
			{
				cout << "Invalid number of displacements, no power of two\n";
				exit(1);
			}
			if (CUDA_THREAD_COUNT % (nShifts * nShifts))
			{
				cout << "CUDA Thread count (" << CUDA_THREAD_COUNT << ") is no multiple of number of shifts (" << (nShifts * nShifts) << ")\n";
				exit(1);
			}
			if (nShifts > CUDA_MAX_SHIFT_REDUCE)
			{
				cout << "Too many displacements for CUDA reduction\n";
				exit(1);
			}
			const int nShiftBits = ilog2(nShifts);
			size_t totalBlocks = divup((size_t) maxRef * (size_t) nShifts * (size_t) nShifts, (size_t) CUDA_THREAD_COUNT);
			size_t nBlocks = CUDA_BLOCK_COUNT;
239
			for (size_t i = 0; i < totalBlocks; i += nBlocks)
240
			{
Pilar Cossio's avatar
Pilar Cossio committed
241
				compareRefMapLoopShifts_kernel<<<min(nBlocks, totalBlocks - i), CUDA_THREAD_COUNT, (CUDA_THREAD_COUNT * 2 + CUDA_THREAD_COUNT / (nShifts * nShifts) * 4) * sizeof(myfloat_t), cudaStream[0] >>> (iOrient, iConv, amp, pha, env, sumC, sumsquareC, pConvMap_device[iConv & 1], pProb_device, param.param_device, *gpumap, i, nShifts, nShiftBits, maxRef);
242
			}
243
		}
244
		else if (GPUAlgo == 1) //Split shifts in multiple kernels
245
		{
246
			for (int cent_x = -param.param_device.maxDisplaceCenter; cent_x <= param.param_device.maxDisplaceCenter; cent_x = cent_x + param.param_device.GridSpaceCenter)
247
			{
248
				for (int cent_y = -param.param_device.maxDisplaceCenter; cent_y <= param.param_device.maxDisplaceCenter; cent_y = cent_y + param.param_device.GridSpaceCenter)
249
				{
Pilar Cossio's avatar
Pilar Cossio committed
250
					compareRefMap_kernel<<<divup(maxRef, CUDA_THREAD_COUNT), CUDA_THREAD_COUNT, 0, cudaStream[0]>>> (iOrient, iConv, amp, pha, env, sumC, sumsquareC, pConvMap_device[iConv & 1], pProb_device, param.param_device, *pRefMap_device_Mod, cent_x, cent_y, maxRef);
251
252
				}
			}
253
		}
254
		else if (GPUAlgo == 0) //All shifts in one kernel
255
		{
256
			compareRefMapShifted_kernel<<<divup(maxRef, CUDA_THREAD_COUNT), CUDA_THREAD_COUNT, 0, cudaStream[0]>>> (iOrient, iConv, amp, pha, env, sumC, sumsquareC, pConvMap_device[iConv & 1], pProb_device, param.param_device, *pRefMap_device_Mod, maxRef);
257
		}
258
		else
259
		{
260
261
			cout << "Invalid GPU Algorithm selected\n";
			exit(1);
262
		}
263
	}
264
265
	if (GPUWorkload < 100)
	{
266
		bioem::compareRefMaps(iOrient, iConv, amp, pha, env, conv_map, localmultFFT, sumC, sumsquareC, maxRef);
267
	}
268
269
	if (GPUAsync)
	{
270
		checkCudaErrors(cudaEventRecord(cudaEvent[iConv & 1], cudaStream[0]));
271
	}
272
273
	else
	{
274
		checkCudaErrors(cudaStreamSynchronize(cudaStream[0]));
275
276
277
278
	}
	return(0);
}

David Rohr's avatar
David Rohr committed
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
int bioem_cuda::selectCudaDevice()
{
	int count;
	
	long long int bestDeviceSpeed = -1;
	int bestDevice;
	cudaDeviceProp deviceProp;
	
	checkCudaErrors(cudaGetDeviceCount(&count));
	if (count == 0)
	{
		printf("No CUDA device detected\n");
		return(1);
	}
	for (int i = 0;i < count;i++)
	{
#if CUDA_VERSION > 3010
		size_t free, total;
#else
		unsigned int free, total;
#endif
		cuInit(0);
		CUdevice tmpDevice;
		cuDeviceGet(&tmpDevice, i);
		CUcontext tmpContext;
		cuCtxCreate(&tmpContext, 0, tmpDevice);
		if(cuMemGetInfo(&free, &total)) exit(1);
		cuCtxDestroy(tmpContext);
		checkCudaErrors(cudaGetDeviceProperties(&deviceProp, i));

