bioem.cpp 26.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
#include <fstream>
#include <boost/program_options.hpp>
#include <iostream>
#include <algorithm>
#include <iterator>
#include <stdio.h>
#include <stdlib.h>
#include <string>
#include <cmath>
#include <omp.h>

#include <fftw3.h>
#include <math.h>
#include "cmodules/timer.h"

#include "param.h"
#include "bioem.h"
#include "model.h"
#include "map.h"


#include "bioem_algorithm.h"


using namespace boost;
namespace po = boost::program_options;

using namespace std;

// A helper function of Boost
template<class T>
ostream& operator<<(ostream& os, const vector<T>& v)
{
34
35
	copy(v.begin(), v.end(), ostream_iterator<T>(os, " "));
	return os;
36
37
38
39
}

bioem::bioem()
{
40
	FFTAlgo = getenv("FFTALGO") == NULL ? 0 : atoi(getenv("FFTALGO"));
41
42
43
44
}

bioem::~bioem()
{
David Rohr's avatar
David Rohr committed
45

46
47
48
49
}

int bioem::configure(int ac, char* av[])
{
50
51
52
53
54
55
56
57
58
59
	/**************************************************************************************/
	/**** Configuration Routine using boost for extracting parameters, models and maps ****/
	/**************************************************************************************/
	/****** And Precalculating necessary grids, map crosscorrelations and kernels  ********/
	/*************************************************************************************/

	/*** Inizialzing default variables ***/
	std::string infile,modelfile,mapfile;
	Model.readPDB=false;
	param.writeAngles=false;
60
61
62
	RefMap.dumpMap = false;
	RefMap.loadMap = false;

63
64
65
	/*************************************************************************************/
	cout << " ++++++++++++ FROM COMMAND LINE +++++++++++\n\n";
	/*************************************************************************************/
66

67
	/********************* Command line reading input with BOOST ************************/
68

69
70
71
72
73
74
75
	try {
		po::options_description desc("Command line inputs");
		desc.add_options()
		("Inputfile", po::value<std::string>(), "Name of input parameter file")
		("Modelfile", po::value< std::string>() , "Name of model file")
		("Particlesfile", po::value< std::string>(), "Name of paricles file")
		("ReadPDB", "(Optional) If reading model file in PDB format")
76
77
		("DumpMaps", "(Optional) Dump maps after they were red from maps file")
		("LoadMapDump", "(Optional) Read Maps from dump instead of maps file")
78
79
80
81
82
83
84
85
		("help", "(Optional) Produce help message")
		;

		po::positional_options_description p;
		p.add("Inputfile", -1);
		p.add("Modelfile", -1);
		p.add("Particlesfile", -1);
		p.add("ReadPDB", -1);
86
87
88
		p.add("DumpMaps", -1);
		p.add("LoadMapDump", -1);

89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
		po::variables_map vm;
		po::store(po::command_line_parser(ac, av).
				  options(desc).positional(p).run(), vm);
		po::notify(vm);

		if((ac < 6)) {
			std::cout << desc << std::endl;
			return 0;
		}
		if (vm.count("help")) {
			cout << "Usage: options_description [options]\n";
			cout << desc;
			return 0;
		}

		if (vm.count("Inputfile"))
		{
			cout << "Input file is: ";
			cout << vm["Inputfile"].as< std::string >()<< "\n";
			infile=vm["Inputfile"].as< std::string >();
		}
		if (vm.count("Modelfile"))
		{
			cout << "Model file is: "
				 << vm["Modelfile"].as<  std::string  >() << "\n";
			modelfile=vm["Modelfile"].as<  std::string  >();
		}

		if (vm.count("ReadPDB"))
		{
			cout << "Reading model file in PDB format.\n";
			Model.readPDB=true;
		}

		if (vm.count("DumpMaps"))
		{
			cout << "Dumping Maps after reading from file.\n";
			RefMap.dumpMap = true;
		}

		if (vm.count("LoadMapDump"))
		{
			cout << "Loading Map dump.\n";
			RefMap.loadMap = true;
		}

		if (vm.count("Particlesfile"))
		{
			cout << "Paricle file is: "
				 << vm["Particlesfile"].as< std::string >() << "\n";
			mapfile=vm["Particlesfile"].as< std::string >();
		}
	}
	catch(std::exception& e)
	{
		cout << e.what() << "\n";
		return 1;
	}

	/********************* Reading Parameter Input ***************************/
	// copying inputfile to param class
	param.fileinput = infile.c_str();
	param.readParameters();

	/********************* Reading Model Input ******************************/
	// copying modelfile to model class
	Model.filemodel = modelfile.c_str();
	Model.readModel();

	/********************* Reading Particle Maps Input **********************/
	/********* HERE: PROBLEM if maps dont fit on the memory!! ***************/
	// copying mapfile to ref map class
	RefMap.filemap = mapfile.c_str();
	RefMap.readRefMaps(param);

	/****************** Precalculating Necessary Stuff *********************/
	precalculate();
David Rohr's avatar
David Rohr committed
166

167
168
169
170
171
	if (getenv("BIOEM_DEBUG_BREAK"))
	{
		param.nTotGridAngles = atoi(getenv("BIOEM_DEBUG_BREAK"));
		param.nTotCTFs = atoi(getenv("BIOEM_DEBUG_BREAK"));
	}
David Rohr's avatar
David Rohr committed
172

173
174
	deviceInit();

175
	return(0);
176
177
178
179
}

int bioem::precalculate()
{
180
181
182
	/**************************************************************************************/
	/* Precalculating Routine of Orientation grids, Map crosscorrelations and CTF Kernels */
	/**************************************************************************************/
183

184
185
	// Generating Grids of orientations
	param.CalculateGridsParam();
186

187
188
189
190
191
192
193
194
195
196
	myfloat_t sum,sumsquare;

	//Precalculating cross-correlations of maps
	for (int iRefMap = 0; iRefMap < RefMap.ntotRefMap ; iRefMap++)
	{
		calcross_cor(RefMap.Ref[iRefMap],sum,sumsquare);
		//Storing Crosscorrelations in Map class
		RefMap.sum_RefMap[iRefMap]=sum;
		RefMap.sumsquare_RefMap[iRefMap]=sumsquare;
	}
197

198
199
	// Precalculating CTF Kernels stored in class Param
	param.CalculateRefCTF();
200

201
202
	// Precalculating Maps in Fourier space
	RefMap.PreCalculateMapsFFT(param);
203

204
	return(0);
205
206
207
208
209
}


int bioem::run()
{
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
	/**************************************************************************************/
	/**** Main BioEM routine, projects, convolutes and compares with Map using OpenMP ****/
	/**************************************************************************************/

	/**** If we want to control the number of threads -> omp_set_num_threads(XX); ******/
	/****************** Declarying class of Probability Pointer  *************************/
	pProb = new bioem_Probability[RefMap.ntotRefMap];

	printf("\tInitializing\n");
	// Inizialzing Probabilites to zero and constant to -Infinity
	for (int iRefMap = 0; iRefMap < RefMap.ntotRefMap; iRefMap ++)
	{
		pProb[iRefMap].Total=0.0;
		pProb[iRefMap].Constoadd=-9999999;
		pProb[iRefMap].max_prob=-9999999;
		for (int iOrient = 0; iOrient < param.nTotGridAngles; iOrient ++)
226
		{
227
228
229
230
231
			pProb[iRefMap].forAngles[iOrient]=0.0;
			pProb[iRefMap].ConstAngle[iOrient]=-99999999;
		}
	}
	/**************************************************************************************/
232
233
	deviceStartRun();

234
	/******************************** MAIN CYCLE ******************************************/
David Rohr's avatar
David Rohr committed
235

236
237
238
239
240
	/*** Declaring Private variables for each thread *****/
	mycomplex_t* proj_mapFFT;
	bioem_map conv_map;
	mycomplex_t* conv_mapFFT;
	myfloat_t sumCONV,sumsquareCONV;
241
242

	//allocating fftw_complex vector
243
244
245
	proj_mapFFT= (mycomplex_t *) myfftw_malloc(sizeof(mycomplex_t) *param.param_device.NumberPixels*param.param_device.NumberPixels);
	conv_mapFFT= (mycomplex_t *) myfftw_malloc(sizeof(mycomplex_t)*param.param_device.NumberPixels*param.param_device.NumberPixels);