David Rohr's avatar
David Rohr committed
309
		if (DebugOutput >= 2 && mpi_rank == 0) printf("CUDA Device %2d: %s (Rev: %d.%d - Mem Avail %lld / %lld)\n", i, deviceProp.name, deviceProp.major, deviceProp.minor, (long long int) free, (long long int) deviceProp.totalGlobalMem);
David Rohr's avatar
David Rohr committed
310
311
312
313
314
315
316
		long long int deviceSpeed = (long long int) deviceProp.multiProcessorCount * (long long int) deviceProp.clockRate * (long long int) deviceProp.warpSize;
		if (deviceSpeed > bestDeviceSpeed)
		{
			bestDevice = i;
			bestDeviceSpeed = deviceSpeed;
		}
	}
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
	if (getenv("GPUDEVICE"))
	{
		int device = atoi(getenv("GPUDEVICE"));
		if (device > count)
		{
			printf("Invalid CUDA device specified, max device number is %d\n", count);
			exit(1);
		}
#ifdef WITH_MPI
		if (device == -1)
		{
			device = mpi_rank % count;
		}
#endif
		if (device < 0)
		{
			printf("Negative CUDA device specified: %d, invalid!\n", device);
		}
		bestDevice = device;
	}
	checkCudaErrors(cudaSetDevice(bestDevice));
David Rohr's avatar
David Rohr committed
338
339
340

	cudaGetDeviceProperties(&deviceProp ,bestDevice); 

David Rohr's avatar
David Rohr committed
341
	if (DebugOutput >= 3)
David Rohr's avatar
David Rohr committed
342
	{
David Rohr's avatar
David Rohr committed
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
		printf("Using CUDA Device %s with Properties:\n", deviceProp.name);
		printf("totalGlobalMem = %lld\n", (unsigned long long int) deviceProp.totalGlobalMem);
		printf("sharedMemPerBlock = %lld\n", (unsigned long long int) deviceProp.sharedMemPerBlock);
		printf("regsPerBlock = %d\n", deviceProp.regsPerBlock);
		printf("warpSize = %d\n", deviceProp.warpSize);
		printf("memPitch = %lld\n", (unsigned long long int) deviceProp.memPitch);
		printf("maxThreadsPerBlock = %d\n", deviceProp.maxThreadsPerBlock);
		printf("maxThreadsDim = %d %d %d\n", deviceProp.maxThreadsDim[0], deviceProp.maxThreadsDim[1], deviceProp.maxThreadsDim[2]);
		printf("maxGridSize = %d %d %d\n", deviceProp.maxGridSize[0], deviceProp.maxGridSize[1], deviceProp.maxGridSize[2]);
		printf("totalConstMem = %lld\n", (unsigned long long int) deviceProp.totalConstMem);
		printf("major = %d\n", deviceProp.major);
		printf("minor = %d\n", deviceProp.minor);
		printf("clockRate = %d\n", deviceProp.clockRate);
		printf("memoryClockRate = %d\n", deviceProp.memoryClockRate);
		printf("multiProcessorCount = %d\n", deviceProp.multiProcessorCount);
		printf("textureAlignment = %lld\n", (unsigned long long int) deviceProp.textureAlignment);
David Rohr's avatar
David Rohr committed
359
360
	}
	
David Rohr's avatar
David Rohr committed
361
362
	if (DebugOutput >= 1)
	{
David Rohr's avatar
David Rohr committed
363
		printf("BioEM for CUDA initialized (MPI Rank %d), %d GPUs found, using GPU %d\n", mpi_rank, count, bestDevice);
David Rohr's avatar
David Rohr committed
364
365
	}
	
David Rohr's avatar
David Rohr committed
366
367
368
	return(0);
}

369
370
371
int bioem_cuda::deviceInit()
{
	deviceExit();
David Rohr's avatar
David Rohr committed
372
	
373
	selectCudaDevice();
374

375
376
	if (FFTAlgo) GPUAlgo = 2;

377
378
379
380
381
	gpumap = new bioem_RefMap;
	memcpy(gpumap, &RefMap, sizeof(bioem_RefMap));
	if (FFTAlgo == 0)
	{
		checkCudaErrors(cudaMalloc(&maps, sizeof(myfloat_t) * RefMap.ntotRefMap * RefMap.refMapSize));
382
383
384
385
386
387
388
389
390
391
392
393
394