246
247
248
249
250

	HighResTimer timer;

	printf("\tMain Loop (GridAngles %d, CTFs %d, RefMaps %d, Shifts (%d/%d)²), Pixels %d²\n", param.nTotGridAngles, param.nTotCTFs, RefMap.ntotRefMap, 2 * param.param_device.maxDisplaceCenter + param.param_device.GridSpaceCenter, param.param_device.GridSpaceCenter, param.param_device.NumberPixels);
	printf("\tInner Loop Count (%d %d %d) %lld\n", param.param_device.maxDisplaceCenter, param.param_device.GridSpaceCenter, param.param_device.NumberPixels, (long long int) (param.param_device.NumberPixels * param.param_device.NumberPixels * (2 * param.param_device.maxDisplaceCenter / param.param_device.GridSpaceCenter + 1) * (2 * param.param_device.maxDisplaceCenter / param.param_device.GridSpaceCenter + 1)));
251
252
253
254
	for (int iProjectionOut = 0; iProjectionOut < param.nTotGridAngles; iProjectionOut++)
	{
		/***************************************************************************************/
		/***** Creating Projection for given orientation and transforming to Fourier space *****/
255
		timer.ResetStart();
256
		createProjection(iProjectionOut, proj_mapFFT);
257
258
		printf("Time Projection %d: %f\n", iProjectionOut, timer.GetCurrentElapsedTime());

259
260
261
262
		/***************************************************************************************/
		/***** **** Internal Loop over convolutions **** *****/
		for (int iConv = 0; iConv < param.nTotCTFs; iConv++)
		{
263
			printf("\t\tConvolution %d %d\n", iProjectionOut, iConv);
264
265
			/*** Calculating convolutions of projection map and crosscorrelations ***/

266
			timer.ResetStart();
267
			createConvolutedProjectionMap(iProjectionOut,iConv,proj_mapFFT,conv_map,conv_mapFFT,sumCONV,sumsquareCONV);
268
269
			printf("Time Convolution %d %d: %f\n", iProjectionOut, iConv, timer.GetCurrentElapsedTime());

270
271
			/***************************************************************************************/
			/*** Comparing each calculated convoluted map with all experimental maps ***/
272
			timer.ResetStart();
273
274
275
276
277
278
279
280
281
			if (FFTAlgo == 0)
			{
				compareRefMaps(iProjectionOut, iConv, conv_map);
			}
			else
			{
				compareRefMaps2(iProjectionOut, iConv,conv_mapFFT,sumCONV,sumsquareCONV);
			}

282
283
284
			const double compTime = timer.GetCurrentElapsedTime();
			const int nShifts = 2 * param.param_device.maxDisplaceCenter / param.param_device.GridSpaceCenter + 1;
			const double nFlops = (double) RefMap.ntotRefMap * (double) nShifts * (double) nShifts *
285
								  (((double) param.param_device.NumberPixels - (double) param.param_device.maxDisplaceCenter / 2.) * ((double) param.param_device.NumberPixels - (double) param.param_device.maxDisplaceCenter / 2.) * 5. + 25.) / compTime;
286
			const double nGBs = (double) RefMap.ntotRefMap * (double) nShifts * (double) nShifts *
287
								(((double) param.param_device.NumberPixels - (double) param.param_device.maxDisplaceCenter / 2.) * ((double) param.param_device.NumberPixels - (double) param.param_device.maxDisplaceCenter / 2.) * 2. + 8.) * (double) sizeof(myfloat_t) / compTime;
288
289
290
			const double nGBs2 = (double) RefMap.ntotRefMap * ((double) param.param_device.NumberPixels * (double) param.param_device.NumberPixels + 8.) * (double) sizeof(myfloat_t) / compTime;

			printf("Time Comparison %d %d: %f sec (%f GFlops, %f GB/s (cached), %f GB/s)\n", iProjectionOut, iConv, compTime, nFlops / 1000000000., nGBs / 1000000000., nGBs2 / 1000000000.);
291
292
293
294
295
		}
	}
	//deallocating fftw_complex vector
	myfftw_free(proj_mapFFT);
	myfftw_free(conv_mapFFT);
David Rohr's avatar
David Rohr committed
296

297
298
	deviceFinishRun();

299
	/************* Writing Out Probabilities ***************/
300

301
	/*** Angular Probability ***/
302

303
304
305
306
	// if(param.writeAngles){
	ofstream angProbfile;
	angProbfile.open ("ANG_PROB_iRefMap");
	// }
307

308
309
	ofstream outputProbFile;
	outputProbFile.open ("Output_Probabilities");
310

311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
	for (int iRefMap = 0; iRefMap < RefMap.ntotRefMap; iRefMap ++)
	{
		/**** Total Probability ***/
		outputProbFile << "RefMap " << iRefMap << " Probability  "  << log(pProb[iRefMap].Total)+pProb[iRefMap].Constoadd+0.5*log(M_PI)+(1-param.param_device.Ntotpi*0.5)*(log(2*M_PI)+1)+log(param.param_device.volu) << " Constant " << pProb[iRefMap].Constoadd  << "\n";

		outputProbFile << "RefMap " << iRefMap << " Maximizing Param: ";

		/*** Param that maximize probability****/
		outputProbFile << (pProb[iRefMap].max_prob + 0.5 * log(M_PI) + (1 - param.param_device.Ntotpi * 0.5) * (log(2 * M_PI) + 1) + log(param.param_device.volu)) << " ";
		outputProbFile << param.angles[pProb[iRefMap].max_prob_orient].pos[0] << " ";
		outputProbFile << param.angles[pProb[iRefMap].max_prob_orient].pos[1] << " ";
		outputProbFile << param.angles[pProb[iRefMap].max_prob_orient].pos[2] << " ";
		outputProbFile << param.CtfParam[pProb[iRefMap].max_prob_conv].pos[0] << " ";
		outputProbFile << param.CtfParam[pProb[iRefMap].max_prob_conv].pos[1] << " ";
		outputProbFile << param.CtfParam[pProb[iRefMap].max_prob_conv].pos[2] << " ";
326
327
		outputProbFile << pProb[iRefMap].max_prob_cent_x << " ";
		outputProbFile << pProb[iRefMap].max_prob_cent_y;
328
		outputProbFile << "\n";
329

330
		/*** For individual files***/ //angProbfile.open ("ANG_PROB_"iRefMap);
331

332
		if(param.writeAngles)
333
		{
334
335
336
			for (int iProjectionOut = 0; iProjectionOut < param.nTotGridAngles; iProjectionOut++)
			{
				angProbfile << " " << iRefMap << " " << param.angles[iProjectionOut].pos[0] << " " << param.angles[iProjectionOut].pos[1] << " " << param.angles[iProjectionOut].pos[2] << " " << log(pProb[iRefMap].forAngles[iProjectionOut])+pProb[iRefMap].ConstAngle[iProjectionOut]+0.5*log(M_PI)+(1-param.param_device.Ntotpi*0.5)*(log(2*M_PI)+1)+log(param.param_device.volu) << " " << log(param.param_device.volu) << "\n";
337

338
339
340
			}
		}
	}
341

342
343
	angProbfile.close();
	outputProbFile.close();
344

345
	//Deleting allocated pointers
346

347
348
349
350
351
352
353
354
355
356
357
	if (pProb)
	{
		delete[] pProb;
		pProb = NULL;
	}

	if (param.refCTF)
	{
		delete[] param.refCTF;
		param.refCTF =NULL;
	}
358

359
360
361
362
363
364
	if(RefMap.RefMapFFT)
	{
		delete[] RefMap.RefMapFFT;
		RefMap.RefMapFFT = NULL;
	}
	return(0);
365
366
}

367
int bioem::compareRefMaps(int iProjectionOut, int iConv, const bioem_map& conv_map, const int startMap)
368
{
369
#pragma omp parallel for
370
371
372
373
374
	for (int iRefMap = startMap; iRefMap < RefMap.ntotRefMap; iRefMap ++)
	{
		compareRefMapShifted<-1>(iRefMap,iProjectionOut,iConv,conv_map, pProb, param.param_device, RefMap);
	}
	return(0);
375
376
}

377
int bioem::compareRefMaps2(int iOrient, int iConv, mycomplex_t* localConvFFT,myfloat_t sumC,myfloat_t sumsquareC)
378
{
379
#pragma omp parallel
380
	{
381
		mycomplex_t *localCCT, *lCC;
382
383
384
		localCCT= (mycomplex_t *) myfftw_malloc(sizeof(mycomplex_t) *param.param_device.NumberPixels*param.param_device.NumberPixels);
		lCC= (mycomplex_t *) myfftw_malloc(sizeof(mycomplex_t) *param.param_device.NumberPixels*param.param_device.NumberPixels);