		if (GPUAlgo == 0 || GPUAlgo == 1)
		{
			pRefMap_device_Mod = (bioem_RefMap_Mod*) gpumap;
			bioem_RefMap_Mod* RefMapGPU = new bioem_RefMap_Mod;
			RefMapGPU->init(RefMap);
			checkCudaErrors(cudaMemcpy(maps, RefMapGPU->maps, sizeof(myfloat_t) * RefMap.ntotRefMap * RefMap.refMapSize, cudaMemcpyHostToDevice));
			delete RefMapGPU;
		}
		else
		{
			checkCudaErrors(cudaMemcpy(maps, RefMap.maps, sizeof(myfloat_t) * RefMap.ntotRefMap * RefMap.refMapSize, cudaMemcpyHostToDevice));
		}
395
396
397
398
399
400
401
402
403
	}
	checkCudaErrors(cudaMalloc(&sum, sizeof(myfloat_t) * RefMap.ntotRefMap));
	checkCudaErrors(cudaMemcpy(sum, RefMap.sum_RefMap, sizeof(myfloat_t) * RefMap.ntotRefMap, cudaMemcpyHostToDevice));
	checkCudaErrors(cudaMalloc(&sumsquare, sizeof(myfloat_t) * RefMap.ntotRefMap));
	checkCudaErrors(cudaMemcpy(sumsquare, RefMap.sumsquare_RefMap, sizeof(myfloat_t) * RefMap.ntotRefMap, cudaMemcpyHostToDevice));
	gpumap->maps = maps;
	gpumap->sum_RefMap = sum;
	gpumap->sumsquare_RefMap = sumsquare;

404
	checkCudaErrors(cudaMalloc(&pProb_memory, pProb_device.get_size(RefMap.ntotRefMap, param.nTotGridAngles, param.nTotCC, param.param_device.writeAngles, param.param_device.writeCC)));
405

406
	for (int i = 0; i < 2; i++)
407
	{
408
		checkCudaErrors(cudaStreamCreate(&cudaStream[i]));
409
		checkCudaErrors(cudaEventCreate(&cudaEvent[i]));
410
		checkCudaErrors(cudaEventCreate(&cudaFFTEvent[i]));
411
		checkCudaErrors(cudaMalloc(&pConvMap_device[i], sizeof(myfloat_t) * RefMap.refMapSize));
412
	}
413
414
415
416
417
	if (GPUAsync)
	{
		checkCudaErrors(cudaStreamCreate(&cudaStream[2]));
		checkCudaErrors(cudaEventCreate(&cudaEvent[2]));
	}
418

419
420
	if (FFTAlgo)
	{
421
		checkCudaErrors(cudaMalloc(&pRefMapsFFT, RefMap.ntotRefMap * param.FFTMapSize * sizeof(mycomplex_t)));
422
423
424
425
		checkCudaErrors(cudaMalloc(&pFFTtmp2[0], CUDA_FFTS_AT_ONCE * param.FFTMapSize * 2 * sizeof(mycomplex_t)));
		checkCudaErrors(cudaMalloc(&pFFTtmp[0], CUDA_FFTS_AT_ONCE * param.param_device.NumberPixels * param.param_device.NumberPixels * 2 * sizeof(myfloat_t)));
		pFFTtmp2[1] = pFFTtmp2[0] + CUDA_FFTS_AT_ONCE * param.FFTMapSize;
		pFFTtmp[1] = pFFTtmp[0] + CUDA_FFTS_AT_ONCE * param.param_device.NumberPixels * param.param_device.NumberPixels;
426
		checkCudaErrors(cudaMalloc(&pConvMapFFT, param.FFTMapSize * sizeof(mycomplex_t) * 2));
427
		checkCudaErrors(cudaHostAlloc(&pConvMapFFT_Host, param.FFTMapSize * sizeof(mycomplex_t) * 2, 0));
428
		checkCudaErrors(cudaMemcpy(pRefMapsFFT, RefMap.RefMapsFFT, RefMap.ntotRefMap * param.FFTMapSize * sizeof(mycomplex_t), cudaMemcpyHostToDevice));
429
430
	}

431
432
433
434
435
436
437
	deviceInitialized = 1;
	return(0);
}

int bioem_cuda::deviceExit()
{
	if (deviceInitialized == 0) return(0);
438

439

David Rohr's avatar
David Rohr committed
440
	cudaFree(pProb_memory);
441
442
	cudaFree(sum);
	cudaFree(sumsquare);
443
	for (int i = 0; i < 2; i++)
444
	{
445
		cudaStreamDestroy(cudaStream[i]);
446
		cudaEventDestroy(cudaEvent[i]);
447
		cudaEventDestroy(cudaFFTEvent[i]);
448
		cudaFree(pConvMap_device[i]);
449
	}
450
451
452
453
	if (FFTAlgo)
	{
		cudaFree(pRefMapsFFT);
		cudaFree(pConvMapFFT);
454
		cudaFreeHost(pConvMapFFT_Host);
455
456
		cudaFree(pFFTtmp[0]);
		cudaFree(pFFTtmp2[0]);
457
	}
458
459
460
461
462
463
464
465
	else
	{
		cudaFree(maps);
	}
	if (GPUAlgo == 0 || GPUAlgo == 1)
	{
		cudaFree(pRefMap_device_Mod);
	}
466
467
468
469
470
471
	if (GPUAsync)
	{
		cudaStreamDestroy(cudaStream[2]);
		cudaEventDestroy(cudaEvent[2]);
	}