385
386
387
388
389
390
391
		const int num_threads = omp_get_num_threads();
		const int thread_id = omp_get_thread_num();
		const int mapsPerThread = (RefMap.ntotRefMap + num_threads - 1) / num_threads;
		const int iStart = thread_id * mapsPerThread;
		const int iEnd = min(RefMap.ntotRefMap, (thread_id + 1) * mapsPerThread);

		for (int iRefMap = iStart; iRefMap < iEnd; iRefMap ++)
392
		{
393
			calculateCCFFT(iRefMap,iOrient, iConv, sumC,sumsquareC, localConvFFT, localCCT,lCC);
394
395
396
397
		}
		myfftw_free(localCCT);
		myfftw_free(lCC);
	}
398

399
400
401
402
	return(0);
}

/////////////NEW ROUTINE ////////////////
403
inline int bioem::calculateCCFFT(int iRefMap, int iOrient, int iConv, myfloat_t sumC,myfloat_t sumsquareC, mycomplex_t* localConvFFT,mycomplex_t* localCCT,mycomplex_t* lCC)
404
405
406
407
408
409
410
411
412
413
{
	for(int i=0; i < param.param_device.NumberPixels ; i++ )
	{
		for(int j=0; j < param.param_device.NumberPixels ; j++ )
		{
			localCCT[i*param.param_device.NumberPixels+j][0]=localConvFFT[i*param.param_device.NumberPixels+j][0]*RefMap.RefMapFFT[iRefMap].cpoints[i*param.param_device.NumberPixels+j][0]+localConvFFT[i*param.param_device.NumberPixels+j][1]*RefMap.RefMapFFT[iRefMap].cpoints[i*param.param_device.NumberPixels+j][1];
			localCCT[i*param.param_device.NumberPixels+j][1]=localConvFFT[i*param.param_device.NumberPixels+j][1]*RefMap.RefMapFFT[iRefMap].cpoints[i*param.param_device.NumberPixels+j][0]-localConvFFT[i*param.param_device.NumberPixels+j][0]*RefMap.RefMapFFT[iRefMap].cpoints[i*param.param_device.NumberPixels+j][1];
		}
	}

414
	myfftw_execute_dft(param.fft_plan_c2c_backward,localCCT,lCC);
415
416
417
418
419
420

// Storing CORRELATIONS FOR CORRESPONDING DISPLACEMENTS & Normalizing after Backward FFT
	for (int cent_x = 0; cent_x <= param.param_device.maxDisplaceCenter; cent_x=cent_x+param.param_device.GridSpaceCenter)
	{
		for (int cent_y = 0; cent_y <= param.param_device.maxDisplaceCenter; cent_y=cent_y+param.param_device.GridSpaceCenter)
		{
421
			calProb(iRefMap, iOrient, iConv, sumC, sumsquareC, (myfloat_t) lCC[cent_x*param.param_device.NumberPixels+cent_y][0]/ (myfloat_t) (param.param_device.NumberPixels * param.param_device.NumberPixels), cent_x, cent_y);
422
423
424
		}
		for (int cent_y = param.param_device.NumberPixels-param.param_device.maxDisplaceCenter; cent_y < param.param_device.NumberPixels; cent_y=cent_y+param.param_device.GridSpaceCenter)
		{
425
			calProb(iRefMap, iOrient, iConv, sumC, sumsquareC, (myfloat_t) lCC[cent_x*param.param_device.NumberPixels+cent_y][0]/ (myfloat_t) (param.param_device.NumberPixels*param.param_device.NumberPixels), cent_x, param.param_device.NumberPixels-cent_y);
426
427
428
429
430
431
		}
	}
	for (int cent_x = param.param_device.NumberPixels-param.param_device.maxDisplaceCenter; cent_x < param.param_device.NumberPixels; cent_x=cent_x+param.param_device.GridSpaceCenter)
	{
		for (int cent_y = 0; cent_y < param.param_device.maxDisplaceCenter; cent_y=cent_y+param.param_device.GridSpaceCenter)
		{
432
			calProb(iRefMap, iOrient, iConv, sumC, sumsquareC, (myfloat_t) lCC[cent_x*param.param_device.NumberPixels+cent_y][0]/ (myfloat_t) (param.param_device.NumberPixels*param.param_device.NumberPixels), param.param_device.NumberPixels-cent_x, cent_y);
433
434
435
		}
		for (int cent_y = param.param_device.NumberPixels-param.param_device.maxDisplaceCenter; cent_y <= param.param_device.NumberPixels; cent_y=cent_y+param.param_device.GridSpaceCenter)
		{
436
			calProb(iRefMap, iOrient, iConv, sumC, sumsquareC, (myfloat_t) lCC[cent_x*param.param_device.NumberPixels+cent_y][0]/ (myfloat_t) (param.param_device.NumberPixels*param.param_device.NumberPixels), param.param_device.NumberPixels-cent_x, param.param_device.NumberPixels-cent_y);
437
438
		}
	}
439

440
441
	return (0);
}
442

443
inline int bioem::calProb(int iRefMap,int iOrient, int iConv,myfloat_t sumC,myfloat_t sumsquareC, int value, int disx, int disy)
444
{
445

446
447
448
	/********************************************************/
	/*********** Calculates the BioEM probability ***********/
	/********************************************************/
449

450
	const myfloat_t ForLogProb = (sumsquareC * param.param_device.Ntotpi - sumC * sumC);
451

452
		// Products of different cross-correlations (first element in formula)
453
454
		const myfloat_t firstele = param.param_device.Ntotpi * (RefMap.sumsquare_RefMap[iRefMap] * sumsquareC -   value * value) +
								   2 * RefMap.sum_RefMap[iRefMap] * sumC *   value - RefMap.sumsquare_RefMap[iRefMap] * sumC * sumC - RefMap.sum_RefMap[iRefMap] * RefMap.sum_RefMap[iRefMap] * sumsquareC;
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481

		//******* Calculating log of Prob*********/
		// As in fortran code: logpro=(3-Ntotpi)*0.5*log(firstele/pConvMap[iOrient].ForLogProbfromConv[iConv])+(Ntotpi*0.5-2)*log(Ntotpi-2)-0.5*log(pConvMap[iOrient].ForLogProbfromConv[iConv])+0.5*log(PI)+(1-Ntotpi*0.5)*(log(2*PI)+1);
		const myfloat_t logpro = (3 - param.param_device.Ntotpi) * 0.5 * log(firstele) + (param.param_device.Ntotpi * 0.5 - 2) * log((param.param_device.Ntotpi - 2) * ForLogProb);
//   cout << n <<" " << firstele << " "<< logpro << "\n";
		{
			/*******  Summing total Probabilities *************/
			/******* Need a constant because of numerical divergence*****/
			if(pProb[iRefMap].Constoadd < logpro)
			{
				pProb[iRefMap].Total = pProb[iRefMap].Total * exp(-logpro + pProb[iRefMap].Constoadd);
				pProb[iRefMap].Constoadd = logpro;
			}
			pProb[iRefMap].Total += exp(logpro - pProb[iRefMap].Constoadd);

			//Summing probabilities for each orientation
			if(pProb[iRefMap].ConstAngle[iOrient] < logpro)
			{
				pProb[iRefMap].forAngles[iOrient] = pProb[iRefMap].forAngles[iOrient] * exp(-logpro + pProb[iRefMap].ConstAngle[iOrient]);
				pProb[iRefMap].ConstAngle[iOrient] = logpro;
			}
			pProb[iRefMap].forAngles[iOrient] += exp(logpro - pProb[iRefMap].ConstAngle[iOrient]);

			/********** Getting parameters that maximize the probability ***********/
			if(pProb[iRefMap].max_prob < logpro)
			{
				pProb[iRefMap].max_prob = logpro;
482
483
				pProb[iRefMap].max_prob_cent_x = disx;
				pProb[iRefMap].max_prob_cent_y = disy;
484
485
486
487
488
				pProb[iRefMap].max_prob_orient = iOrient;
				pProb[iRefMap].max_prob_conv = iConv;
			}
		}
	return (0);
489
490
491
}