472
	delete gpumap;
473
	cudaThreadExit();
474

475
476
477
478
479
480
	deviceInitialized = 0;
	return(0);
}

int bioem_cuda::deviceStartRun()
{
David Rohr's avatar
David Rohr committed
481
482
483
484
485
486
487
488
489
	if (GPUWorkload >= 100)
	{
		maxRef = RefMap.ntotRefMap;
		pProb_host = &pProb;
	}
	else
	{
		maxRef = (size_t) RefMap.ntotRefMap * (size_t) GPUWorkload / 100;
		pProb_host = new bioem_Probability;
490
		pProb_host->init(maxRef, param.nTotGridAngles, param.nTotCC, *this);
David Rohr's avatar
David Rohr committed
491
492
		pProb_host->copyFrom(&pProb, *this);
	}
493

David Rohr's avatar
David Rohr committed
494
495
496
	pProb_device = *pProb_host;
	pProb_device.ptr = pProb_memory;
	pProb_device.set_pointers();
497
	checkCudaErrors(cudaMemcpyAsync(pProb_device.ptr, pProb_host->ptr, pProb_host->get_size(maxRef, param.nTotGridAngles, param.nTotCC, param.param_device.writeAngles, param.param_device.writeCC), cudaMemcpyHostToDevice, cudaStream[0]));
498
499
500

	if (FFTAlgo)
	{
501
		for (int j = 0;j < 2;j++)
502
		{
503
			for (int i = 0; i < 2; i++)
504
			{
505
				if (i && maxRef % CUDA_FFTS_AT_ONCE == 0) continue;
506
507
508
509
510
511
				int n[2] = {param.param_device.NumberPixels, param.param_device.NumberPixels};
				if (cufftPlanMany(&plan[i][j], 2, n, NULL, 1, param.FFTMapSize, NULL, 1, 0, MY_CUFFT_C2R, i ? (maxRef % CUDA_FFTS_AT_ONCE) : CUDA_FFTS_AT_ONCE) != CUFFT_SUCCESS)
				{
					cout << "Error planning CUFFT\n";
					exit(1);
				}
512
			        if (cufftSetCompatibilityMode(plan[i][j], CUFFT_COMPATIBILITY_FFTW_PADDING) != CUFFT_SUCCESS)
513
514
515
516
517
518
519
520
521
				{
					cout << "Error planning CUFFT compatibility\n";
					exit(1);
				}
				if (cufftSetStream(plan[i][j], cudaStream[j]) != CUFFT_SUCCESS)
				{
					cout << "Error setting CUFFT stream\n";
					exit(1);
				}
522
			}
523
			if (!GPUDualStream) break;
524
525
		}
	}
526
527
528
529
530
	return(0);
}

int bioem_cuda::deviceFinishRun()
{
531
	if (GPUAsync) cudaStreamSynchronize(cudaStream[0]);
532
	checkCudaErrors(cudaMemcpyAsync(pProb_host->ptr, pProb_device.ptr, pProb_host->get_size(maxRef, param.nTotGridAngles, param.nTotCC, param.param_device.writeAngles, param.param_device.writeCC), cudaMemcpyDeviceToHost, cudaStream[0]));
533

534
535
	if (FFTAlgo)
	{
536
537
		for (int j = 0;j < 2;j++)
		{
538
539
540
541
542
			for (int i = 0; i < 2; i++)
			{
				if (i && maxRef % CUDA_FFTS_AT_ONCE == 0) continue;
				cufftDestroy(plan[i][j]);
			}
543
544
			if (!GPUDualStream) break;
		}
545
	}
David Rohr's avatar
David Rohr committed
546
547
548
549
	cudaThreadSynchronize();
	if (GPUWorkload < 100)
	{
		pProb.copyFrom(pProb_host, *this);
550
		free_device_host(pProb_host->ptr);
David Rohr's avatar
David Rohr committed
551
552
		delete[] pProb_host;
	}
553

554
555
556
	return(0);
}

557
558
559
560
561
562
563
564
565
566
567
568
void* bioem_cuda::malloc_device_host(size_t size)
{
	void* ptr;
	checkCudaErrors(cudaHostAlloc(&ptr, size, 0));
	return(ptr);
}

void bioem_cuda::free_device_host(void* ptr)
{
	cudaFreeHost(ptr);
}

569
570
bioem* bioem_cuda_create()
{
David Rohr's avatar
David Rohr committed
571
572
573
574
575
576
577
578
579
	int count;
	
	if (cudaGetDeviceCount(&count) != cudaSuccess) count = 0;
	if (count == 0)
	{
		printf("No CUDA device available, using fallback to CPU version\n");
		return new bioem;
	}

580
581
	return new bioem_cuda;
}