492
int bioem::createProjection(int iMap,mycomplex_t* mapFFT)
493
{
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
	/**************************************************************************************/
	/****  BioEM Create Projection routine in Euler angle predefined grid****************
	********************* and turns projection into Fourier space **********************/
	/**************************************************************************************/

	myfloat3_t RotatedPointsModel[Model.nPointsModel];
	myfloat_t rotmat[3][3];
	myfloat_t alpha, gam,beta;
	mycomplex_t* localproj;

	localproj= (mycomplex_t *) myfftw_malloc(sizeof(mycomplex_t) *param.param_device.NumberPixels*param.param_device.NumberPixels);
	memset(localproj,0,param.param_device.NumberPixels*param.param_device.NumberPixels*sizeof(*localproj));

	alpha=param.angles[iMap].pos[0];
	beta=param.angles[iMap].pos[1];
	gam=param.angles[iMap].pos[2];

	/**** To see how things are going: cout << "Id " << omp_get_thread_num() <<  " Angs: " << alpha << " " << beta << " " << gam << "\n"; ***/

	/********** Creat Rotation with pre-defiend grid of orientations**********/

	rotmat[0][0]=cos(gam)*cos(alpha)-cos(beta)*sin(alpha)*sin(gam);
	rotmat[0][1]=cos(gam)*sin(alpha)+cos(beta)*cos(alpha)*sin(gam);
	rotmat[0][2]=sin(gam)*sin(beta);
	rotmat[1][0]=-sin(gam)*cos(alpha)-cos(beta)*sin(alpha)*cos(gam);
	rotmat[1][1]=-sin(gam)*sin(alpha)+cos(beta)*cos(alpha)*cos(gam);
	rotmat[1][2]=cos(gam)*sin(beta);
	rotmat[2][0]=sin(beta)*sin(alpha);
	rotmat[2][1]=-sin(beta)*cos(alpha);
	rotmat[2][2]=cos(beta);


	for(int n=0; n< Model.nPointsModel; n++)
	{
		RotatedPointsModel[n].pos[0]=0.0;
		RotatedPointsModel[n].pos[1]=0.0;
		RotatedPointsModel[n].pos[2]=0.0;
	}
	for(int n=0; n< Model.nPointsModel; n++)
	{
		for(int k=0; k< 3; k++)
		{
			for(int j=0; j< 3; j++)
			{
				RotatedPointsModel[n].pos[k]+=rotmat[k][j]*Model.PointsModel[n].pos[j];
			}
		}
	}

	int i, j;

	/************ Projection over the Z axis********************/
	for(int n=0; n< Model.nPointsModel; n++)
	{
		//Getting pixel that represents coordinates & shifting the start at to Numpix/2,Numpix/2 )
549
550
		i=floor(RotatedPointsModel[n].pos[0]/param.pixelSize+ (myfloat_t) param.param_device.NumberPixels / 2.0f + 0.5f);
		j=floor(RotatedPointsModel[n].pos[1]/param.pixelSize+ (myfloat_t) param.param_device.NumberPixels / 2.0f + 0.5f);
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574

		localproj[i*param.param_device.NumberPixels+j][0]+=Model.densityPointsModel[n]/Model.NormDen;
	}

	/**** Output Just to check****/
	if(iMap==10)
	{
		ofstream myexamplemap;
		ofstream myexampleRot;
		myexamplemap.open ("MAP_i10");
		myexampleRot.open ("Rot_i10");
		myexamplemap << "ANGLES " << alpha << " " << beta << " " << gam << "\n";
		for(int k=0; k<param.param_device.NumberPixels; k++)
		{
			for(int j=0; j<param.param_device.NumberPixels; j++) myexamplemap << "\nMAP " << k << " " << j<< " " <<localproj[k*param.param_device.NumberPixels+j][0];
		}
		myexamplemap << " \n";
		for(int n=0; n< Model.nPointsModel; n++)myexampleRot << "\nCOOR " << RotatedPointsModel[n].pos[0] << " " << RotatedPointsModel[n].pos[1] << " " << RotatedPointsModel[n].pos[2];
		myexamplemap.close();
		myexampleRot.close();
	}

	/***** Converting projection to Fourier Space for Convolution later with kernel****/
	/********** Omp Critical is necessary with FFTW*******/
575
	myfftw_execute_dft(param.fft_plan_c2c_forward,localproj,mapFFT);
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

	return(0);
}

int bioem::createConvolutedProjectionMap(int iMap,int iConv,mycomplex_t* lproj,bioem_map& Mapconv,mycomplex_t* localmultFFT,myfloat_t& sumC,myfloat_t& sumsquareC)
{
	/**************************************************************************************/
	/****  BioEM Create Convoluted Projection Map routine, multiplies in Fourier **********
	**************** calculated Projection with convoluted precalculated Kernel**********
	*************** and Backtransforming it to real Space ******************************/
	/**************************************************************************************/

	mycomplex_t* localconvFFT;
	localconvFFT= (mycomplex_t *) myfftw_malloc(sizeof(mycomplex_t)*param.param_device.NumberPixels*param.param_device.NumberPixels);


	/**** Multiplying FFTmap with corresponding kernel ****/

	for(int i=0; i < param.param_device.NumberPixels ; i++ )
	{
		for(int j=0; j < param.param_device.NumberPixels ; j++ )
		{   //Projection*CONJ(KERNEL)
			localmultFFT[i*param.param_device.NumberPixels+j][0]=lproj[i*param.param_device.NumberPixels+j][0]*param.refCTF[iConv].cpoints[i*param.param_device.NumberPixels+j][0]+lproj[i*param.param_device.NumberPixels+j][1]*param.refCTF[iConv].cpoints[i*param.param_device.NumberPixels+j][1];
			localmultFFT[i*param.param_device.NumberPixels+j][1]=lproj[i*param.param_device.NumberPixels+j][1]*param.refCTF[iConv].cpoints[i*param.param_device.NumberPixels+j][0]-lproj[i*param.param_device.NumberPixels+j][0]*param.refCTF[iConv].cpoints[i*param.param_device.NumberPixels+j][1];
			// cout << "GG " << i << " " << j << " " << param.refCTF[iConv].cpoints[i*param.param_device.NumberPixels+j][0] << " " <<param.refCTF[iConv].cpoints[i*param.param_device.NumberPixels+j][1] <<" " <<lproj[i*param.param_device.NumberPixels+j][0] <<" " <<lproj[i*param.param_device.NumberPixels+j][1] << "\n";
		}
	}

	/**** Bringing convoluted Map to real Space ****/
605
	myfftw_execute_dft(param.fft_plan_c2c_backward,localmultFFT,localconvFFT);
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628

	/****Asigning convolution fftw_complex to bioem_map ****/
	for(int i=0; i < param.param_device.NumberPixels ; i++ )
	{
		for(int j=0; j < param.param_device.NumberPixels ; j++ )
		{
			Mapconv.points[i][j]=localconvFFT[i*param.param_device.NumberPixels+j][0];
		}
	}

	/*** Calculating Cross-correlations of cal-convoluted map with its self *****/
	sumC=0;
	sumsquareC=0;
	for(int i=0; i < param.param_device.NumberPixels ; i++ )
	{
		for(int j=0; j < param.param_device.NumberPixels ; j++ )
		{
			sumC+=localconvFFT[i*param.param_device.NumberPixels+j][0];
			sumsquareC+=localconvFFT[i*param.param_device.NumberPixels+j][0]*localconvFFT[i*param.param_device.NumberPixels+j][0];
		}
	}
	/*** The DTF gives an unnormalized value so have to divded by the total number of pixels in Fourier ***/
	// Normalizing
629
630
	sumC=sumC/ (myfloat_t) (param.param_device.NumberPixels*param.param_device.NumberPixels);
	sumsquareC=sumsquareC / pow((myfloat_t) param.param_device.NumberPixels,4);
631
632

	/**** Freeing fftw_complex created (dont know if omp critical is necessary) ****/
633
	myfftw_free(localconvFFT);
634
635

	return(0);
636
637
638
639
}

int bioem::calcross_cor(bioem_map& localmap,myfloat_t& sum,myfloat_t& sumsquare)
{
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
	/*********************** Routine to calculate Cross correlations***********************/

	sum=0.0;
	sumsquare=0.0;
	for (int i = 0; i < param.param_device.NumberPixels; i++)
	{
		for (int j = 0; j < param.param_device.NumberPixels; j++)
		{
			// Calculate Sum of pixels
			sum += localmap.points[i][j];
			// Calculate Sum of pixels squared
			sumsquare += localmap.points[i][j]*localmap.points[i][j];
		}
	}
	return(0);
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
}

int bioem::deviceInit()
{
	return(0);
}

int bioem::deviceStartRun()
{
	return(0);
}

int bioem::deviceFinishRun()
{
	return(0);
}